A YANG Model for Network and VPN Service Performance Monitoring

draft-www-opsawg-yang-vpn-service-pm-01

Bo Wu (Presenting), Qin Wu (Huawei) Mohamed Boucadair (Orange) Oscar Gonzalez de Dios (Telefonica) Wen Bin (Comcast) Change Liu (China Unicom) Honglei Xu (China Telecom)

> IETF 108 July 28, 2020

Background

- Initially discussed in BESS WG
 - This document defines a YANG model for both Network Performance Monitoring and VPN Service Performance Monitoring
 - monitor and manage network performance on the basice network topology (RFC 8345)
 - the service topology between VPN sites
 - Align with VPN Common YANG model
 - Uses import references to VPN Common YANG model
 - Fill the gap identified in the L2VPN/L3VPN Service Delivery use case defined in draftietf-opsawg-model-automation-framework-04
 - Provide L3NM/L2NM capability and notification to upper layer.
- Assumptions
 - This draft does not introduce new metrics for network performance or mechanisms for measuring network performance.
 - This draft exposes network and service layer performance information to consumers of the model (RFC 8345) based on existing measurement protocol
 - IP traffic performance measurement protocol such as OWAMP, TWAMP
 - IP traffic performance metric such as one way delay, roundtrip delay, loss, PDV
 - MPLS traffic performance measurement such as MPLS loss and delay measurement for MPLS[RFC6374], MPLS-TP loss and delay measurement[RFC6375]
 - Ethernet traffic performance measurement such as Y.1731

Fill the gap identified from L2VPN/L3VPN Service Delivery

Figure 6: L3VPN Service Delivery Example (Target) Source [] draft-ietf-opsawg-model-automation-framework-04

IETF108 OPSAWG Virtual meeting

Use Case: Real Time VPN Service Monitoring

Network Performance data source: Network device, management system Performance measurement method: IPPM method, MPLS Loss and Delay Measurement End to end Network performance calculation method: using PCEP solution [RFC8233] [RFC7471] [RFC7810] [RFC8571]

The goal: Report end to end network performance or service level VPN network performance

- •One way delay between PE A in site A and PE F in Site B
- Packet loss between CE1 and PE A in site A
- •WAN link bandwidth between CE2 and PE F within Site B

Relationship between VPN service topology and underlay topology

- Mapping between Overlay and Underaly:
 - The Site-1,A,B,C are mapped to node (1), (2),(3)
 - while Site-2 A,B are mapped to node (5),(6) in the underlying physical network.
- **VPN-svc 1:** supporting hub-spoke communication for Customer 1 with connecting the customer's access at 3 sites.
- VPN-svc 2: supporting any-any communication for Customer 2 with connecting the customer's access at 2 sites
- Establish the relationship between underlay topology and VPN service topology

Model Design Overview

module: ietf-network-vpn-pm	
<pre>augment /nw:networks/nw:network/nw:network-types:</pre>	
+rw network-technology-type* identityref	
augment /nw:networks/nw:network:	
+rw vpn-topo-attributes	
<pre>+rw vpn-topology? identi</pre>	tyref
+rw vpn-summary-statistics	
+rw ipv4	
+rw total-routes?	uint32
<pre>+rw total-active-routes</pre>	? uint32
+rw ipv6	/
+rw total-routes?	uint32
+rw total-active-routes? uint32	
<pre>augment /nw:networks/nw:network/nw:node: +rw node-attributes</pre>	
+rw node-attributes +rw node-type? identityr	f
+rw site-id? string	-ei
+rw site-role? identityr	af
augment /nw:networks/nw:network/n	
+rw link-type?	identityref
+rw low-percentile?	percentile
+rw middle-percentile?	percentile
+rw high-percentile?	percentile
+rw reference-time?	yang:date-and-time
+rw measurement-interval?	uint32
+ro link-telemetry-attributes	
+ro loss-statistics	
<pre>+ro packet-loss-count?</pre>	uint32
+ro loss-ratio?	percentage
+ro packet-reorder-cour	
<pre>+ro packets-out-of-seq-</pre>	
+ro packets-dup-count?	uint32
+ro delay-statistics	
+ro direction?	identityref
+ro unit-value?	identityref
+ro min-delay-value?	yang:gauge64
+ro max-delay-value? +ro low-delay-percentil	yang:gauge64 e? yang:gauge64
+ro_middle-delay-percent	
+ro high-delay-percenti	ile? yang:gauge64
+ro jitter-statistics	yangrgaageor
+ro unit-value?	identityref
	yang:gauge64
+ro min-jitter-value? +ro max-jitter-value?	yang:gauge64
+ro low-jitter-percenti	le? yang:gauge64
+ro_middle-jitter-perce	
+ro high-jitter-percent	ile? yang:gauge64
augment /nw:networks/nw:network/n	w:node/nt:termination-poin
+ro tp-telemetry-attributes	
+ro in-octets?	uint32
+ro inbound-unicast?	uint32
+ro inbound-nunicast?	uint32
+ro inbound-discards? +ro inbound-errors?	uint32
+ro inbound-errors? +ro outbound-errors?	uint32 uint32
+ro outbound-errors? +ro in-unknown-protocol?	uint32 uint32
+ro out-octets?	uint32
+ro outbound-unicast?	uint32
+ro outbound-nunicast?	uint32
+ro outbound-discards?	uint32
+ro outbound-glen?	uint32

