P2MP Policy

draft-voyer-pim-sr-p2mp-policy

Authors:
 Hooman Bidgoli, Nokia
 Daniel Voyer, Bell Canada
 Rishabh Parekh, Cisco
 Jeffrey Zhang, Juniper

Presenter Hooman Bidgoli
Multiple Vendors are in the mist of implementing this draft.

draft-spring-sr-replication-segment (adopted)

draft-ietf-pim-sr-p2mp-policy (adopted)

draft-hb-spring-sr-p2mp-policy-yang-01 (should we move it to PIM WG?)

draft-Parekh-bess-mvpn-evpn-sr-p2mp-00 (Next for adaptation)

draft-hsd-pce-sr-p2mp-policy-01 (Will ask for adaptation call for IETF 109)

draft-hb-idr-sr-p2mp-policy-00 (Will ask for adaptation call for IETF 109 or 110)

draft-hb-pim-p2mp-policy-ping-00 (New)
SR P2MP Policy

- A Point-to-Multipoint (P2MP) Policy connects a Root node to a set of Leaf nodes.

- A P2MP segment contains Replication Segments, each providing forwarding instructions at Root, Transit Nodes and Leaf Nodes.

- It is identified via \(<\text{ROOT}, \text{Tree-ID}\rangle\)

- PCC Initiated: Root and Leaves can be discovered via multicast procedures like NG-MVPN (RFC 6514, 6513) or PIM (Protocol Independent Multicast) on PCC and the relevant information send to the PCE

- PCE Initiated: Root and Leaves can be configure explicitly on the PCE or controller and programmed on the PCC
SR P2MP Policy Details

• A P2MP Policy Contains:
 • One or More Candidate Paths (CP)
 • Only one CP can be active at a time
 • Each CP can setup based a certain TE parameters

• Each CP contain multiple Path Instances
 • Path Instances can be used for global optimization
 • Instances under a tree can be identified via an Instance-ID
Replication Segment

- Is the forwarding instructions for the P2MP LSP
 - Label instructions
 - Next-Hop information
 - Fast Reroute instructions

- A Replication segment is defined via following

 - Root: The root of the P2MP segment that the replication segment is for;
 - Tree-ID: Tree that the replication segment is part of;
 - Node-ID: The node this Replication Segment belongs too.
 - Instance-ID: Unique path-instance ID per <Root, Tree-ID>, it identifies a P2MP LSP.

 - Replication-SID: Segment ID for this Replication Segment.
 - Replication-SIDs can’t be stacked as each replication segment can be a egress or transit.
 - There could be exceptions like using a shared replication segment for FRR

- Two Replication Segments can be connected directly via adjacent nodes or they can be non-adjacent and connected via a SID List (Unicast)
Shared Replication Segment

- Shared Replication segment is defined via following

 - Two or more P2MP trees May share a replication segment.

 - A tree has its own replication segment at its root.

 - Replication segment may be identified with Zero ROOT-ID, a unique Replication-ID (for the Tree-ID) and the Node-ID

 - As an example it can be used for Facility FRR when the by-pass tunnel is made of only Replication Segments to protect a nexthop. i.e. LFA or TI-LFA is not sued.
SR P2MP Objects

Non-SR-P2MP nodes

SID, Forwarding instruction for this segment

P2MP LSP Redundancy

End to End Optimization

Forwarding info

Sid-List Fast Reroute

SR P2MP Policy
- ROOT Node
- Leaf Node
- Constrains
- Tree-ID

Replication Policy
- Node-ID
- Tree-ID
- Root
- Instance ID
- Inc Rep SID
- Rep SID Action

Forwarding Info
- Next-hop-group-id [nh-id] //array of nh
 - Next-hop-id <id>
 - Next-hop-add
 - Next-hop-int
 - Protect-nh <id>
 - Sid-list [list of outgoing labels]

Unicast SR Policy

SR P2MP Objects

Non-SR-P2MP nodes

SID, Forwarding instruction for this segment

P2MP LSP Redundancy

End to End Optimization

Forwarding info

Sid-List Fast Reroute

SR P2MP Policy
- ROOT Node
- Leaf Node
- Constrains
- Tree-ID

Replication Policy
- Node-ID
- Tree-ID
- Root
- Instance ID
- Inc Rep SID
- Rep SID Action

