A Formal analysis of EDHOC Key

Establishment

https://arxiv.org/abs/2007.11427
Progress report

Karl Norrman
Ericsson Research/KTH Royal Institute of Technology
2020-07-31

https://arxiv.org/abs/2007.11427

Joint work

— Karl Norrman, Ericsson Research / KTH Royal Institute of Technology
- Vaishnavi Sundararajan, Ericsson Research
— Alessandro Bruni, IT University of Copenhagen

— This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Outline

Formal analysis

Tamarin conceptual overview

Similar to a parallel
functional program

o-0

All possible execution
traces of the model

0- 0
000+
e
O w0
Cete

LD -0

EDHOC framework

Essentially follows the Noise framework

- With the addition that signatures are added as authentication method (which results in a SIGMA-style
cryptographic core and two mixed methods)

- Also adds COSE and CBOR encodings, but we have not modeled that much detail

Re-uses the challenge-response signatures for STAT based methods to reduce message size, TH (like TLS
etc), g as session key (potentially adding g¥ and/or gR*in the style of OPTLS).

Unclear if there is an *exact® mapping to Noise, so proofs of those does not necessarily automatically carry
over.

However, the cryptographic cores are essentially the same and use well-understood constructions.

Main point of interest are the mixed methods: STAT-SIG and SIG-STAT.

- (We modelled all methods anyway)

EDHOC framework — Abstract structure

Knows g
generates x

Auth R->1
session key = KDF(g»...)

m1l: g*

>

m2: g¥, auth/enc(CRED_R, TH(m1), g¥, g¥)

Knows g, CRED R

Generatesy

EDHOC framework — Abstract structure

Initiator

Knows g,
generates X

m1l: g*

>

Auth R->1 <

mZ2: g¥, auth/enc(CRED_R, TH(m1), g¥, g¥)

session key = KDF(g»...)

Knows g, CRED R

Generatesy

EDHOC framework — Abstract structure
Initiator -

Knows g, Knows g, CRED R
generates x m1l: g~

>

m2: g¥, auth/enc(CRED_R, TH(m1), g¥, g¥) Generatesy

Auth R->1 <
session key = KDF(g»...)

m3:;
Auth I->R

session key = KDF(g»...)

EDHOC framework — Abstract structure

Knows g, CRED |
generates x

Auth R->1
session key = KDF(g»...)

A A

m1l: g*
>
mZ2: g¥, auth/enc(CRED_R, TH(m1), g¥, g¥)
m3: auth/enc(CRED I, TH(m2))
>

Knows g, CRED R

Generatesy

Auth I->R
session key = KDF(g»...)

Formal model and analysis — Summary

We in Tamarin
We have fundamental properties ()

to prove (adversary gets temporary access to TPM; session keys established after access is
revoked still secure) and

Identified in draft, e.g., non-repudiation aspects, taking advantage of TEEs, unintended
authentication confusion, unclear intentions regarding session key definition.

General conclusions:
EDHOC builds on and seems to behave as expected.

The provide , dictated by the credential used and the goal to keep
messages small.

Because the EDHOC's goal is to establish a general purpose OSCORE security context, it is
to verify.

Trade-offs are needed as usual,
to make (see session key authentication in the following).

Attacker model

m1l: g*

>

m2: g¥, auth/enc(CRED_R, TH(m1), g¥, g*)

A A

m3: auth/enc(CRED I, TH(m2))

Attacker model

m1l: g*

>

m2: g¥, auth/enc(CRED_R, TH(m1), g¥, @)

A A

m3: auth/enc(CRED I, TH(m2))

Attacker model

>

m1l: g*

m2: g¥, auth/enc(CRED_R, TH(m1), g¥, @)

A A

m3: auth/enc(CRED I, TH(m2))

Session key authentication (injective agreement)
SIG-SIG (much simplified)
Initiator -

Knows g, Knows g, CRED R
generates x m1l: g~

>

Now knows g*¥

m2: g¥, Sig_2(g*) Generates y
Auth R->1 < ? —

session key = KDF(g®)

m3:;
Auth I->R

session key = KDF(g¥)

Session key authentication (injective agreement)
SIG-SIG (much simplified)

Knows g, CRED |
generates x

_i——

m1l: g*

m2: g¥, Sig_2(g”)

<
<

>

Knows g, CRED R

Auth I->R
session key = KDF(g¥)

Session key authentication (injective agreement)

STAT-X (much simplified)

Knows g, CRED |
generates X

Auth R->1
session key =
KDF(-g»,

m1l: g*

>

m2:g¥, K 2e XOR (ID_CRED_R, Sig_2)

A A

m3: AEAD(ID_CRED _I), Sig_3

Knows g, CRED R

Now knows g*¥
Generatesy, Sig 2

Auth I->R
session key =
KDF(ng, gy*CRED_I)

Session key authentication (injective agreement)
STAT-X (much simplified)

Knows g, CRED | Knows g, CRED R

generates x m1l: g~

m2:g¥, K 2e XOR (ID_CRED_R, Sig_2)

Auth I->R
session key =
KDF(ng, gy*CRED_I)

Session key authentication (implicit key authentication)

Knows g, CRED | Knows g, CRED R
generates x m1l: g~

STAT-X (much simplified)

>

Now knows g*¥

m2:g¥, K 2e XOR (ID_CRED_R, Sig_?) Generatesy, Sig 2
Auth R->1

session key =
KDF(-g»,

A A

m3: AEAD(ID_CRED I), Sig_3
Auth I->R

session key =
KDF(ng, gy*CRED_I)

Session key material alternatives for STAT-X

. Include semi-static key g¥"“RED_I and accept different properties for different methods.

2. Exclude g¥"cREDI put then differing from OPTLS (and would not take advantage of OPTLS's careful design for
TEEs). PFS still holds for session key in our attacker model though, but not in a CK-style model with session state
reveal queries.

. Add a fourth message from R to I including a MAC based on key derived from key material from independent
branch in key hierarchy (to not destroy key indistinguishability).

. Include Initiator ID in message 1: Removes identity hiding of initiator.

Without better understanding the protocol goals, selecting alternatives
Whatever the choice: should decision be aligned across methods?

Thanks for listening!

Questions are welcome now or via mail

karl.norrman@ericsson.com

mailto:karl.norrman@ericsson.com

