/o1 dsq//:sduy

[ETF 108 GNAP WG

. Justin Richer

1 B
@justin _ _ richer https://bspk.io/

https://oauth.xyz/

(9]
>
D

* Detailed examples of proposed protocol
» Testimplementations in Java, NodeJS, and React
* Individual draft specification

/o1 dsq//:sduy

®'z

/o1 dsq//:sduy

What's new in -09?

Refactored based on request and response parts
Management URLs for grants and tokens
Refocus claims requests on subject identifiers
Interaction capabilities for apps, pushback
Alignment with RAR in resource structure
Simplified dynamically returned handles

/o1 dsq//:sduy

What's not new?

Polymorphic JSON and passing by reference
Clients identified by keys

Resources use rich structure with possible shortcuts
Interaction uses inline negotiation

Single and multiple access tokens

Compatibility with OAuth 2 constructs

/o1 dsq//:sduy

Document Structure

@

Jaydl ~ T unsn

/o1 dsq//:sduy

Section 2: Request

Everything a client sends to start the process

New section on interaction requests

— Same in-line negotiation protocol, just all together now
Clarified polymorphism inline with use

— Same process, just not in a different section

Clarified requesting resources and user information
— Align with RAR and secevent-subject-identifiers
Clarified presenting user information

nl®

/o1 dsq//:sduy

Section 3: Response

* Everything the AS can respond with

— Access tokens (single and multiple)

— Interaction methods (next-steps in negotiation)

— User information (aligned with secevent-subject-ids)
» Continuation and token management have URIs

— These could be stable or dynamic, depending on AS
— Client always takes value as given

/o1 dsq//:sduy

Section 4: Interaction at the AS

 How the AS has to be prepared to deal with the
responses to interaction in Section 3

* Requirements for getting to the AS and getting back
are separated from each other

— Common flows will mix them together as needed

/o1 dsq//:sduy

Section 5: Continuing a Request

* Follow-on from the “continue” response of Section 3
— Possibly augmented with information from Section 4.4
e Similar to initial request/response

— Can have some of the same inputs (Section 2)
— Can have most of the same outputs (Section 3)

* Could keep going after tokens are issued ... maybe?

~upsnl

/o1 dsq//:sduy

Section 6: Managing Tokens

* |f token management URL s given, client can rotate
and/or revoke using this URL

» Token is used to access the management URL
— Always bound with keys (either client’s or token’s)

)
c

=
=
D

Section 7: Sending Tokens

-« Bearertokens: just use RFC6750

/o1 dsq//:sduy

* Qthertokens: use key bindings from Section 8
» Potentially a separate document (but it's really short)

/o1 dsq//:sduy

Section 8: Binding Keys

* General-purpose methods for tying a key to a request
within the GNAP protocol

* Could be requests between different parties:
— Client->AS
— Client->RS
— RS->AS

* Probably too many methods here but all have
implementations

nl®

/o1 dsq//:sduy

Section 9: Discovery

* Protocol is designed to allow in-line negotiation of
nearly all options and elements

* Pre-request discovery allowed for clients that
programmatically optimize things
— But not required for functionality

~upsnl

/o1 dsq//:sduy

Section 10: Resource Servers

Token introspection
Downstream RS-to-RS chaining
How to start a Client-to-RS-first protocol

Probably should be in separate documents, but
there’s interest in the community for this

— It's really unbaked

@

Jaydl ~ T unsn

/o1 dsq//:sduy

16

Appendix B: Data Models

 OAuth 2 is lacking internally consistent data models

 We need to define common structure for:
— AS (facilitate discovery and deployment decisions)
— Client (facilitate registration and interaction assumptions)
— RS (facilitate discovery and downstream processing)
— Token/access rights (facilitate token formats and introspection)

* |f we don't do this now, it'll get back-patched in future specs
like OAuth 2

/o1 dsq//:sduy

Appendix C: Examples

Now that the draft is cut into message pieces, full
protocol examples are moved to the appendix

Currently includes Auth Code, Device, Client
Credentials, Asynchronous, and OAuth 2 examples

1 B
@justin _ _richer

Details!

https://bspk.io/

18

/o1 dsq//:sduy

Continuation Structure

unsnl@

Jayou

/o1 dsq//:sduy

20

AS:

{

}

Continuing a request

"continue": {
"handle": "8AUPRY5NM330MUKMKSKU",

¥

"url-i_":
"wait":

"https://server/continue”,
00

Client (to https://server/continue):

{
¥

"handle": "8QUPRY5NM330MUKMKSKU"

Stable but separate from initial URL

unsnl@

Jayou

Continuing a request (alternate)

