Transport Considerations for IP and UDP Tunneling

Magnus Westerlund
Mirja Kühlewind
Marcus Ihlar
Zaheduzzaman Sarker

draft-westerlund-masque-transport-issues-00
Outline

- Connect-UDP is NOT HTTP Connect
- Terminology
- IP Header
 - ECN
 - DSCP
 - Fragmentation & MTU
- Options
 - Hop Limit
- UDP Header
- ICMP
- Conclusions
Why Connect-UDP is not Connect

- HTTP Connect
 - Provide end-to-end byte stream semantics
 - Back to back TCP/QUIC sessions
 - Consumption of IP header fields for transport by individual transport connections
 - TCP/QUIC support only single QoS Level

- Connect-UDP
 - Providing end-to-end datagram transport
 - Network to end-point signals need to reach endpoints
 - ECN
 - ICMP
 - Endpoint to network signals
 - DSCP
Terminology

- **Proxy** = Masque Server
- **Address**
 - IP address + UDP Port
 - Domain names + UDP Port
- **IP Flow** = 3-tuple (source, dest. address, IP vers)
- **UDP Flow** = 5-tuple (Src + Dest Addr + Port, UDP)

- **Datagram flow**
- **Signaling flow**
 - Flow establishment
 - Asynchronous Events
IPv4 Header

- **Version** = Fixed
- **IHL** = Derived
- **Type of Service** = DSCP + ECN
 - Needs discussion
- **Total Length** = Per Packet
- **Identification** = Sender assigned
- **Flags** = Fragmentation including Don’t Fragment
- **Fragment Offset** = Derived when fragmenting
- **Time to Live** = Sender assigned
- **Protocol** = Per Packet / Fixed (UDP)
- **Header Checksum** = Derived
- **Source Address** = Flow Static
- **Destination Address** = Flow Static
- **IP Options** = Discussion needed

IPv4 Header Fields

- **Version**: Fixed, Flow Static or Derived
- **IHL**: Derived
- **Type of Service**: DSCP + ECN
- **Total Length**: Per Packet
- **Identification**: Sender assigned
- **Flags**: Fragmentation including Don’t Fragment
- **Fragment Offset**: Derived when fragmenting
- **Time to Live**: Sender assigned
- **Protocol**: Per Packet / Fixed (UDP)
- **Header Checksum**: Derived
- **Source Address**: Flow Static
- **Destination Address**: Flow Static
- **IP Options**: Discussion needed

Notes

- **Version**: Fixed
- **IHL**: Derived
- **Type of Service**: DSCP + ECN
 - Needs discussion
- **Total Length**: Per Packet
- **Identification**: Sender assigned
- **Flags**: Fragmentation including Don’t Fragment
- **Fragment Offset**: Derived when fragmenting
- **Time to Live**: Sender assigned
- **Protocol**: Per Packet / Fixed (UDP)
- **Header Checksum**: Derived
- **Source Address**: Flow Static
- **Destination Address**: Flow Static
- **IP Options**: Discussion needed
IPv6 Header

- **Version** = Fixed
- **Type of Service** = DSCP + ECN
 - Needs Discussion
- **Flow Label** = Per ULP flow / Flow Static (UDP)
- **Payload Length** = Per Packet
- **Next Header** = Per Packet / Fixed (UDP)
 - Extension Headers (Needs Discussion)
- **Hop Limit** = Sender Assigned
- **Source Address** = Signaled Static
- **Destination Address** = Signaled Static
Type Of Service - ECN

- ECN on Path#1 is dealt with MASQUE’s QUIC connection
- CE marks impacts congestion state
- To enable ECN on Path#2
 - On request of Upper Layer using MASQUE
 - Set ECT(0/1) in Proxy to Client direction
 - Change during flow lifetime
 - Proxy read incoming ECN value in Target to Proxy direction
 - Propagate per packet ECN value to MASQUE client to upper layer
Type Of Service - DSCP

- **Path #1**
 - RFC 7656 applies to QUIC tunnel
 - Use multiple QUIC connection, one per forwarding behavior
 - Setting DSCP to use in Proxy to Client
 - Not necessary to support

- **Path #2**
 - Setting Proxy to Target DSCP to send with
 - Authorization to use DSCP
 - DSCP to forwarding behavior mapping
 - Target to Proxy packets
 - Upper Layer Protocol needs to know Forwarding behavior applied
 - To ensure different CC state
 - Priorities in Packet scheduling in Client and Proxy of aggregated flows
Fragmentation and MTU

- Control IP fragmentation
 - DPLPMTUD requires Don’t Fragment
 - Some upper layer application may lack fragmentation support and require relying on IP fragmentation mechanism

- MASQUE Tunnel has its MTU
 - Using Streams up to 64K
 - Using QUIC Datagrams Path MTU – Overhead
 - Needs API to upper layer
 - Proxy’s external interface has its MTU
 - Should be conveyed to client
 - Control over DF bit on Proxy to Client path
 - Per Packet in some cases
 - Per Default value
IP Options / Extension Headers

- Are there IP Options or Extension headers that upper layer request be add to the IP header?
 - IPv6 minimum Path MTU HBH ([draft-ietf-6man-mtu-option])
 - Network Tokens ([draft-yiakoumis-network-tokens])
 - Other Options / Extensions?

