The environmental sustainability of the Internet for all and everything

- Leandro Navarro
 UPC.EDU
 leandro.navarro@upc.edu
Situation

- More than 6 billion new ICT goods are sold annually worldwide, and beyond 28 billion are expected in 2025.
- Can we afford the growth of ICT devices for more people (everyone), more devices per person (mobiles, laptops, desktops, servers, cloud providers, the internet, mobile networks), more IoT (everything).
- ... and the energy spent in all we do on the Internet?
- Climate change and environmental degradation are an existential threat to the world.
- Decarbonisation: reduction of green-house gas (GHG) emissions.
Goals?

- Reduction of environmental impact of about 50% by 2030 to align with the 1.5°C trajectory, or the 2°C severe effects, or ...

- Contribution of ICT in electricity usage is a major green-house gases factor:
 - By 2030 it could use up to 51% of global electricity, and contribute up to 23% of globally released GHG emissions

GHG emissions across the life cycle of a smartphone

The global warming potential for a mobile phone with two year usage life-cycle

Questions

- Fast-forward 10 or 20 years, can we imagine a scenario by 2030 or 2040?
- How to achieve a desirable scenario?
- Need for changes on how the Internet works?
 - Architecture: caching, replication, locality, asynchrony, slower
 - Protocols: format, overhead reduction, slowdown
 - Formats: less verbose, compression
 - Parameters: timers, negotiation
Environmental protocol considerations: energy

<table>
<thead>
<tr>
<th>RFC</th>
<th>Standard Type</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 7228</td>
<td>ASCII, PDF, HTML</td>
<td>Terminology for Constrained-Node Networks</td>
<td>C. Bormann, M. Ersue, A. Keranen</td>
<td>May 2014</td>
</tr>
<tr>
<td>RFC 7460</td>
<td>ASCII, PDF, HTML</td>
<td>Monitoring and Control MIB for Power and Energy</td>
<td>M. Chandramouli, B. Claise, B. Schoening, J. Quitttek, T. Dietz</td>
<td>March 2015</td>
</tr>
<tr>
<td>RFC 7577</td>
<td>ASCII, PDF, HTML</td>
<td>Definition of Managed Objects for Battery Monitoring</td>
<td>J. Quitttek, R. Winter, T. Dietz</td>
<td>July 2015</td>
</tr>
<tr>
<td>RFC 7603</td>
<td>ASCII, PDF, HTML</td>
<td>Energy Management (EMAN) Applicability Statement</td>
<td>B. Schoening, M. Chandramouli, B. Nordman</td>
<td>August 2015</td>
</tr>
<tr>
<td>RFC 8352</td>
<td>ASCII, PDF, HTML</td>
<td>Energy-Efficient Features of Internet of Things Protocols</td>
<td>C. Gomez, M. Kovatsch, H. Tian, Z. Cao, Ed.</td>
<td>April 2018</td>
</tr>
</tbody>
</table>
Even more ...

- Locality of edge/fog computing?
- Servitised user-devices: light clients (xterminal like)
- Env accountability:
 - GHG metering, reporting: per device, per org
 - Circular economy: reuse of devices (2nd hand): traceability from manufacturing until final recycling
 - Environmental limits, env budget? Environmental congestion control, caching, rate/update limits?
Lessons, actions

- GAIA! Network + end-hosts + people + things + environmental limits
- Sustainability: the Internet adds or subtracts on GHG Better materials, better energy, more durable, less usage ...
- Lightness: materials, energy, processing, data, ...
- Locality of data and computation, caching, replication, slower by design or choice (asynchrony), limits ...
- Any lesson from COVID?
- How to turn into IRTF research, discussion, documents