/o1 dsq//:sduy

21

AS: Client (to https://server/continue/80UPRY5N):
{ {
"continue": { "handle": "8QUPRY5NM330MUKMKSKU"
"handle": "8AUPRY5NM330MUKMKSKU", }
"uri”:
"https://server/continue/80UPRY5N",
"wait": 60
by
ks

Unique to request

unsnl@

Jayou

/o1 dsq//:sduy

22

Continuing a request (alternate 2)

AS:
{

"continue": {
"handle": "8AUPRY5NM330MUKMKSKU",
"uri": "https://server/tx",
"wait": 60
ks
¥

Client (to https://server/tx):

1
"handle": "8@UPRYSNM330MUKMKSKU"

}

Same as the initial request URL

[®)

unpsn

Continuing a request after interaction

Jayou

AS: Client (to https://server/continue):
{ {
_g "continue": { "handle": "8OUPRY5NM330MUKMKSKU",
2 "handle": "8QUPRY5NM330MUKMKSKU", "interact_ref": "4WIKYBCZPQoUS6NL1"
§' "uri": "https://server/continue” }
L}
O

¥

23

unsnl@

Jayou

/o1 dsq//:sduy

24

{

Allowing challenge/response interaction
AS:

"challenge": {
"value": "OFXG4Y5CV",
"origin": "https://server/",
"alg": "SHA256"

¥

"continue": {

"handle": "8QUPRY5NM330MUKMKSKU",

"uri": "https://server/continue”

Client (to https://server/continue):

{

}

"handle": "8OUPRY5NM330MUKMKSKU",
"challenge_response": {

¥

"key_id": "2-230-235123",
"value": "ZXYQNEOAF-32f2/afa="

unsnle

Jayou

/o1 dsq//:sduy

25

Client (to https://server/continue):

1
¥

Allowing additional continues:

"handle" :

" 8QUPRY5NM330MUKMKSKU™

AS:
{

"continue": {
"handle": "4IFWWIKYBCZ2PQoUS6NL1",
"uri": "https://server/continue”,
"wait": 60

¥

¥

Rotate the reference and
possibly the URI too, client
uses what comes back

~unsnl

Why separate URL from reference?

» Allow AS to rotate reference on use for security
— Considered good practice with refresh tokens today
— Required in UMA2 equivalent “permission ticket"

* Allow different AS deployments
— AS can allow stable URLs or dynamic where needed
— We shouldn't dictate URLs where possible

* Allow reference in derived requests

— Upscoping, downscoping, token exchange, grant-level refresh and
management

ayou

/o1 dsq//:sduy

26

/o1 dsq//:sduy

Open question:

Make reference an access token itself?
 Should we re-use access token semantics and structures
to manage the grant itself?
 Similarities:
— Limited to only grant management API
— Bound to client key (could be explicit, never bearer)
— Similar to “directed tokens" discussion

* Vaguely like OAuth 1's "request token”

~unsnl

/o1 dsq//:sduy

Token Management

/o1 dsq//:sduy

Client Managing Access Tokens

» Client given URL to rotate and revoke token

 Somewhat RESTful API
— POST to rotate
— DELETE to revoke

» Token used to access its management API
— Requires proof of token-bound key if present
— Requires proof of client-bound key if bearer

unsnle

Jayou

/o1 dsq//:sduy

30

Getting the management URL

"access_token": {

"value": "OBW70ZB8CDFONP219RP1LTQ",
"proof": "bearer",
"manage"” : "https://server/token”

unsnle

Jayou

/o1 dsq//:sduy

31

Getting the management URL (alt)

"access_token": {

"value": "OBW70ZB8CDFONP219RP1LTQ",
"proof": "bearer",
"manage": "https://server/token/NP219RP1L"

nl®

/o1 dsq//:sduy

Why a separate URI?

» Supporting multiple access tokens pushes to
separating concerns from overall “request” and
resulting access

* AS can use a stable URLto open firewalls etc.

* Client should already know how to present an access
token and bind a key

~unsnl

/o1 dsq//:sduy

Interaction Negotiation

unsnle
(M

Jayou

/o1 dsq//:sduy

Front-channel Binding (Auth Code)

Client: AS:
{ {

"interact": {
"redirect": true,

"interaction_url":
"https://server/1/4CF492MLVMSMKMXKHQ" ,

‘callback™: { "callback_server_nonce": "OFXG4YLH",
"uri": "https://client.foo", "continue": {
"nonce": "VJLO6A4CAYLBXHTROKRO” "handle": "8@UPRY5NM330MUKMKSKU",
ks "uri": "https://server/continue",
h ¥

¥ ¥

unsnle

Jayou

/o1 dsq//:sduy

35

Client;

{

}

"interact": {
"user_code":

}

true

User code (Device)

AS:

{

"user_code": {

¥

"url":
"code":

"https://server/device”,
"A1BC-3DFF"

"continue": {
"handle": "8QUPRY5NM330MUKMKSKU",

h

uri
"wait":

: "https://server/continue",

00

unsnl

Jayou

/o1 dsq//:sduy

36

Allow short URIs?

