
@
justin _ _ richer

https://bspk.io/

1

@
justin _ _ richer

https://bspk.io/

2

@
justin _ _ richer

https://bspk.io/

https://oauth.xyz/
• Detailed examples of proposed protocol
• Test implementations in Java, NodeJS, and React
• Individual draft specification

3

@
justin _ _ richer

https://bspk.io/

What’s new in -09?
• Refactored based on request and response parts
• Management URLs for grants and tokens
• Refocus claims requests on subject identifiers
• Interaction capabilities for apps, pushback
• Alignment with RAR in resource structure
• Simplified dynamically returned handles

4

@
justin _ _ richer

https://bspk.io/

What’s not new?
• Polymorphic JSON and passing by reference
• Clients identified by keys
• Resources use rich structure with possible shortcuts
• Interaction uses inline negotiation
• Single and multiple access tokens
• Compatibility with OAuth 2 constructs

5

@
justin _ _ richer

https://bspk.io/

Document Structure

6

@
justin _ _ richer

https://bspk.io/

Section 2: Request
• Everything a client sends to start the process
• New section on interaction requests
– Same in-line negotiation protocol, just all together now

• Clarified polymorphism inline with use
– Same process, just not in a different section

• Clarified requesting resources and user information
– Align with RAR and secevent-subject-identifiers

• Clarified presenting user information

7

@
justin _ _ richer

https://bspk.io/

Section 3: Response
• Everything the AS can respond with
– Access tokens (single and multiple)
– Interaction methods (next-steps in negotiation)
– User information (aligned with secevent-subject-ids)

• Continuation and token management have URIs
– These could be stable or dynamic, depending on AS
– Client always takes value as given

8

@
justin _ _ richer

https://bspk.io/

Section 4: Interaction at the AS
• How the AS has to be prepared to deal with the

responses to interaction in Section 3
• Requirements for getting to the AS and getting back

are separated from each other
– Common flows will mix them together as needed

9

@
justin _ _ richer

https://bspk.io/

Section 5: Continuing a Request
• Follow-on from the “continue” response of Section 3
– Possibly augmented with information from Section 4.4

• Similar to initial request/response
– Can have some of the same inputs (Section 2)
– Can have most of the same outputs (Section 3)

• Could keep going after tokens are issued … maybe?

10

@
justin _ _ richer

https://bspk.io/

Section 6: Managing Tokens
• If token management URL is given, client can rotate

and/or revoke using this URL
• Token is used to access the management URL
– Always bound with keys (either client’s or token’s)

11

@
justin _ _ richer

https://bspk.io/

Section 7: Sending Tokens
• Bearer tokens: just use RFC6750
• Other tokens: use key bindings from Section 8
• Potentially a separate document (but it’s really short)

12

@
justin _ _ richer

https://bspk.io/

Section 8: Binding Keys
• General-purpose methods for tying a key to a request

within the GNAP protocol
• Could be requests between different parties:
– Client->AS
– Client->RS
– RS->AS

• Probably too many methods here but all have
implementations

13

@
justin _ _ richer

https://bspk.io/

Section 9: Discovery
• Protocol is designed to allow in-line negotiation of

nearly all options and elements
• Pre-request discovery allowed for clients that

programmatically optimize things
– But not required for functionality

14

@
justin _ _ richer

https://bspk.io/

Section 10: Resource Servers
• Token introspection
• Downstream RS-to-RS chaining
• How to start a Client-to-RS-first protocol
• Probably should be in separate documents, but

there’s interest in the community for this
– It’s really unbaked

15

@
justin _ _ richer

https://bspk.io/

Appendix B: Data Models
• OAuth 2 is lacking internally consistent data models
• We need to define common structure for:
– AS (facilitate discovery and deployment decisions)
– Client (facilitate registration and interaction assumptions)
– RS (facilitate discovery and downstream processing)
– Token/access rights (facilitate token formats and introspection)

• If we don’t do this now, it’ll get back-patched in future specs
like OAuth 2

16

@
justin _ _ richer

https://bspk.io/

Appendix C: Examples
• Now that the draft is cut into message pieces, full

protocol examples are moved to the appendix
• Currently includes Auth Code, Device, Client

Credentials, Asynchronous, and OAuth 2 examples

17

@
justin _ _ richer

https://bspk.io/

Details!