Forwarding Info
- Next-hop-group-id [nh-id] //array of nh
 - Next-hop-id <id>
 - Next-hop-add
 - Next-hop-int
 - Protect-nh <id>
 - Sid-list [list of outgoing labels]
SR P2MP YANG Model

```yang
++-rw p2mp-traffic-engineering!
  | ++-rw p2mp-policy* [root-address tree-id]
  | | ++-rw root-address inet:ip-address
  | | ++-rw tree-id uint32
  | | ++-rw p2mp-policy-name? string
  | | ++-rw admin-state? enumeration
  | | ++-ro oper-state? enumeration
  | | ++-rw leaf-list* [leaf-address]
  | | | | ++-rw leaf-address inet:ip-address
  | | | | ++-rw admin-state? enumeration
  | | | ++-rw candidate-path* [protocol-id originator discriminator]
  | | | | ++-rw protocol-id enumeration
  | | | | ++-rw originator inet:ip-address
  | | | | ++-rw discriminator uint32
  | | | | ++-rw candidate-path-name? string
  | | | | ++-rw admin-state? enumeration
  | | | ++-ro oper-state? enumeration
  | | | ++-rw preference? uint32
  | | ++-rw constraints* [index]
  | | | | ++-rw index uint32
  | | | | ++-rw attributes? uint32
  | | | ++-rw explicit-routing* [index]
  | | | | ++-rw index uint32
  | | | | ++-rw attributes? uint32
  | | | ++-rw path-instances* [index]
  | | | | ++-rw index uint32
  | | | | ++-rw instance-id?
  | | | | -> .././.././replication-segment/replication-id
  | | | | ++-ro oper-state? enumeration
  | | ++-rw replication-segment* [node-address replication-id]
  | | | | ++-rw node-address inet:ipv4-address
  | | | | ++-rw replication-id uint32
  | | | | ++-rw admin-state? enumeration
  | | | | ++-ro oper-state? enumeration
  | | | | ++-rw root-address inet:ipv4-address
  | | | | ++-rw tree-id uint32
  | | | | ++-rw instance-id? uint32
  | | | ++-rw replication-sid? uint32
  | | | ++-rw downstream-nodes* [downstream-index]
  | | | | ++-rw downstream-index uint32
  | | | | ++-rw next-hop-address? inet:ip-address
  | | | | ++-rw next-hop-interface-name? if:interface-ref
  | | | | ++-rw protecting-next-hop? boolean
  | | | | ++-rw protect-nexthop-id? uint32
  | | | | ++-rw (label)?
  | | | | | | ++-(sid-list)
  | | | | | | | | ++-rw si...
Example 1
Single Candidate Path

1. The primary path (candidate path 1) is A to C to LEAF D and LEAF E with C being a BUD node
2. B does not support Replication Segment
Example 2

1. Ingress Replication from A to D and A to E
2. Root and Leaves need to support Replication Policy.
3. B, C, G don’t support P2MP Policy and are part of the unicast SR.
4. All SR resiliency functionality can be used in unicast SR domain.

SR P2MP Policy
- ROOT Node = A
- Leaf Node = D, E
- Tree-ID = 1

Candidate path 1
- Preference = 1000
- LSP ID = 1

Forwarding Info
- Next-hop-group-id 0
  - Next-hop-add = B
  - Sid-list B,C,D <D is bottom of Stack>
- Next-hop-group-id 1
  - Next-hop-add = B
  - Sid-list B,G,E <E is bottom of Stack>

Replication Policy A
- Tree-ID = 1
- Root = A
- Instance ID = 1
- Inc Rep SID

Forwarding Info
- Next-hop-group-id 0
  - Next-hop-add = B
- Sid-list B,C,D <D is bottom of Stack>
- Next-hop-group-id 1
  - Next-hop-add = B
  - Sid-list B,G,E <E is bottom of Stack>

Replication Policy D
- Tree-ID = 1
- Root = A
- Instance ID = 1
- Inc Rep SID = D

Forwarding Info
- Next-hop-group-id 0
  - Next-hop-add = na

Replication Policy E
- Tree-ID = 1
- Root = A
- Instance ID = 1
- Inc Rep SID = E

Forwarding Info
- Next-hop-group-id 0
  - Next-hop-add = na
Example 3
FRR via Shared Replication Segment

1. The primary path is A to C to LEAF D
2. Link between C and D is cut, FRR Nexthop Protection via G
3. G can use a Shared RS to act as a facility bypass for multiple trees.
Example 3
FRR via Shared Replication Segment

1. The primary path is A to C to LEAF D
2. Link between C and D is cut, FRR Nexthop Protection via G
3. G can use a Shared RS to act as a facility bypass for multiple trees.
Next Steps

• Looking for adaptation in PIM WG, prior to Spring WG, for obvious reasons.