Client: AS:

{

{
"interact”: { "interaction_url":
"redirect”: true, "https://server/i/4CF492MLVMSMKMXKHQ" ,
"short_redirect”: true, "short_interaction_url":
"user_code": true "https://srv.ex/MXKHQ”,
} "user_code": {
"url": "https://server/device",
"code": "A1BC-3DFF"
ks

unsnlg

Jayou

/o1 dsq//:sduy

37

Allow short URIs?

Client: AS:

{

{
"interact": { "interaction_url":
‘redirect”: true, "https://server/i/4CF492MLVMSMKMXKHQ" ,
"short_redirect": true, "user_code": {
"user_code": true "url": "https://server/device",
ks "code": "A1BC-3DFF"
¥

unsnl

Jayou

/o1 dsq//:sduy

38

Client;

{

"interact": {
"redirect": true,
"short_redirect":
"user_code": true

Allow short URIs?

AS:
{

"short_interaction_url":
"https://srv.ex/MXKHQ”,

true, "user_code": {

"url”: "https://server/device”,
"code": "A1BC-3DFF"

unsnl

Jayou

/o1 dsq//:sduy

39

Client;

{

}

"interact": {

h

Application URI

AS:

"redirect": true,

"app": true,

"callback": {

"uri": "https://client.foo",

¥

"nonce":

"VJLO6A4CAYLBXHTROKRO”

{

"https://server/1/4CF492MLVMSMKMXKHQ" ,

"https://app.ex/launch?tx=4CF492MLV"
"server_nonce": "OFXG4Y5CVIJCX821LH",

.}

}

"interaction_url":

"app_url":

"continue": { ..

/o1 dsq//:sduy

Why a separate app URL?

* AS could want different URIs for captured apps and
web-based interaction
* Leave room for additional fields

— Distributed storage address for drop-off protocols
— Keys and pointers for onion routing

unsnl@

Jayou

Client;

{

Client pushback

AS:
{

"interact": {
"redirect": true,
"pushback": {

"interaction_url":
"https://server/1/4CF492MLVMSMKMXKHQ" ,
"pushback_server_nonce": "OFXG4Y5H",

/o1 dsq//:sduy

41

¥

¥

¥

"uri”: "https://client.foo",

"nonce":

"VJLO6A4CAYLBXHTROKRO”

"continue": {
"handle": "8AUPRY5NM330MUKMKSKU",

uri

: "https://server/continue",

unsnle

Jayou

/o1 dsq//:sduy

42

AS push to Client

POST /push/554321 HTTP/1.1
Host: client.example.net
Content-Type: application/json

{

"hash":
"p287sg@Y2KK3WS__a42tavNC641dGTBroywsWxT4md_jZQ1R2HZTS
BOWYHcLmObM7XHPAdJzTZMtKBsaraJl64A",

"interact_ref": "4IFWWIKYBCZ2PQoUS6NL1"
¥

nl®

/o1 dsq//:sduy

Why support push?

 "Callback” assumes user in a browser at the client

 "Pushback” assumes direct connection from AS

— User is on secondary device
— Client has connected backend

&

=
=
D

/o1 dsq//:sduy

Why separate redirect and callback?

» Flexible combinations for different use cases
* Client knows what it's capable of
* AS knows what it will allow for a given request

unsnle

Jayou

/o1 dsq//:sduy

45

Client;

{

Extend Interaction Safely

"interact": {

"webauthn": true,
"didcomm_query": true,

llappll :

true,

AS:

; "webauthn": {
"origin": "server.example",
"challenge"”: "A1BC352DFD"
},
"app_url”: "app:/xyz"
¥

/o1 dsq//:sduy

:~ Open Question: Align Response?
T Client: AS:
{ {

"interact": {

: "interaction_url":
"redirect": true,

"https://server/i/4CF492MLVMSMKMXKHQ" ,

"callback": { "callback_server_nonce": "OFXG4YLH"
"uri": "https://client.foo", I
"nonce": "VJLOG6A4CAYLBXHTROKRO”
¥ {
} "interact": {

}

"redirect":
"https://server/1/4CF492MLVMSMKMXKHQ" ,
"callback": "OFXG4YLH"
¥
¥

~upsnl

/o1 dsq//:sduy

Identity and User Information

[®)

uisn

User information directly to the client

4
Client: AS:
{ n b n {
= subject": { "subject": {
D "sub_1ds": ["iss-sub", "email"], "sub-ids": [
> "assertions": ["oidc_id_token"] { "subject_type": "email",
kS ¥ "email": "user@example.com”
o |} ks
1,
"assertions": {
"oidc_1id_token": "eyj0o...”
¥
ks