VPN Service Performance Model

- Augment Basic Network Topo model
 - with service topology parameters and vpn summary statistics info at network level
 - With site role of service topology parameters at node level
 - With performance attribute at link level and termination-point level
- The measurement interval and reference-time associated with these performance data usually depends on configuration parameters in [RFC8641].

Performance Monitoring Data Retrieval

1.Retrieval via YANG Push

```
<rpc netconf:message-id="101"
    xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
    <establish-subscription
      xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
      <stream-subtree-filter>
          <networks xmlns="urn:ietf:params:xml:ns:yang:ietf-network-topo">
             <network>
              <network-id>vpn1</network-id>
               <node>
                <node-id>A</node-id>
                <node-type xmlns="urn:ietf:params:xml:ns:yang:ietf-svc-topo">pe</node-type>
               </node>
               <node>
                <node-id>B</node-id>
                <node-type xmlns="urn:ietf:params:xml:ns:yang:ietf-svc-topo">pe</node-type>
               </node>
               <link xmlns="urn:ietf:params:xml:ns:yang:ietf-network-topology">
                k-id>A-B</link-id>
                <source>
                 <source-node>A</source-node>
                </source>
                <destination>
                 <dest-node>B</dest-node>
                </destination>
                 <svc-telemetry-attributes
                  xmlns="urn:ietf:params:xml:ns:yang:ietf-svc-topo">
                  <loss-statistics>
                   <packet-loss-count/>
                  </loss-statistics>
                 </svc-telemetry-attributes>
                </link>
             </network>
          </networks>
      </stream-subtree-filter>
       <period xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">500</period>
    </establish-subscription>
</rpc>
```

• Use subscription model [RFC8641] to subscribe to their interested network performance data in the data source.

2.On-demand Retrieval via RPC polling model

```
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
    message-id="1">
  <report xmlns="urn:ietf:params:xml:ns:yang:example-service-pm-report">
   <networks xmlns="urn:ietf:params:xml:ns:yang:ietf-network-topo">
     <network>
       <network-id>vpn1</network-id>
       <node>
           <node-id>A</node-id>
           <node-type xmlns="urn:ietf:params:xml:ns:yang:ietf-svc-topo">pe</node-type>
      </node>
      <node>
         <node-id>B</node-id>
         <node-type xmlns="urn:ietf:params:xml:ns:yang:ietf-svc-topo">pe</node-type>
      </node>
      <link-id>A-B</link-id>
         <source>
         <source-node>A</source-node>
         </source>
         <destination>
         <dest-node>B</dest-node>
          </destination>
          <svc-telemetry-attributes xmlns="urn:ietf:params:xml:ns:yang:ietf-svc-topo">
          <loss-statistics>
            <packet-loss-count/>
            </loss-statistics>
          </svc-telemetry-attributes>
      </link>
  </report>
</rpc>
```

• Use RPC model to fetch network performance data on demand, e.g., the client requests packet-loss- count between PE1 in site 1 and PE2 in site 2 belonging to VPN1.

Way Forward

- Align with VPN Common Module
 - Import service-type, role, link-type, vpntopology defined in VPN Common YANG
 - Open question:
 - Should P role, PE role, ASBR role be defined in the vpn common YANG?
- Adoption?
 - The authors believe this draft is a good shape for WG adoption