Main changes

A substantial rewrite

1. Focusing on integrating RACK-TLP as whole
2. Incorporating WGLC reviews (let me know if I missed any)

New motivation, high-level design, reordering rationale sections

Two new examples of RACK-TLP scenario timelines
Motivation: what RACK-TLP can do that the 3-DUPACK heuristic couldn’t

1. Quickly detect packet drops in short flows or at the end of an application data flight.

2. Detect lost retransmissions.

3. Tolerate low reordering degree in time distance
 a. E.g. deliver P100, P1, P2, … P99. Reordering degree: Sequence: 99*SMSS. Time: <<RTT
High-level design (sec 3)

Overarching goal: Ack-triggered Fast recovery as much as possible. RTO recovery as last resort

1. RACK: detect losses via ACK events as much as possible, to repair losses at round-trip time-scales:

 Segment S is lost if S.sent_time + RTT + reo_wnd < Now

2. TLP: gently probe to solicit additional ACK to trigger (1) to avoid RTO and subsequent congestion window reset
Reordering window adaptation (sec 3.3.2)

Reordering window is dynamically adapted as follows:

1. If no reordering seen: zero if 3-DUPACKs or already in recovery
2. If reordering seen: start from min_RTT/4
3. For every round that observes DSACK, linearly increase window until it reaches SRTT. After 16 recoveries w/o any DSACK seen, go to (2)

Rationale:
Short flows recover quickly with controlled risk of spurious retransmission
Long flows adapt to (low time-degree) reordering
Low initial window with bounded max to disincentivize excessive network reordering
How TLP recovers faster via RACK (sec 3.4)

<table>
<thead>
<tr>
<th>Event</th>
<th>TCP DATA SENDER</th>
<th>TCP DATA RECEIVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Send P0, P1, P2, P3 --></td>
<td>[P1, P2, P3 dropped by network]</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Receive P0, ACK P0</td>
</tr>
<tr>
<td>3a.</td>
<td>2RTTs after (2), TLP timer fires</td>
<td>TLP: retransmits P3 --></td>
</tr>
<tr>
<td>3b.</td>
<td>TLP: retransmits P3</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Receive P3, SACK P3</td>
</tr>
<tr>
<td>5a.</td>
<td>Receive SACK for P3</td>
<td></td>
</tr>
<tr>
<td>5b.</td>
<td>RACK: marks P1, P2 lost</td>
<td></td>
</tr>
<tr>
<td>5c.</td>
<td>Retransmit P1, P2 --></td>
<td>[P1 retransmission dropped by network]</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Receive P2, SACK P2 & P3</td>
</tr>
<tr>
<td>7a.</td>
<td>RACK: marks P1 retransmission lost</td>
<td></td>
</tr>
<tr>
<td>7b.</td>
<td>Retransmit P1 --></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Receive P1, ACK P3</td>
</tr>
</tbody>
</table>
MUST, SHOULD, MAY changes

+ Reordering window SHOULD adapt based on DSACK if eligible
+ Reordering timer SHOULD be used to quickly recover
+ TLP requires RACK, RACK requires SACK
+ TLP sender SHOULD cancel any other pending RTO, ZWP, RACK timer when (re)arming PTO
+ (Implicit MUST) at most one TLP probe at a time
- \(\text{TLP.max_ack_delay \text{ of } 200ms} \Rightarrow \text{implementation-specific} \)
Relationship to other RFCs

- Replace/subsume as an alternative:
 - Conservative Loss Recovery based on SACK [RFC6675]
 - Early Retransmit [RFC5827]

- Complementary & compatible:
 - Limited Transmit [RFC3042]
 - RTO Restart [RFC7765]
 - F-RTO [RFC5682]
 - RTO [RFC6298]
 - Eifel [RFC3522]