
A Formal analysis of EDHOC Key
Establishment
https://arxiv.org/abs/2007.11427
Progress report

Karl Norrman
Ericsson Research/KTH Royal Institute of Technology
2020-07-31

https://arxiv.org/abs/2007.11427

Joint work

− Karl Norrman, Ericsson Research / KTH Royal Institute of Technology

− Vaishnavi Sundararajan, Ericsson Research

− Alessandro Bruni, IT University of Copenhagen

− This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Outline

− Formal analysis and the Tamarin tool

− EDHOC framework

− Analysis

− Overview

− Attacker model

− Session key authentication

− Injective agreement and implicit key authentication

− Session key material definition

Formal analysis
− Roughly:

− Model the protocol in some logical / mathematical formalism

− Encode the requirements and goals in logic formulas

− Try to prove that the formulas are true for that model (preferably with the aid of a mechanized tool)

− What it does NOT do: prove that the protocol “is secure”, because

− Not possible to define “is secure” to make everyone satisfied (new threats may also appear in the future)

− Model may not be comprehensive (missing attacker capabilities, not covering all aspects of protocol, …)

− All properties we care about may not be known

− Model may not capture intention of specification accurately

− Model abstractions may lose critical details of protocol or environment

− Useful because:

− Modeling/proving reveal hidden assumptions, inconsistencies, incomplete requirements, vulnerabilities, …

− Forces considering attacker models and protocol goals

− Clarifies things: what are talking about, really? Are talking about the same thing?

Tamarin conceptual overview

Model definition
Simplified logical description of
what Tamarin does:

Define protocol in terms of
actions taken by participants

Define attacker capabilities
(Dolev-Yao capabilities built in)

Define properties over the
model traces in an LTL-style
logic

Tamarin checks whether the
properties hold over the traces

Generate

Similar to a parallel
functional program

All possible execution
traces of the model

LTL formulas over trace events and knowledge sets

Verify

EDHOC framework

− Essentially follows the Noise framework

− With the addition that signatures are added as authentication method (which results in a SIGMA-style
cryptographic core and two mixed methods)

− Also adds COSE and CBOR encodings, but we have not modeled that much detail

− Re-uses the challenge-response signatures for STAT based methods to reduce message size, TH (like TLS
etc), gxy as session key (potentially adding gIy and/or gRx in the style of OPTLS).

− Unclear if there is an *exact* mapping to Noise, so proofs of those does not necessarily automatically carry
over.

− However, the cryptographic cores are essentially the same and use well-understood constructions.

− Main point of interest are the mixed methods: STAT-SIG and SIG-STAT.
− (We modelled all methods anyway)

EDHOC framework –Abstract structure

Initiator Responder

m1: gx
Knows g

generates x
Knows g, CRED_R

Generates y
m2: gy , auth/enc(CRED_R, TH(m1), gy , gxy)

Auth R->I
session key = KDF(gxy…)

Heads-up: key derivations etc. should not be taken
literally. They are simplified and should be read
as “depends on”.

EDHOC framework –Abstract structure

Initiator Responder

m1: gx
Knows g, CRED_I

generates x
Knows g, CRED_R

Generates y
m2: gy , auth/enc(CRED_R, TH(m1), gy , gxy)

Auth R->I
session key = KDF(gxy…)

EDHOC framework –Abstract structure

Initiator Responder

m1: gx
Knows g, CRED_I

generates x
Knows g, CRED_R

Generates y
m2: gy , auth/enc(CRED_R, TH(m1), gy , gxy)

m3: auth/enc(CRED_I, TH(m2))

Auth R->I
session key = KDF(gxy…)

Auth I->R
session key = KDF(gxy…)

EDHOC framework –Abstract structure

Initiator Responder

m1: gx
Knows g, CRED_I

generates x
Knows g, CRED_R

Generates y
m2: gy , auth/enc(CRED_R, TH(m1), gy , gxy)

m3: auth/enc(CRED_I, TH(m2))

Auth R->I
session key = KDF(gxy…)

Auth I->R
session key = KDF(gxy…)

STAT-based methods also include f(CRED_X, …)

Formal model and analysis –Summary

− We modeled all 5 methods in Tamarin

− We have proved fundamental properties (authentication, PFS, session key independence, …)

− Planning to prove weak-PCS (adversary gets temporary access to TPM; session keys established after access is
revoked still secure) and KCI resistance

− Identified missing considerations in draft, e.g., non-repudiation aspects, taking advantage of TEEs, unintended
authentication confusion, unclear intentions regarding session key definition.

− General conclusions:

− EDHOC builds on well-established components and seems to behave as expected.