}

48

unsnle

Jayou

/o1 dsq//:sduy

49

{

Sending information

about the user to the AS

"user": {
"sub-1ds": [
{ "subject_type": "email",
"email": "user@example.com”
by
:l,
"assertions": {
"oidc_1id_token": "eyj0o...”
ks
ks

Untrusted identifiers

Verifiable assertions

&

-+

/o1 dsq//:sduy

Why only identifiers and assertions?

* Privacy-first design principles

— Client doesn't know who the user is before calling AS

— Client doesn't know what information it needs to ask for
* If client does know the user, it's not asking the AS

* |dentity schema are complex

— Better left to dedicated extensions
— OpenlD-GNAP?

@

Jaydl ~ T unsn

/o1 dsq//:sduy

51

Open Questions

* Request as "subject” and declaration as “user”
— Terms are confusing, better names?
— “Claims” could come back as a “resource”

* Allow additional items in response?
— Or other non-claim direct data responses?

~upsnl

/o1 dsq//:sduy

Tokens and Resources

unsnle

Jayou

/o1 dsq//:sduy

53

Requestin

Client;

"resources": [

"https://resource.local/other"]

}

]

{

i

"type": "photo-api",
"actions": ["read", "write",
"dolphin" 7],
"locations": ["https://server.example.net/",

b

"datatypes": ["metadata", "images"]

b

"type": "financial-transaction",
"actions": ["withdraw"],
"identifier": "account-14-32-32-3",
"currency": "USD”

g complex data

AS:

{

"access_token": {
"value": "MHKURG64TB8NG6BW70ZB8CDFONP219RP1LTQ",
"proof": "bearer",

"resources": "resources": [
{
"type": "photo-api",
"actions": ["read", "write",
"dolphin" 7],
"locations": ["https://server.example.net/",
"https://resource.local/other"],
"datatypes": ["metadata", "images"]
I
{
"type": "financial-transaction",
"actions": ["withdraw"],
"identifier": "account-14-32-32-3",
"currency": "USD”
ks
]
ks
ks

[®

uisn

Requesting predefined data structures

(1]
- Client: AS:
{ {
_g "resources": ["access_token": {
2 "read”, "dolphin-metadata”, "value": "MHKURG64TB8NG6BW70ZBSTQ",
g "some other thing" "proof": "bearer",
g] "resources": [
e "read", "dolphin-metadata",
"some other thing”
i
ks

}

54

@

Jaydl ~ T unsn

/o1 dsq//:sduy

55

Equivalence between items

String: Object:
"dolphin-metadata" {
"type": "photo-api",
"actions": ["dolphin"],
"datatypes": ["metadata"]
¥

The AS decides how this is mapped

nl®

/o1 dsq//:sduy

Open question:

Align request and response?
e Currently “resources” results in “access_token’
should the request also be “access_token"?

I
I

/o1 dsq//:sduy

Open Question:

Directed Access Tokens
« We can describe "what the token's for” but don't
have a way to say “how to use it"

* Defining usage rules in HTTP is HARD

— Verbs, headers, parameters, URLs, etc
 Maybe a subset? Maybe an extension?

/o1 dsq//:sduy

Plugging in OAuth 2

e W

Have a place to put familiar things

{
, "keyS":
-2 > .) e
¢ client_1d= "resources": [
> &scope=foo%20bar "£60"
b
"barl"
1

¥

/o1 dsq//:sduy

Why not just have “client_id"?

» |dentifiers should be used but not required
— All clients identify with a key, whether registered or not
— An identifier is a shortcut to look up the key

* OAuth 2 hangs too much on “client_id" lookup
— Breaks ephemeral clients
— Breaks single-user clients
— Assumes registration
— Confuses what a “client” even is

/o1 dsq//:sduy

Why not just have “scope”?

* “Scope” is a confusing and limiting construct
— Can't have spaces, can't have unicode

* RAR has to deal with how to relate to scope,
resource, audience, and other parameters

* GNAP can more clearly define string-based requests
as optimizations of rich requests

@

/o1 dsq//:sduy

Making XYZ from OAuth 2

PAR + RAR + JAR + JARM
DPoP + PoP + MTLS +HTTPSig

Auth Code, Device, Exchange, Refresh, Assertion, CIBA,
OB/FAPI, Client Credentials, and UMA flows

PKCE + State
Plus a few things we haven't invented yet
This is unwieldy at best...

