

WI-FI TSN CAPABILITIES AND EVOLUTION TOWARDS Deterministic low latency

Dave Cavalcanti and Ganesh Venkatesan, Intel Corporation

Reliable and Available Wireless (RAW) WG, IETF 108, July 30, 2020

Outline

New use cases and requirements for Wi-Fi

TSN over 802.11

Wi-Fi 6/6E scheduling enhancements

Wi-Fi7/802.11be lower latency, high reliability and enhanced determinism

802.11-based localization

New Time-sensitive Applications for Wi-Fi

Emerging time-sensitive applications require more accurate time synchronization and predictable low latency with higher reliability

Robotics, Autonomous Systems, Industrial controls

Immersive VR & Pro Gaming

Requirements defined in the 802.11 RTA TIG Report

Use cases		Intra BSS latency (msec)	Jitter variance (msec) [4]	Packet loss	Data rate Mbps
Real-time gaming [2]		< 5	< 2	< 0.1 %	< 1
Cloud gaming [15]		< 10	< 2	Near-lossless	<0.1 (UP) >5Mbps (DW)
Real-time video [3]		< 3 ~ 10	< 1~ 2.5	Near-lossless	100 ~ 28,000
Robotics and industrial automation [1]	Equipment control	< 1 ~ 10	< 0.2~2	Near-lossless	< 1
	Human safety	< 1~ 10	< 0.2 ~ 2	Near-lossless	< 1
	Haptic technology	<1~5	<0.2~2	Lossless	<1
	Drone control	<100	<10	Lossless	<1 >100 with video

https://mentor.ieee.org/802.11/dcn/19/11-19-0065-06-0rta-rta-tig-summary-and-recommendations.pptx

TSN support and enabling capabilities in 802.11

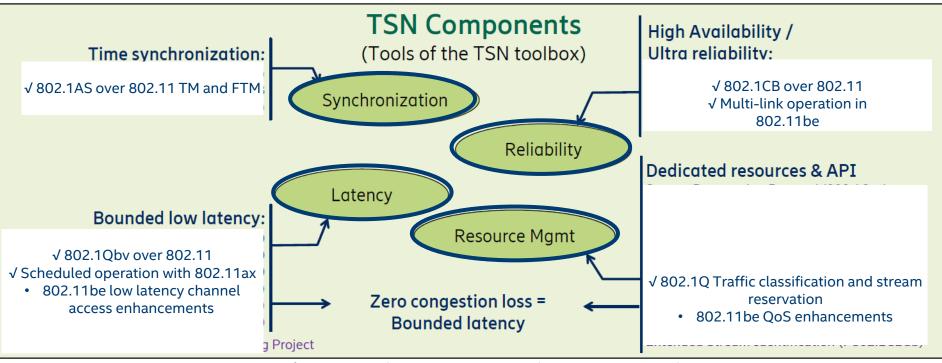
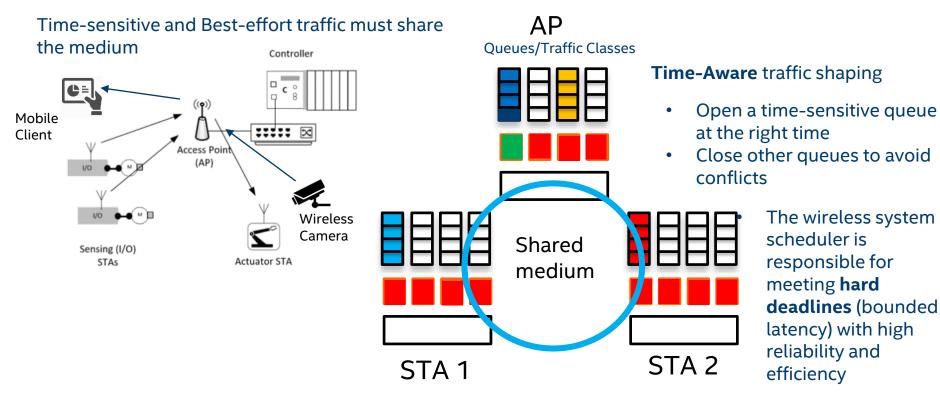
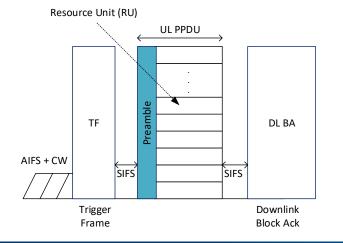


