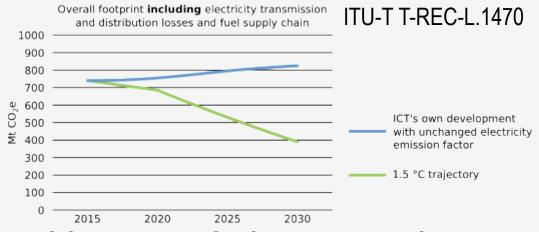
The environmental sustainability of the Internet for all and everything

Leandro Navarro

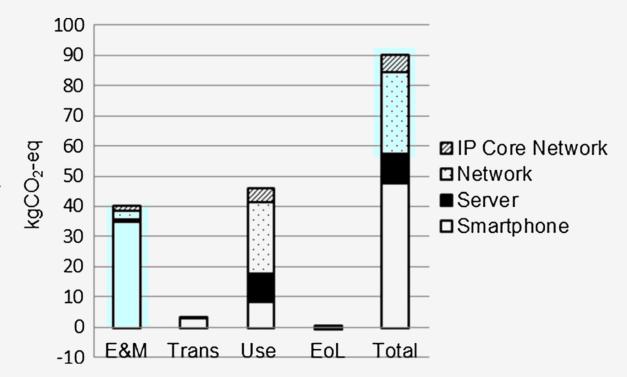

UPC.EDU

leandro.navarro@upc.edu

Situation

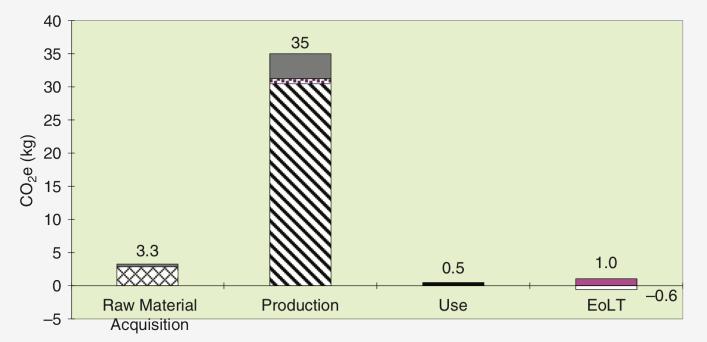
- More than 6 billion new ICT goods are sold annually worldwide, and beyond 28 billion are expected in 2025
- Can we afford the growth of ICT devices for more people (everyone), more devices per person (mobiles, laptops, desktops, servers, cloud providers, the internet, mobile networks), more IoT (everything)
- ... and the energy spent in all we do on the Internet?
- Climate change and environmental degradation are an existential threat to the world
- Decarbonisation: reduction of green-house gas (GHG) emissions

Goals?

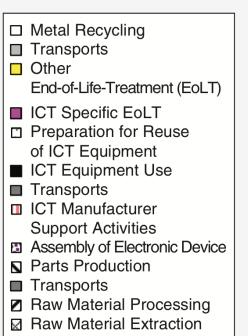


- Reduction of environmental impact of about 50% by 2030 to align with the 1.5°C trajectory, or the 2°C severe effects, or ...
- Contribution of ICT in electricity usage is a major green-house gases factor:
 - By 2030 it could use up to 51% of global electricity, and contribute up to 23% of globally released GHG emissions

A. Andrae, T. Edler. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015


GHG emissions across the life cycle of a smartphone

J. Suckling, J. Lee. Redefining Scope: The True Environmental Impact of Smart-phones? International Journal of Life Cycle Assessment, 2015



The global warming potential for a mobile phone with two year usage life-cycle

A. Andrae, Life-Cycle Assessment of Consumer Electronics: A review of methodological approaches, IEEE Consumer Electronics Magazine, 2016

1_1

Questions

- Fast-forward 10 or 20 years,
 can we imagine a scenario by 2030 or 2040?
- How to achieve a desirable scenario?
- Need for changes on how the Internet works?
 - Architecture: caching, replication, locality, asynchrony, slower
 - Protocols: format, overhead reduction, slowdown
 - Formats: less verbose, compression
 - Parameters: timers, negotiation