− The different methods provide different guarantees, dictated by the credential used and the goal to keep
messages small.

− Because the EDHOC’s goal is to establish a general purpose OSCORE security context, it is not clear which
properties are most important to verify.

− Trade-offs are needed as usual, exploring user-stories or use-cases would help identify which trade-
offs to make (see session key authentication in the following).

Attacker model

Initiator Responder

m1: gx

m2: gy , auth/enc(CRED_R, TH(m1), gy , gxy)

m3: auth/enc(CRED_I, TH(m2))

Dolev-Yao: read/insert/delete/
unlimited no. of sessions

Attacker model

Initiator Responder

m1: gx

m2: gy , auth/enc(CRED_R, TH(m1), gy , gxy)

m3: auth/enc(CRED_I, TH(m2))

Dolev-Yao: read/insert/delete/
unlimited no. of sessions

Compromise parties
after session complete (PFS)

Compromise
of LTK and

session state

Attacker model

Initiator Responder

m1: gx

m2: gy , auth/enc(CRED_R, TH(m1), gy , gxy)

m3: auth/enc(CRED_I, TH(m2))

Dolev-Yao: read/insert/delete/
unlimited no. of sessions

Compromise parties
after session complete (PFS)

Compromise
of LTK and

session state

Pre-specified peer model
Attacker cannot register new keys with existing IDs in PKI (but can compromise parties any time)
Symbolic derivability based notion of secrecy
Authentication as correspondence properties over traces
Non-compromised parties are honest

Session key authentication (injective agreement)
SIG-SIG (much simplified)

Initiator Responder

m1: gx
Knows g, CRED_I

generates x
Knows g, CRED_R

Now knows gxy

Generates ym2: gy , Sig_2(gxy)

m3: Sig_3(gxy)

Auth R->I
session key = KDF(gxy)

Auth I->R
session key = KDF(gxy)

Session key authentication (injective agreement)
SIG-SIG (much simplified)

Initiator Responder

m1: gx
Knows g, CRED_I

generates x
Knows g, CRED_R

Now knows gxy

Generates ym2: gy , Sig_2(gxy)

m3: Sig_3(gxy)

Auth R->I
session key = KDF(gxy)

Auth I->R
session key = KDF(gxy)

Holds for all methods except for when initiator
uses STAT (semi-static DH) authentication

Session key authentication (injective agreement)
STAT-X (much simplified)

Initiator Responder

m1: gx
Knows g, CRED_I

generates x
Knows g, CRED_R

Now knows gxy

Generates y, Sig_2m2: gy , K_2e XOR (ID_CRED_R, Sig_2)

m3: AEAD(ID_CRED_I), Sig_3

Auth R->I
session key =

KDF(,gxy, gy*CRED_I)

Auth I->R
session key =

KDF(gxy, gy*CRED_I)

Session key authentication (injective agreement)
STAT-X (much simplified)

Initiator Responder

m1: gx
Knows g, CRED_I

generates x
Knows g, CRED_R

Now knows gxy

Generates y, Sig_2m2: gy , K_2e XOR (ID_CRED_R, Sig_2)

m3: AEAD(ID_CRED_I), Sig_3

Auth R->I
session key =

KDF(,gxy, gy*CRED_I)

Auth I->R
session key =

KDF(gxy, gy*CRED_I)

Session key authentication (implicit key authentication)
STAT-X (much simplified)

Initiator Responder

m1: gx
Knows g, CRED_I

generates x
Knows g, CRED_R

Now knows gxy

Generates y, Sig_2m2: gy , K_2e XOR (ID_CRED_R, Sig_2)

m3: AEAD(ID_CRED_I), Sig_3

Auth R->I
session key =

KDF(,gxy, gy*CRED_I)

Auth I->R
session key =

KDF(gxy, gy*CRED_I)If m3 reaches Responder, only Responder
session will be able to compute session key.

➔ But no key confirmation

Session key material alternatives for STAT-X
1. Include semi-static key gy*CRED_I and accept different properties for different methods.

2. Exclude gy*CRED_I, but then differing from OPTLS (and would not take advantage of OPTLS’s careful design for
TEEs). PFS still holds for session key in our attacker model though, but not in a CK-style model with session state
reveal queries.

3. Add a fourth message from R to I including a MAC based on key derived from key material from independent
branch in key hierarchy (to not destroy key indistinguishability).

4. Include Initiator ID in message 1: Removes identity hiding of initiator.

− Without better understanding the protocol goals, selecting alternatives

− Whatever the choice: should decision be aligned across methods?

Thanks for listening!

Questions are welcome now or via mail

karl.norrman@ericsson.com

mailto:karl.norrman@ericsson.com