- IPv6 minimum Path MTU HBH Option
 - Data center targeted initially
 - To be added in outgoing packets
 - Target can echo value in the option in next returning packet, needing propagation

- Network Tokens for Path #2 would need MASQUE support
 - Indicate which packets the HBH Extension header is to be added and its value

- What functionality is required here?
Time to Live / Hop Limit

- The usage of Time to Live / Hop Limit
 - Primary Prevent ever living packets in routing loops
 - Path change indicator
 - Currently no transport appear to use it

- Path #1 TTL is directly readable by Client and Proxy on reception
 - Sent value is not known and usually OS specific
 - No special function needed

- Path #2
 - If Client want to know received value
 - Would require MASQUE to propagate
 - Appear to be insufficient need to motivate functionality

Client → Path #1 → Proxy ← Path #2 → Target
UDP Header

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Destination Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Checksum</td>
</tr>
</tbody>
</table>

- Source Port = Flow Static
- Destination Port = Flow Static
- Length = Per Packet
- UDP Options ([draft-ietf-tsvwg-udp-options](https://datatracker.ietf.org/doc/draft-ietf-tsvwg-udp-options/)) utilize UDP Length to indicate options area
- How to support UDP Options?
- Checksum = Calculated per Packet

<table>
<thead>
<tr>
<th>Fixed, Flow Static or Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Per Packet</td>
</tr>
<tr>
<td>* Discussion needed</td>
</tr>
</tbody>
</table>
ICMP

- ICMP provides network to endpoint signaling
- Primary case to consider is the case depicted
- IP/UDP packets on Path #2 from proxy to target that triggers ICMP message transmission
 - On Path: Packet Too Big, Destination Unreachable, TTL Expired
 - End-point (Target): Port unreachable
- Proxy matches ICMP to a tunneled flow
 - Needs asynchronous signal from proxy to client to convey the ICMP information
Categorization IP/UDP flow

- Static - Flow Establishment
 - IP version
 - IP Source address
 - IP Destination address
 - ECN to send
 - Default Don’t Fragment
 - Default DSCP
 - IPv6 Flow Label
 - TTL / Hop Limit
 - UDP source port
 - UDP destination port

- Per Packet
 - ECN
 - IP Packet length
 - TTL received
 - DSCP to send
 - DSCP received
 - IP Options / Extension headers
 - UDP Length
 - UDP Options

- Asynchronous Signaling
 - ICMP Received
 - Packet to Big (size)
 - Destination (Port, Address) unreachable
 - ECN to send (change)
 - Don’t fragment bit (change)
 - DSCP to send (change)
Categorization IP Tunneling

- Static - Flow Establishment
 - IP version
 - IP Source address
 - IP Destination address
 - Default DSCP
 - ECN value to send
 - Default Don’t Fragment
 - IPv6 Flow Label
 - TTL / Hop Limit

- Per Packet
 - ECN
 - Don’t Fragment bit
 - IP Packet length
 - IP TTL received
 - IP Protocol / Next Header
 - IPv6 Flow Label
 - DSCP to send
 - DSCP received

- Asynchronous Signaling
 - ICMP Received
 - Packet to Big (size)
 - Destination (Port, Address) unreachable
 - ECN to send (change)
 - Don’t fragment bit (change)
 - DSCP to send (change)
Conclusions

Summary

- IP and UDP headers include fields that needs to be consumed by the upper layer protocol, e.g.
 - ECN
- IP and UDP headers include fields where the upper layer can set them on per packet basis
 - DSCP
 - Don’t fragment
- There exist asynchronous feedback from the network that can speed up endpoint behaviors
 - ICMP Packet to Big and Destination / Port Unreachable

Requirements

- Need per flow bi-directional signaling
 - Asynchronous signaling for events
 - Change of default used values when sending flow
- Need Flexible and Extensible inclusion of per packet information for the encapsulation
 - Different from Default Value
 - Extension headers or UDP Options
- Flow Establishment need Extensibility
 - Enable extension of functionality