
MASQUE
CONNECT-UDP

draft-schinazi-masque-connect-udp

IETF 108 – Virtual – 2020-07

 David Schinazi – dschinazi@google.com
1



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

Some Historical Context

2

draft-schinazi-masque

draft-schinazi-masque-protocol

draft-schinazi-masque-obfuscation

draft-schinazi-masque-connect-udp

draft-schinazi-httpbis-transport-auth

draft-cms-masque-ip-proxy-reqs

2019-02

charter-ietf-masque

2019-07

2020-01

2020-03

2020-04

2020-06

2020-07

MASQUE: Multiplexed Application 
Substrate over QUIC Encryption



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

HTTP CONNECT
RFC 2817 from 2000

Supported in all versions of HTTP (since 1.1)

Clients instructs Proxy to open a TCP connection to host:port,
and forward stream data in both directions

Data is sent in the bidirectional stream that carried the CONNECT request

3



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

TCP is great, but what about UDP?
We need something similar for UDP, to carry WebRTC, QUIC, DTLS, etc.

Reusing CONNECT is not possible, because if the proxy does not support this 
new mode, we do not want it fall back to TCP on the proxy–server segment

4



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

HTTP CONNECT-UDP
Can be supported in all versions of HTTP (since 1.1)

(Needed for networks that block UDP, and for 1.1-only intermediaries)

Clients instructs Proxy to open a UDP connection to host:port,
and forward datagram data in both directions

Data is sent in the bidirectional stream that carried the CONNECT request

Optimization for HTTP/3: use QUIC DATAGRAM frames instead of streams

5

CONNECT-UDP server.example.com:443 HTTP/1.1
Host: server.example.com:443



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

Using QUIC DATAGRAM frames from HTTP/3
Currently relying on draft-schinazi-quic-h3-datagram

When QUIC is in use and ALPN=h3,
Every QUIC DATAGRAM frame starts with a Flow Identifier (62-bit integer)
Both endpoints provide a flow allocation service to get unique identifiers
The protocol to negotiate these flow IDs is not defined in that draft

CONNECT-UDP carries the new "Datagram-Flow-Id" header to indicate flow ID

6

:method = CONNECT-UDP
:authority = server.example.com:443
Datagram-Flow-Id = 42



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

ProxyCorp

Chaining Multiple HTTP Proxies

7

Client End-Server
UDPHTTP/3

CONNECT-UDP

ProxyCorp

Client Intermediary End-ServerBackend
UDPHTTP/3 HTTP/1.1

CONNECT-UDP

Even though ProxyCorp appears to be a single machine to the client,
it can be implemented as one or more HTTP intermediaries leading to a backend



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

Chaining Multiple HTTP Proxies

Chaining is straightforward when sending UDP payloads in the request stream

Negotiating Datagram Flow ID across multiple proxy hops is non-trivial,
as flow IDs are a property of the transport, and aren't end-to-end

Should we make "Datagram-Flow-Id" hop-by-hop,
and send the "Connection" header listing it to ensure it isn't forwarded?

8

ProxyCorp

Client Intermediary End-ServerBackend
UDPHTTP/3 HTTP/1.1

CONNECT-UDP



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

Out of Scope – Potential Extensions
CONNECT-UDP aims for simplicity, goal is to produce a minimum viable product 
that allows proxying UDP-based protocols over HTTP

The following topics are considered future work left for extensions:

9

ICMP
UDP Checksum
DSCP
ECN
IPv6 Flow Label

NAT Traversal (TURN, etc.)
Fragmentation
IP Options
UDP Flags
MTU Discovery
Nested Congestion Control



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

Should we Merge these Drafts?
draft-schinazi-masque-connect-udp
draft-schinazi-quic-h3-datagram

Is there a need for HTTP/3 datagrams that are not related to a request stream?

If not, then it might be best to define the protocol to negotiate flow IDs in the same 
document as where flow IDs are defined

10



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

A Pattern is Emerging...
CONNECT-UDP, CONNECT-QUIC, CONNECT-IP, WebTransport, ...

All of these have similar properties:
Negotiation is performed via an HTTP request that resembles CONNECT
Negotiation of a DATAGRAM Flow ID to allow multiplexing

Should we unify all of these on a single new method?
CONNECTX (insert naming bikeshed here)
Carries a "Connectx-Protocol" header that MUST be present
The protocol determines server behavior, MUST reject unknown protocols
Multiple protocols can reuse the "Datagram-Flow-Id" header

11



draft-schinazi-masque-connect-udp – IETF 108 – Virtual – 2020-07

Next Steps
Answer questions from previous slides then ask for Working Group adoption?

12



MASQUE
CONNECT-UDP

draft-schinazi-masque-connect-udp

IETF 108 – Virtual – 2020-07

 David Schinazi – dschinazi@google.com
13