18

@
justin _ _ richer

https://bspk.io/

Continuation Structure

19

@
justin _ _ richer

https://bspk.io/

Continuing a request
AS:
{
"continue": {
"handle": "80UPRY5NM33OMUKMKSKU",
"uri": "https://server/continue",
"wait": 60

}
}

Client (to https://server/continue):
{
"handle": "80UPRY5NM33OMUKMKSKU"
}

20

Stable but separate from initial URL

@
justin _ _ richer

https://bspk.io/

Continuing a request (alternate)
AS:
{
"continue": {
"handle": "80UPRY5NM33OMUKMKSKU",
"uri":

"https://server/continue/80UPRY5N",
"wait": 60

}
}

Client (to https://server/continue/80UPRY5N):
{
"handle": "80UPRY5NM33OMUKMKSKU"
}

21

Unique to request

@
justin _ _ richer

https://bspk.io/

Continuing a request (alternate 2)
AS:
{
"continue": {
"handle": "80UPRY5NM33OMUKMKSKU",
"uri": "https://server/tx",
"wait": 60

}
}

Client (to https://server/tx):
{
"handle": "80UPRY5NM33OMUKMKSKU"
}

22

Same as the initial request URL

@
justin _ _ richer

https://bspk.io/

Continuing a request after interaction
AS:
{
"continue": {
"handle": "80UPRY5NM33OMUKMKSKU",
"uri": "https://server/continue"

}
}

Client (to https://server/continue):
{
"handle": "80UPRY5NM33OMUKMKSKU",
"interact_ref": "4WIKYBC2PQ6U56NL1"
}

23

@
justin _ _ richer

https://bspk.io/

Allowing challenge/response interaction
AS:
{
"challenge": {

"value": "OFXG4Y5CV",
"origin": "https://server/",
"alg": "SHA256"

},
"continue": {
"handle": "80UPRY5NM33OMUKMKSKU",
"uri": "https://server/continue"

}
}

Client (to https://server/continue):
{
"handle": "80UPRY5NM33OMUKMKSKU",
"challenge_response": {

"key_id": "2-230-235123",
"value": "ZXYQNEOAF-32f2/afa="

}
}

24

@
justin _ _ richer

https://bspk.io/

Allowing additional continues:
Client (to https://server/continue):
{
"handle": "80UPRY5NM33OMUKMKSKU"
}

AS:
{
"continue": {
"handle": "4IFWWIKYBC2PQ6U56NL1",
"uri": "https://server/continue",
"wait": 60

}
}

25

Rotate the reference and
possibly the URI too, client
uses what comes back

@
justin _ _ richer

https://bspk.io/

Why separate URL from reference?
• Allow AS to rotate reference on use for security
– Considered good practice with refresh tokens today
– Required in UMA2 equivalent “permission ticket”

• Allow different AS deployments
– AS can allow stable URLs or dynamic where needed
– We shouldn’t dictate URLs where possible

• Allow reference in derived requests
– Upscoping, downscoping, token exchange, grant-level refresh and

management

26

@
justin _ _ richer

https://bspk.io/

Open question:
Make reference an access token itself?

• Should we re-use access token semantics and structures
to manage the grant itself?

• Similarities:
– Limited to only grant management API
– Bound to client key (could be explicit, never bearer)
– Similar to “directed tokens” discussion

• Vaguely like OAuth 1’s “request token”

27

@
justin _ _ richer

https://bspk.io/

Token Management

28

@
justin _ _ richer

https://bspk.io/

Client Managing Access Tokens
• Client given URL to rotate and revoke token
• Somewhat RESTful API
– POST to rotate
– DELETE to revoke

• Token used to access its management API
– Requires proof of token-bound key if present
– Requires proof of client-bound key if bearer

29

@
justin _ _ richer

https://bspk.io/

Getting the management URL
"access_token": {
"value": "OBW7OZB8CDFONP219RP1LT0",
"proof": "bearer",
"manage": "https://server/token"

}

30

@
justin _ _ richer

https://bspk.io/

Getting the management URL (alt)
"access_token": {
"value": "OBW7OZB8CDFONP219RP1LT0",
"proof": "bearer",
"manage": "https://server/token/NP219RP1L"

}

31

@
justin _ _ richer

https://bspk.io/

Why a separate URI?
• Supporting multiple access tokens pushes to

separating concerns from overall “request” and
resulting access

• AS can use a stable URL to open firewalls etc.
• Client should already know how to present an access

token and bind a key

32

@
justin _ _ richer

https://bspk.io/

Interaction Negotiation

33

@
justin _ _ richer

https://bspk.io/

Front-channel Binding (Auth Code)
Client:
{
"interact": {
"redirect": true,
"callback": {
"uri": "https://client.foo",
"nonce": "VJLO6A4CAYLBXHTR0KRO”
}

}
}

AS:
{
"interaction_url":

"https://server/i/4CF492MLVMSMKMXKHQ",
"callback_server_nonce": "OFXG4YLH",
"continue": {
"handle": "80UPRY5NM33OMUKMKSKU",
"uri": "https://server/continue",

