
TLS Application-Layer 
Protocol Settings

draft-vvv-tls-alps

IETF 108 (virtual)

1



Half-RTT Problem
● TLS 1.3 supports “half-RTT data”, i.e. the data sent by the server immediately 

after ServerHello..Finished flight
● Can be used in protocols like HTTP/2 where the server sends SETTINGS first
● For TLS over TCP, a lot of widely deployed server TLS implementations do 

not support half-RTT data.
● A quick scan of popular HTTP/2 servers has revealed very few people 

actually sending SETTINGS in half-RTT.
● Introducing half-RTT changes the I/O pattern of the protocol, which can 

potentially lead to interoperability issues
● Even when a server does send half-RTT data, the client needs to know that 

for a fact. Otherwise, blocking on receiving half-RTT data would stall for an 
RTT. 2



ALPS extension
ALPS approach: put settings (of both client and server) into an extension.

Advantages:

1. Provides a guarantee to the application that it always has the peer’s settings 
2. Solves the half-RTT problem, allowing the use of various HTTP/2 extensions 

during the first flight of requests, including:
a. Extended CONNECT for WebSocket (RFC 8441)
b. Client hint reliability (draft-davidben-http-client-hint-reliability)
c. Opting out of header compression

3. Transparently deals with the problem of retaining peer’s settings for 0-RTT.

3



ALPS semantics
● Both client and server send an opaque blob with their settings (ALPS values)
● ALPS is declarative, and not a negotiation: client settings cannot depend on 

server settings and vice versa.
● Settings are encrypted with the handshake keys.
● 0-RTT is handled by storing both sets of settings inside the TLS ticket.
● If the settings provided by both the client and the server match, 0-RTT 

proceeds with settings from the previous sessions.

4



Full handshake with ALPS
ClientHello flight
ClientHello includes an empty application_settings extension.

ServerHello flight
EncryptedExtensions includes application_settings with the server settings.

Client’s Finished flight
ClientApplicationSettings message appears before client’s Certificate message 
(Finished message if no client certificate present).

5



Alternatives considered
The main alternative is fixing half-RTT data and using it instead.

This doesn’t solve the problem fully, as an explicit signal of half-RTT data support 
is still needed, and that signal would have to come at the TLS layer.

This also doesn’t provide semantics for retaining application settings for 0-RTT.

6



Open questions
● 0-RTT mismatch handling is currently simplified compared to how QUIC and 

HTTP/3 handle it.
○ Simplifies the API design
○ People might want to have the flexibility that QUIC provides

● No support for settings that are not retained across multiple connections.
○ HTTP currently does not have settings that change in that manner.
○ QUIC does have transport parameters of that nature, but QUIC wouldn’t be using ALPS

7



Discussion

8