Environmental protocol considerations: energy

RFC 6464	ASCII, PDF, HTML	A Real-time Transport Protocol (RTP) Header Extension for Client-to-Mixer Audio Level Indication	J. Lennox, Ed., E. Ivov, E. Marocco	December 2011	Proposed Standard
RFC 6465	ASCII, PDF, HTML	A Real-time Transport Protocol (RTP) Header Extension for Mixer-to-Client Audio Level Indication	E. Ivov, Ed., E. Marocco, Ed., J. Lennox	December 2011	Proposed Standard
RFC 6988	ASCII, PDF, HTML	Requirements for Energy Management	J. Quittek, Ed., M. Chandramouli, R. Winter, T. Dietz, B. Claise	September 2013	Informational
RFC 7228	ASCII, PDF, HTML	Terminology for Constrained-Node Networks	C. Bormann, M. Ersue, A. Keranen	May 2014	Informational
RFC 7326	ASCII, PDF, HTML	Energy Management Framework	J. Parello, B. Claise, B. Schoening, J. Quittek	September 2014	Informational
RFC 7460	ASCII, PDF, HTML	Monitoring and Control MIB for Power and Energy	M. Chandramouli, B. Claise, B. Schoening, J. Quittek, T. Dietz	March 2015	Proposed Standard
RFC 7461	ASCII, PDF, HTML	Energy Object Context MIB	J. Parello, B. Claise, M. Chandramouli	March 2015	Proposed Standard
RFC 7577	ASCII, PDF, HTML	Definition of Managed Objects for Battery Monitoring	J. Quittek, R. Winter, T. Dietz	July 2015	Proposed Standard
RFC 7603	ASCII, PDF, HTML	Energy Management (EMAN) Applicability Statement	B. Schoening, M. Chandramouli, B. Nordman	August 2015	Proposed Standard
RFC 7668	ASCII, PDF, HTML	IPv6 over BLUETOOTH(R) Low Energy	J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, C. Gomez	October 2015	Proposed Standard
RFC 7772 a.k.a. BCP 202	ASCII, PDF, HTML	Reducing Energy Consumption of Router Advertisements	A. Yourtchenko, L. Colitti	February 2016	Best Current Practice
RFC 8036	ASCII, PDF, HTML	Applicability Statement for the Routing Protocol for Low-Power and Lossy Networks (RPL) in Advanced Metering Infrastructure (AMI) Networks	N. Cam-Winget, Ed., J. Hui, D. Popa	January 2017	Proposed Standard
RFC 8105	ASCII, PDF, HTML	Transmission of IPv6 Packets over Digital Enhanced Cordless Telecommunications (DECT) Ultra Low Energy (ULE)	P. Mariager, J. Petersen, Ed., Z. Shelby, M. Van de Logt, D. Barthel	May 2017	Proposed Standard
RFC 8352	ASCII, PDF,	Energy-Efficient Features of Internet of Things Protocols	C. Gomez, M. Kovatsch, H. Tian, Z. Cao, Ed.	April 2018	Informational

Even more ...

- Locality of edge/fog computing?
- Servitised user-devices: light clients (xterminal like)
- Env accountability:
 - GHG metering, reporting: per device, per org
 - Circular economy: reuse of devices (2nd hand): traceability from manufacturing until final recycling
 - Environmental limits, env budget?
 Environmental congestion control, caching, rate/update limits?

Lessons, actions

- GAIA! Network + end-hosts + people
 + things + environmental limits
- Sustainability: the Internet adds or subtracts on GHG Better materials, better energy, more durable, less usage ...
- Lightness: materials, energy, processing, data, ...
- Locality of data and computation, caching, replication, slower by design or choice (asynchrony), limits ...
- Any lesson from COVID?
- How to turn into IRTF research, discussion, documents