}
}

34

@
justin _ _ richer

https://bspk.io/

User code (Device)
Client:
{
"interact": {
"user_code": true

}
}

AS:
{
"user_code": {
"url": "https://server/device",
"code": "A1BC-3DFF"

},
"continue": {
"handle": "80UPRY5NM33OMUKMKSKU",
"uri": "https://server/continue",
"wait": 60
}

}

35

@
justin _ _ richer

https://bspk.io/

Allow short URIs?
Client:
{
"interact": {

"redirect": true,
"short_redirect": true,
"user_code": true

}
}

AS:
{
"interaction_url":

"https://server/i/4CF492MLVMSMKMXKHQ",
"short_interaction_url":

"https://srv.ex/MXKHQ”,
"user_code": {
"url": "https://server/device",
"code": "A1BC-3DFF"

}
}

36

@
justin _ _ richer

https://bspk.io/

Allow short URIs?
Client:
{
"interact": {

"redirect": true,
"short_redirect": true,
"user_code": true

}
}

AS:
{
"interaction_url":

"https://server/i/4CF492MLVMSMKMXKHQ",
"user_code": {
"url": "https://server/device",
"code": "A1BC-3DFF"

}
}

37

@
justin _ _ richer

https://bspk.io/

Allow short URIs?
Client:
{
"interact": {

"redirect": true,
"short_redirect": true,
"user_code": true

}
}

AS:
{
"short_interaction_url":

"https://srv.ex/MXKHQ”,
"user_code": {
"url": "https://server/device",
"code": "A1BC-3DFF"

}
}

38

@
justin _ _ richer

https://bspk.io/

Application URI
Client:
{
"interact": {
"redirect": true,
"app": true,
"callback": {
"uri": "https://client.foo",
"nonce": "VJLO6A4CAYLBXHTR0KRO”
}

}
}

AS:
{
"interaction_url":

"https://server/i/4CF492MLVMSMKMXKHQ",
"app_url":

"https://app.ex/launch?tx=4CF492MLV"
"server_nonce": "OFXG4Y5CVJCX821LH",
"continue": { ... }

}

39

@
justin _ _ richer

https://bspk.io/

Why a separate app URL?
• AS could want different URIs for captured apps and

web-based interaction
• Leave room for additional fields
– Distributed storage address for drop-off protocols
– Keys and pointers for onion routing

40

@
justin _ _ richer

https://bspk.io/

Client pushback
Client:
{
"interact": {
"redirect": true,
"pushback": {
"uri": "https://client.foo",
"nonce": "VJLO6A4CAYLBXHTR0KRO”
}

}
}

AS:
{
"interaction_url":

"https://server/i/4CF492MLVMSMKMXKHQ",
"pushback_server_nonce": "OFXG4Y5H",
"continue": {
"handle": "80UPRY5NM33OMUKMKSKU",
"uri": "https://server/continue",

}
}

41

@
justin _ _ richer

https://bspk.io/

AS push to Client
POST /push/554321 HTTP/1.1
Host: client.example.net
Content-Type: application/json

{
"hash":

"p28jsq0Y2KK3WS__a42tavNC64ldGTBroywsWxT4md_jZQ1R2HZT8
BOWYHcLmObM7XHPAdJzTZMtKBsaraJ64A",

"interact_ref": "4IFWWIKYBC2PQ6U56NL1"
}

42

@
justin _ _ richer

https://bspk.io/

Why support push?
• “Callback” assumes user in a browser at the client
• “Pushback” assumes direct connection from AS
– User is on secondary device
– Client has connected backend

43

@
justin _ _ richer

https://bspk.io/

Why separate redirect and callback?
• Flexible combinations for different use cases
• Client knows what it’s capable of
• AS knows what it will allow for a given request

44

@
justin _ _ richer

https://bspk.io/

Extend Interaction Safely
Client:
{
"interact": {

"webauthn": true,
"didcomm_query": true,
"app": true,
"backchannel_push": true,
...

}
}

AS:
{

"webauthn": {
"origin": "server.example",
"challenge": "A1BC352DFD"

},
"app_url": "app:/xyz"

}

45

@
justin _ _ richer

https://bspk.io/

Open Question: Align Response?
Client:
{
"interact": {

"redirect": true,
"callback": {

"uri": "https://client.foo",
"nonce": "VJLO6A4CAYLBXHTR0KRO”

}
}

}

AS:
{

"interaction_url":
"https://server/i/4CF492MLVMSMKMXKHQ",

"callback_server_nonce": "OFXG4YLH"
}

{
"interact": {

"redirect":
"https://server/i/4CF492MLVMSMKMXKHQ",

"callback": "OFXG4YLH"
}

}

46

@
justin _ _ richer

https://bspk.io/

Identity and User Information

47

@
justin _ _ richer

https://bspk.io/

User information directly to the client
Client:
{
"subject": {
"sub_ids": ["iss-sub", "email"],
"assertions": ["oidc_id_token"]