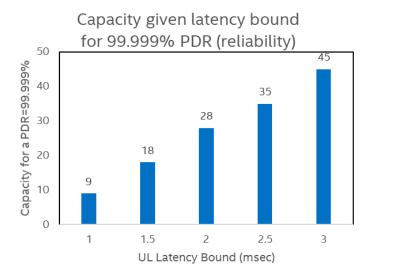
Figure from Janos Farkas, Doc#11-1298r1, July 2019 IEEE 802.11 Plenary


IEEE802.1AS-2020

- Enables the use of IEEE802.11-2016 Timing Measurement (TM) and Fine Timing Measurement (FTM) protocols for time synchronization
- The FTM protocol enables
 - End-stations to have more control over the execution of the protocol
 - Higher resolution for timestamps (100 picosecond units)
 - 48-bit fields for timestamps (wraps around less frequently)
 - Measurement bursts to detect and account for wireless channel asymmetry (Tx path is different from the Rx path)
 - Potentially higher accuracy in time synchronization performance
 - Geolocation/positioning

Time-Aware Scheduling (802.1Qbv) over Wireless

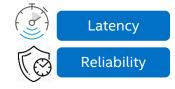




Time-Aware Scheduling with Wi-Fi6

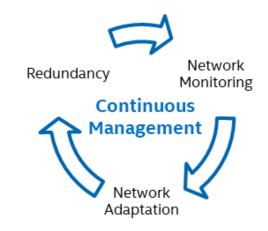
802.11ax Multi-user Trigger-based with timeaware scheduling for UL

Capacity = number of STAs that can be supported with a given latency bound (1 – 3 msec) and 99.999% reliability*

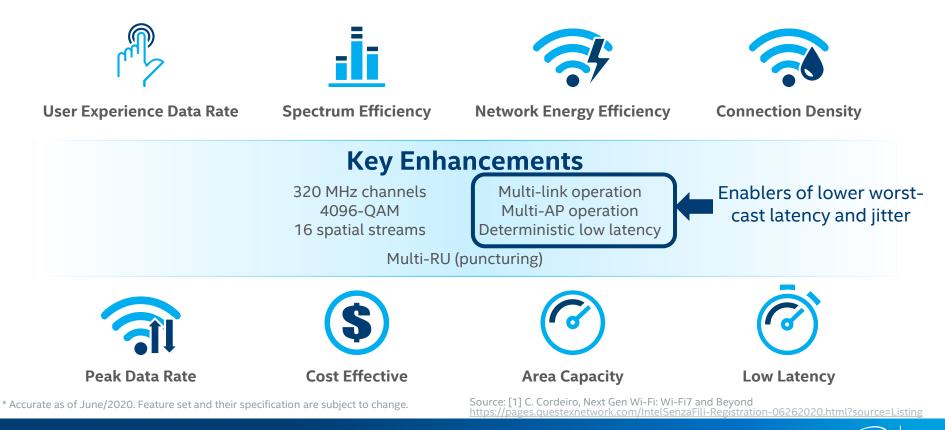

802.11ax with time-aware scheduling can support low latency and high reliability in managed environments

* Assumptions: 20 MHz channel, SISO, 100 Bytes packets, Channel model E, STAs randomly distributed in a 50 m radio

PDR: Packet Delivery Ratio (fraction of packets successfully delivered within the latency bound)


Wi-Fi6E – More flexibility and spectrum

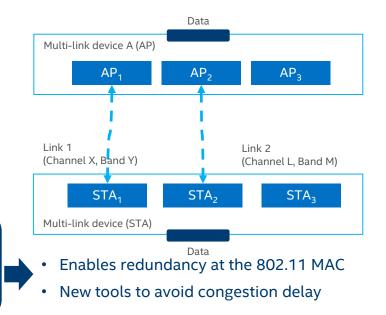
- Extends Wi-Fi 6 with 6 GHz band operation*
- Launching Jan'21
- Key enabler for new usages that require determinism


	2.4GHz Band	5GHz Band	6GHz Band
Spectrum	85MHz	480MHz	1200MHz
20MHz Channels	3	25	59
40MHz Channels	1	12	29
80MHz Channels	0	6	14
160MHz Channels	0	2	7

More flexibility to adapt the network to interference and congestion enabling more resilience to unmanaged threats

