Architectural Principles of a Quantum Internet

https://datatracker.ietf.org/doc/draft-irtf-qirg-principles/

QIRG @ IETF 108 Online 27 July 2020

<u>Wojciech Kozlowski</u> Stephanie Wehner Rodney Van Meter Bruno Rijsman Angela Sara Cacciapuoti Marcello Caleffi Shota Nagayama

Recap

- First version of draft prepared and presented at IETF 104 in Prague on 26 March 2019
- Main motivation is to address charter point:

An architectural framework delineating network node roles and definitions, to build a common vocabulary and serve as the first step toward a quantum network architecture.

• Also want to create a good starting point for people with no quantum background

Recap

- Draft was adopted by QIRG at IETF 104
- Discussions continued
 - Four web calls to cover sections 1-5 document in Sep/Oct/Nov 2019
 - One web call to cover section 6 in Jun 2020
 - Presented updates at IETF 106, 107
- Following lots of feedback the entire document has been reworked
- More comprehensive and accessible now and representative of the wider community

GitHub

- A GitHub repo is maintained at https://github.com/Wojtek242/draft-irtf-qirg-principles
- A more convenient way to share updates at a finer granularity than datatracker allows
- However, all discussions are still done on the mailing list so no fancy CI/CD

Overview of changes (since 107)

- One new author: Shota Nagayama
 - Completely reworked error management (quantum repeater generations)
 - "Store and swap" vs "store and forward"
- Reworked section 6 "Architectural Principles"
- Incorporated remaining feedback from mailing list
- Several other minor edits for readability and consistency

Goals and Principles

- Discussed on web call on 9 Jun 2020
- In summary: goals align with classical networks but considerations are different
- Security might need some more work (review and feedback is welcome)
- Section was rewritten in light of feedback

Error Management

- Significantly expanded on error management thanks to Shota's PR
- Three different generations of error management.
- Generations are more like categories and do not obsolete each other, but higher generations require better hardware

Error Management

	1 G	2G	3G
Loss tolerance (qubit transmission losses)	Heralded entanglement generation (bi-directional signalling)	Heralded entanglement generation (bi-directional signalling)	Quantum error correction (no signalling)
Error tolerance (quantum state errors)	Entanglement distillation (bi-directional signalling)	Entanglement distillation (uni-directional signalling) OR Quantum error correction (no signalling)	Quantum error correction (no signalling)

Store and swap/forward

- Emphasizes a key difference between classical and quantum networks
- However, 3G quantum networks will be able to do "store and forward"
- After discussion on mailing list clarified that just because they can doesn't mean they have to (they can still do "store and swap")

Other changes

- Incorporated feedback from Rod (see mailing list for details)
- Other minor fixes to enhance readability and self-consistency of the document after changes

Discussion point

- Discrete/continuous variable encodings
- Discrete, e.g. polarisation, time bin encodings
 - High fidelity, but probabilistic
- Continuous, e.g. quadrature of light
 - Low fidelity, but deterministic
- Current status: already included (by mentioning there will be various hardware architectures) so no need for extra detail

Looking Forward

- Add references for completeness
- Wrap up discussion with Rod on mailing list
 - Shortest-path definition
 - Control plane definition
 - Time-skewed entangled pairs
 - Review whether all-optical is excluded by the language
- Document complete once the above two points addressed