
draft-ietf-netconf-crypto-types-17
draft-ietf-netconf-trust-anchors-12
draft-ietf-netconf-keystore-19
draft-ietf-netconf-tcp-client-server-07
draft-ietf-netconf-ssh-client-server-21
draft-ietf-netconf-tls-client-server-21
draft-ietf-netconf-http-client-server-04
draft-ietf-netconf-netconf-client-server-20
draft-ietf-netconf-restconf-client-server-20

NETCONF WG
IETF 108 (Virtual)

Status and Issues for the
“Client-Server” Suite of Drafts

Since IETF 107
High-level Updates:

crypto-types:
- Removed the IANA-maintained registries for symmetric, asymmetric, and hash algorithms.

- Removed the "generate-symmetric-key" and “generate-asymmetric-key" RPCs.

- Removed the "algorithm" node in the various symmetric and asymmetric key groupings.

- Added typedefs csr, csr-info, oscp-request, ocsp-response.

- Added "encrypted" case to both asymmetric and symmetric key groupings.

- Added "cleartext-" prefix to key nodes.

trust-anchors:
- Modified 'local-or-truststore-certs-grouping' to use a list (not a leaf-list).

- Added new example section "The Local or Truststore Groupings”.

- Clarified expected behavior for "built-in" certificates in <operational>.

keystore:
- Added new section "Encrypting Keys in Configuration".

- Clarified expected behavior for "built-in" keys in <operational>

- Clarified the "Migrating Configuration to Another Server" section.

Recently
Last Called

Since IETF 107 (cont.)
tcp-client-server:

- Added support for TCP proxies.

ssh-client-server:
- Removed algorithm-mapping tables from the "SSH Common Model” section.

- Renamed both "client-certs" and "server-certs" to "ee-certs"

- A few “must” and “mandatory” modifications.

tls-client-server:
- Removed algorithm-mapping tables from the "SSH Common Model” section.

- Renamed both "client-certs" and "server-certs" to "ee-certs"

- A few “must” and “mandatory” modifications.

http-client-server:
- Removed "protocol-versions" from ietf-http-server based on HTTP WG feedback.

- Added a parent "container" to "client-identity-grouping" so that it could be better used by the proxy model.

- Added a "choice" to the proxy model enabling selection of proxy types.

- Added 'http-client-stack-grouping' and 'http-server-stack-grouping' convenience groupings.

netconf-client-server:
- Many updates to examples.

restconf-client-server:
- Many updates to examples.

What to do about cleartext password
fields?

A raw password required whenever a model configures a client to authenticate itself to a
remote system

• Occurs for SSH-client, HTTP-client, and SOCKS5-client.
• Unlike when password is used to authenticate a client

• in which case “ianach:crypt-hash” can be used

All of these nodes are tagged with “nacm:default-deny-all”
• But can we do better?

Thoughts:
1. “password” —> “cleartext-password”

- Only helpful if an option exists

2. Add an “encrypted-password”?
- i.e., use “ct:encrypted-key-value-grouping”

3. Use “ct:symmetric-key-grouping”?
- Comes with the “key-format” field
- Which makes the cleartext value be type binary

4. Define a new “ct:password-grouping”?

 grouping password-grouping {
 choice password-type {
 nacm:default-deny-write;
 mandatory true;
 case cleartext-password {
 leaf cleartext-password {
 nacm:default-deny-all;
 type string;
 }
 case encrypted-password {
 container encrypted-password {
 uses ct:encrypted-key-value-grouping;
 }
 }
 }
 }

Hardcode the “format” based of
type of the “encrypted-by” key?

Specifying HTTP-client Paths
The current “http-client-group” is solely
focused on connectivity

• e.g., the HTTP’s client’s identity
• A fully configured “stack”

It is assumed that the client knows how to
construct the URL path (e.g., RESTCONF)

• And query parameters, the request body, etc.

The “https-notif” draft augments-in a “path”:

Any change needed?

<tcp-client-parameters>
 <remote-address>
 corp-fw2.example.com
 </remote-address>
</tcp-client-parameters>
<tls-client-parameters>
 <server-authentication>
 <ca-certs>
 <truststore-reference>

 trusted-server-ca-certs
 </truststore-reference>

 </ca-certs>
 </server-authentication>
</tls-client-parameters>
<http-client-parameters>
 <client-identity>
 <basic>
 <user-id>local-app-1</user-id>
 <password>secret</password>
 </basic>
 </client-identity>
</http-client-parameters>

 uses httpc:http-client-stack-grouping {
 augment "transport/tls/tls/http-client-parameters" {
 leaf path {
 type string;
 description
 "Relative URI to the target resource.";
 }
 description
 "Augmentation to add a path to the target resource.";
 }

FIXMEs in the PSK’s “id” node

 case psk {
 if-feature psk-auth;
 container psk {
 description
 "Specifies the server identity using a PSK (pre-shared
 or pairwise-symmetric key).";
 uses ks:local-or-keystore-symmetric-key-grouping;
 leaf id {
 type string; // FIXME: is this the right type?
 mandatory true; // FIXME: is it mandatory?
 description
 "The key 'id' value when used in the TLS protocol.”;
 reference
 “FIXME: Where defined?”;
 }
 }
 }
 }

Any comments before start?

All drafts primed for WGLC…

	Slide 1
	Since IETF 107
	Since IETF 107 (cont.)
	What to do about cleartext password fields?
	Specifying HTTP-client Paths
	FIXMEs in the PSK’s “id” node
	Any comments before start?

