
1

RATS/EAT Verification Keys

Laurence Lundblade

IETF 108 July 2020



2

Primary Trust Flow
The primary point of Attestation is for the Relying Party to trust the Attester / Manufacturer

If trust on any of these links fails, attestation fails and the Relying Party doesn’t get what it is promised

Verifier

Relying PartyAttester

Manufacturer Verifier Owner Relying Party Owner

Trust derived transitively
through Manufacturer 

Trust because the Manufacturer 
made the device

TrustingTrusted

Trust derived transitively through 
Verifier and Manufacturer 



3

Verifier Trust in the Attester
Cryptography (signing) is the only way an Attester can prove itself trustworthy to a Verifier

Manufacturer must set up key material such that:

• The Attester signs a nonce, evidence and such

• The Verifier verifies it

Verifier

Relying PartyAttester

Manufacturer

Attestation Evidence

(signed)
Attestation Result

Appraisal Policy for 
Attestation Results

Appraisal Policy for 
Evidence

Signing key(s)

Verification key(s)

Known-good values…

Note: The Manufacturer could be the actual device 
maker, an OS vendor, a trusted 3rd party, other or 
any combination of these.

Arrows shows data flow



4

Taxonomy of Verifier/Manufacturer 
Use of Keys

Public key(s) Symmetric Key(s) Verification Service

Infrequent Transfer

Per-Verification

• Public-key cryptography
◦ Private key in Attester; public key in Verifier
◦ Example: ECDSA with COSE_Sign1
◦ Public key(s) transferred from Manufacturer to Verifier

• Symmetric cryptography
◦ Attester and Verifier have the identical same key
◦ Key must be secret in both the Verifier and Attester!
◦ Example HMAC with COSE_Mac0

• Verification service
◦ Crypto and key type doesn’t matter. They are internal to the Manufacturer.
◦ Manufacturer sends hash of to-be-signed or to-be-MACed bytes and key ID; receives yeah/nay

• Infrequent transfer
◦ One-time (e.g. root of trust)
◦ Batches
◦ Quarterly / annually

• Per-verification
◦ Verifier interacts with Manufacturer 

on every verification

Verifier

Relying 
Party

Attester

Manufacturer

Evidence Result

PolicyPolicy

Signing 
key(s)

Verification 
key(s)

KGV



5

Taxonomy of Verifier/Manufacturer Use of Keys

Public key(s)
Requires: authenticity

Symmetric Key(s)
Requires authenticity, confidentiality

Verification Service
Requires: authenticity

Infrequent 
Transfer

NOT POSSIBLE

Per-Verification
VERIFICATION_SERVICE

• Keys are only at the 
Manufacturer

• Verifier sends hash of to-be-
verified bytes and key ID

• Manufacturer responds with 
yeah/nay

MASTER_SYMMETRIC_KEY

• Manufacturer sends a master symmetric 
key to Verifier

• Verifier uses a KDF to derive individual 
device key

SYMMETRIC_KEY_DATABASE

• Manufacturer sends an entire database of 
symmetric keys to Verifier

• A million-key database for a million devices

• Look up by key ID

TRUST_ANCHOR

• Trust Anchor sent

• Per-device key is in Attestation Evidence

• Trust Anchor used to verify per-device keys

PUB_KEY_DATABASE

• Manufacturer sends entire database of 
public keys

• A million-key database for a million devices

• Look up by key ID

SYMMETRIC_KEY_LOOKUP

• Manufacturer maintains key database

• Verifier sends key ID to Manufacturer

• Manufacturer responds with symmetric
verification key for particular device

PUB_KEY_LOOKUP

• Manufacturer maintains key database

• Verifier sends key ID to Manufacturer

• Manufacturer responds with public 
verification key for particular device



6

Verification Key ID Taxonomy

Description Size efficiency COSE/CWT/EAT System Using

Key ID • Byte string with no internal structure
• Format of the key (COSE_KEY, DER-encoded…) is 

determined otherwise

Good – Small number of 
additional bytes

COSE kid header 
parameter

URI • Identifies where the verification key can be obtained 
via HTTP, HTTPS…

• Content type of the data returned indicates the format 
of the key

Good - Small number of 
additional bytes

draft-ietf-cose-x509 
when key is X.509.
Other when it is not?

Based on Claims • Individual Claim or combination of Claims identifies 
the key. The UEID is a particular candidate.

• The format of the key (COSE_KEY, DER-encoded…) 
is determined otherwise

• Must decode payload before verification; makes 
decode/verification stack more complex; possible 
security issue of decoding unverified data

Best – No additional bytes N/A 
(ID is in the Claims)

ARM PSA

Verification Key in 
Attestation 
Evidence (A Key, 
not a Key ID)

• For public keys only
• Typically an X.509 certificate or equivalent such that 

the Verifier can chain it up to a trust anchor. May 
include intermediates between key and trust anchor.

Worst – X.509 certs can 
be large. Simpler 
schemes might just need 
a single public key.

draft-ietf-cose-x509 FIDO
Android Attestation
TPM



7

LL’s Endorsement Assumption
• A mostly static document or file describing characteristics of one Attester or a class of Attesters

◦ Could be 1 million Endorsements for 1 million devices
◦ Could be 1 single Endorsement or 1 million devices

• Often contains a public key or key chain that can be used to verify trust in the Attester
◦ Key could be for a single Attester for class of Attesters (e.g., a trust anchor)
◦ Alternatively, a symmetric key for use with HMAC

• Require the endorsement be encrypted

• Often contains name-value attributes that describe characteristics of the Attester. Examples:
◦ Model and manufacturer
◦ Level of security it offers: Hardware, TEE, Software…
◦ Certifications
◦ Reference values for comparison to Claims in Attestation Evidence
◦ …

• Often is signed by an authority like the manufacturer of the Attester

• Example Endorsements:
◦ X.509 Certificate with extensions for the Attester attributes
◦ EAT/CWT/COSE-based format



8

Add an Endorsement ID to EAT?

• COSE/CWT/EAT kid header parameter identifies only a key

• Propose adding an Endorsement ID and Endorsement URL to EAT
◦ Replaces the Origination claim (unused, poorly defined)
◦ An alternative to key identification

• Identifies the full Endorsement, not just the key

• Propose Endorsement ID and URL be COSE header parameters
◦ Not Claims, therefor outside the COSE payload
◦ Avoids decoding an unverified payload, which may be a security issue for some
◦ Makes verification software stack simpler
◦ Parallels COSE kid header parameter



9

Extra Slides



10

Secondary Trust Flow

Verifier

Relying PartyAttester

Manufacturer Verifier Owner Relying Party Owner

TrustingTrusted

Is about confidentiality and PII

If these links fail, the attacker gets PII about the user or information useful to attack the device

Authenticate target of the arrow and encrypting 

In simple scenarios where there is no PII and no information useful for attack, this is optional

Primary implemented by 
security, often physical, during 
manufacturing. 