Key Wi-Fi 7 Features*

10


Multi-link Operation (MLO) for lower latency and reliability

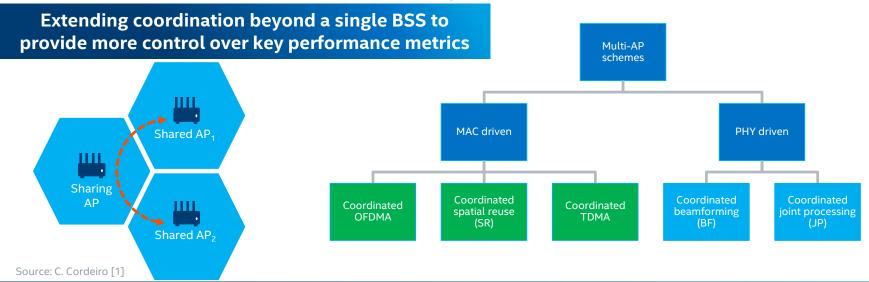
MLO enables link aggregation at the MAC layer

• A link is mapped to a channel and band

MLO brings benefits in multiple dimensions:

- Additive throughput for data flows split over links
 - For two links (e.g., 5 GHz and 6 GHz), max aggregate data rate could reach 7.2x compared to Wi-Fi 6
- Lower latency due to access to multiple links in parallel
- High reliability by packets duplication over multiple links
- Assign data flows to specific links based on app needs

MLO provides higher throughput, lower latency and/or higher reliability, which are useful to a number of applications from VR/AR to industrial IoT

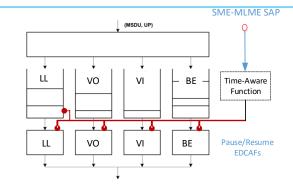

Source: C. Cordeiro [1]

11

Multi-AP Features

Multi-AP refers to a collection of features that rely on direct AP coordination to achieve desired network performance goals

Different flavors of multi-AP solutions are being considered



Enhanced Determinism with Wi-Fi 7

- Wi-Fi 6 can achieve single-digit millisecond latency, but the worstcase latency may still vary under congestion
- With multi-link operation, multi-AP and 320 MHz channels in Wi-Fi 7, latency will be reduced even further
- However, to provide more predictable low latency (enhanced determinism), new protocol enhancements need to be defined

Potential features for low latency reliable service

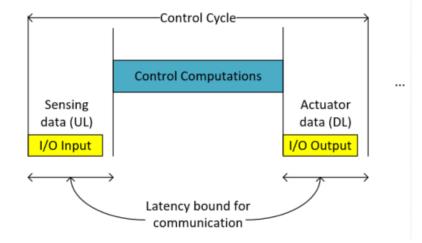
- QoS provisioning model for low latency reliable traffic streams
- Define dedicated, low-latency (LL) and reliable access category
- Time-Aware scheduled channel access integrated in the MAC
- Limit TXOP duration across networks and packet preemption for predictable channel access

FTM-enabled Localization

- In line-of-sight channel conditions, the ranging accuracy is less than 1 meter
- Positioning/ranging relative to the peer against which the protocol is executed
- Geospatial co-ordinates of a device can be determined by executing FTM from a device with 3 or more peers (whose geospatial co-ordinates are known)
- RAW use cases operating in an environment where there is no access to GPS (or GPS-like services), can leverage FTM to determine relative/absolute position
- IEEE802.11az extends ranging capabilities with security, improved accuracy and optimizes the protocol for accurate estimates with minimal protocol overhead.

Conclusions

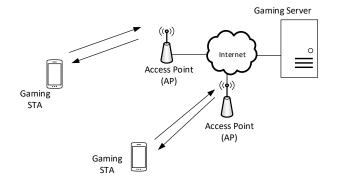
Wi-Fi has already integrated several TSN capabilities and more enhancements are being introduced

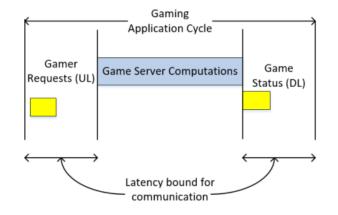

- captured in draft-thubert-raw-technologies, but latest developments and Wi-Fi 7 features can be updated
- Support for localization also enabled by the same set of core features
- Wi-Fi6/6E enabled new scheduling capabilities, key for low latency and high reliability

Wi-Fi7 builds on Wi-Fi6/6E (the new 6GHz band) and introduces new innovations to achieve lower latency, higher reliability and determinism

320 MHz channels, MLO, Multi-AP, and low latency reliable services

Basic model of an industrial control system


Time synchronized operation


Latency/jitter may cause instability of the system

Low (worst-case) latency is also a requirement for emerging consumer applications

Real-time mobile, console and cloud gaming

Latency/jitter cause lagging/bad user experience