}
}

AS:
{
"subject": {
"sub-ids": [
{ "subject_type": "email",
"email": "user@example.com”

}
],
"assertions": {

"oidc_id_token": "eyj0...”
}

}
}

48

@
justin _ _ richer

https://bspk.io/

Sending information
about the user to the AS

{
"user": {
"sub-ids": [
{ "subject_type": "email",
"email": "user@example.com”

}
],
"assertions": {

"oidc_id_token": "eyj0...”
}

}
}

49

Untrusted identifiers

Verifiable assertions

@
justin _ _ richer

https://bspk.io/

Why only identifiers and assertions?
• Privacy-first design principles
– Client doesn’t know who the user is before calling AS
– Client doesn’t know what information it needs to ask for

• If client does know the user, it’s not asking the AS
• Identity schema are complex
– Better left to dedicated extensions
– OpenID-GNAP?

50

@
justin _ _ richer

https://bspk.io/

Open Questions
• Request as “subject” and declaration as “user”
– Terms are confusing, better names?
– “Claims” could come back as a “resource”

• Allow additional items in response?
– Or other non-claim direct data responses?

51

@
justin _ _ richer

https://bspk.io/

Tokens and Resources

52

@
justin _ _ richer

https://bspk.io/

Requesting complex data
Client:
{
"resources": [

{
"type": "photo-api",
"actions": ["read", "write",

"dolphin"],
"locations": ["https://server.example.net/",

"https://resource.local/other"],
"datatypes": ["metadata", "images"]

},
{
"type": "financial-transaction",
"actions": ["withdraw"],
"identifier": "account-14-32-32-3",
"currency": "USD”

}
]

}

AS:
{
"access_token": {

"value": "MHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
"proof": "bearer",
"resources": "resources": [
{
"type": "photo-api",
"actions": ["read", "write",

"dolphin"],
"locations": ["https://server.example.net/",

"https://resource.local/other"],
"datatypes": ["metadata", "images"]

},
{
"type": "financial-transaction",
"actions": ["withdraw"],
"identifier": "account-14-32-32-3",
"currency": "USD”

}
]

}
}

53

@
justin _ _ richer

https://bspk.io/

Requesting predefined data structures
Client:
{
"resources": [

"read", "dolphin-metadata",
"some other thing"

]
}

AS:
{
"access_token": {
"value": "MHKUR64TB8N6BW7OZB8T0",
"proof": "bearer",
"resources": [
"read", "dolphin-metadata",
"some other thing”

]
}
}

54

@
justin _ _ richer

https://bspk.io/

Equivalence between items
String:
"dolphin-metadata"

Object:
{

"type": "photo-api",
"actions": ["dolphin"],
"datatypes": ["metadata"]

}

55

The AS decides how this is mapped

@
justin _ _ richer

https://bspk.io/

Open question:
Align request and response?

• Currently “resources” results in “access_token”,
should the request also be “access_token”?

56

@
justin _ _ richer

https://bspk.io/

Open Question:
Directed Access Tokens

• We can describe “what the token’s for” but don’t
have a way to say “how to use it”

• Defining usage rules in HTTP is HARD
– Verbs, headers, parameters, URLs, etc

• Maybe a subset? Maybe an extension?

57

@
justin _ _ richer

https://bspk.io/

Plugging in OAuth 2

58

@
justin _ _ richer

https://bspk.io/

Have a place to put familiar things

client_id=client1
&scope=foo%20bar

{
"keys":

"client1",
"resources": [

"foo",
"bar"

]
}

59

@
justin _ _ richer

https://bspk.io/

Why not just have “client_id”?
• Identifiers should be used but not required
– All clients identify with a key, whether registered or not
– An identifier is a shortcut to look up the key

• OAuth 2 hangs too much on “client_id” lookup
– Breaks ephemeral clients
– Breaks single-user clients
– Assumes registration
– Confuses what a “client” even is

60

@
justin _ _ richer

https://bspk.io/

Why not just have “scope”?
• “Scope” is a confusing and limiting construct
– Can’t have spaces, can’t have unicode

• RAR has to deal with how to relate to scope,
resource, audience, and other parameters

• GNAP can more clearly define string-based requests
as optimizations of rich requests

61

@
justin _ _ richer

https://bspk.io/

Making XYZ from OAuth 2
• PAR + RAR + JAR + JARM
• DPoP + PoP + MTLS +HTTPSig
• Auth Code, Device, Exchange, Refresh, Assertion, CIBA,

OB/FAPI, Client Credentials, and UMA flows
• PKCE + State
• Plus a few things we haven’t invented yet
• This is unwieldy at best…

62

