Abstract

Adaptive DNS Discovery is chartered to define mechanisms that allow clients to discover and select encrypted DNS resolvers. This document describes one common use case, that of discovering the encrypted DNS resolver that corresponds to the Do53 resolver offered by a network. It lists requirements that any proposed discovery mechanisms should address.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://github.com/ietf-wg-add/draft-add-requirements.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 May 2021.
1. Introduction

Several protocols for protecting DNS traffic with encrypted transports have been defined, such as DNS-over-TLS (DoT) [RFC7858] and DNS-over-HTTPS (DoH) [RFC8484]. Encrypted DNS can provide many security and privacy benefits for network clients.

While it is possible for clients to statically configure encrypted DNS resolvers to use, dynamic discovery and provisioning of encrypted resolvers can expand the usefulness and applicability of encrypted DNS to many more use cases.
The Adaptive DNS Discovery (ADD) Working Group is chartered to define mechanisms that allow clients to automatically discover and select encrypted DNS resolvers in a wide variety of network environments. This document currently focuses on one common use case, that of discovering the encrypted DNS resolver that corresponds to the Do53 resolver offered by a network. Additional use cases can be added in future versions. As well as describing the use case, it lists requirements that any proposed discovery mechanisms should address. They can do this either by providing a solution, or by explicitly stating why it is not in scope.

1.1. Requirements language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Terminology

This document makes use of the following terms.

Encrypted DNS: DNS-over-HTTPS [RFC8484], DNS-over-TLS [RFC7858], or any other encrypted DNS technology that the IETF may publish, such as DNS-over-QUIC [I-D.ietf-dprive-dnsoquic].

Do53: Unencrypted DNS over UDP port 53, or TCP port 53 [RFC1035].

Equivalent: See Section 3.1.

3. Use case description

It is often the case that a client possesses no specific configuration for how to operate DNS, and at some point joins a network that it has no previous knowledge about. In such a case the usual existing behaviour is to dynamically discover the network’s recommended Do53 resolver and use it. This long-standing practice works in nearly all networks, but presents a number of privacy and security risks that were the motivation for the development of encrypted DNS.

The network’s recommended unencrypted resolver may have a number of properties that differ from a generic resolver. It may be able to answer names that are not known globally, it may exclude some names (for positive or negative reasons), and it may provide address answers that have improved proximity. In this use case it is assumed that the user who chose to join this network would also like to make
use of these properties of the network’s unencrypted resolver, at least some of the time. However they would like to use an encrypted DNS protocol rather than Do53.

Using an encrypted and authenticated resolver that is equivalent to the one provisioned by the network can provide several benefits that are not possible if only unencrypted DNS is used:

* Prevent other devices on the network from observing client DNS messages
* Authenticate that the DNS resolver is the correct one
* Verify that answers come from the selected DNS resolver

To meet this case there should be a means by which the client can learn how to contact an encrypted DNS resolver that provides equivalent responses as the ones served by the network’s recommended unencrypted resolver. It is not a requirement that these two resolvers are the same physical or logical machine. Often they will be, but they could equally be separated, perhaps by hundreds of miles. However it is deployed, the key is that they are equivalent.

3.1. Equivalence

Given two resolvers A and B, equivalence is the claim that A and B can provide the same upper-layer DNS function to the client. This does not include the DNS transport protocol (e.g. Do53 or DNS-over-HTTPS) which can differ between equivalent resolvers. To provide equivalence it is frequently likely to be the case that A and B are operated by the same administrative domain, but this document does not require that.

There are two possible ways to claim equivalence.

* The local network can claim that one or more encrypted DNS resolvers (B, C, etc) are equivalent to the Do53 resolver (A) it has offered. This is known as network-identified.

* During communication with the (often unencrypted) resolver (A), this resolver can claim that one or more encrypted DNS resolvers (B, C, etc) are equivalent. This is known as resolver-identified.
Network-identified is preferred since it comes from the same source of information, and removes the need to talk to the Do53 resolver at all. However it cannot be the sole mechanism, at least for several years, since there is a large installed base of local network equipment that is difficult to upgrade with new features. Hence the second mechanism must support being able to announce an equivalent resolver using only existing widely-deployed DNS features.

3.2. Local addressing

Many networks offer a Do53 resolver on an address that is not globally meaningful, e.g. [RFC1918], link-local or unique local addresses. To support the discovery of Encrypted DNS in these environments, a means is needed for the discovery process to work from a locally-addressed Do53 resolver to an Encrypted DNS resolver that is accessible either at the same (local) address, or at a different global address. Both options need to be supported.

4. Network-identified encrypted resolvers

DNS servers are often provisioned by a network as part of DHCP options [RFC2132], IPv6 Router Advertisement (RA) options [RFC8106], Point-to-Point Protocol (PPP) [RFC1877], or 3GPP Protocol Configuration Options (TS24.008). Historically this is usually one or more Do53 resolver IP addresses, to be used for traditional unencrypted DNS.

A solution is required that enhances the set of information delivered to include details of one or more equivalent encrypted DNS resolvers, or states that there are none.

5. Resolver-identified encrypted resolvers

To support cases where the network is unable to identify an encrypted resolver, it should be possible to learn the details of one or more equivalent encrypted DNS resolvers by communicating with the network-recommended unencrypted Do53 resolver. This should involve an exchange that uses standard DNS messages that can be handled, or forwarded, by existing deployed software.

It is frequently the case that Do53 resolvers announced by home networks are difficult to upgrade to support encrypted operation. In such cases it is possible that the only option for encrypted operation is to refer to a separate globally-addressed encrypted DNS resolver.
If the local resolver has been upgraded to support encrypted DNS, the client may not initially be aware that its local resolver supports it. Discovering this may require communication with the local resolver, or an upstream resolver, over DoS53. Clients that choose to use this local encrypted DNS gain the benefits of encryption while retaining the benefits of a local caching resolver with knowledge of the local topology.

An additional benefit of using a local resolver occurs with IoT devices. A common usage pattern for such devices is for it to "call home" to a service that resides on the public Internet, where that service is referenced through a domain name. As discussed in Manufacturer Usage Description Specification [RFC8520], because these devices tend to require access to very few sites, all other access should be considered suspect. However, if the query is not accessible for inspection, it becomes quite difficult for the infrastructure to suspect anything.

6. Privacy and security requirements

Encrypted (and authenticated) DNS improves the privacy and security of DNS queries and answers in the presence of malicious attackers. Such attackers are assumed to interfere with or otherwise impede DNS traffic and corresponding discovery mechanisms. They may be on-path or off-path between the client and entities with which the client communicates [RFC3552]. These attackers can inject, tamper, or otherwise interfere with traffic as needed. Given these capabilities, an attacker may have a variety of goals, including, though not limited to:

* Monitor and profile clients by observing unencrypted DNS traffic

* Modify unencrypted DNS traffic to filter or augment the user experience

* Block encrypted DNS

Given this type of attacker, resolver discovery mechanisms must be designed carefully to not worsen a client’s security or privacy posture. In particular, attackers under consideration must not be able to:

* Redirect secure DNS traffic to themselves when they would not otherwise handle DNS traffic.

* Override or interfere with the resolver preferences of a user or administrator.
* Cause clients to use a discovered resolver which has no authenticated delegation from a client-known entity.

* Influence automatic discovery mechanisms such that a client uses one or more resolvers that are not otherwise involved with providing service to the client, such as: a network provider, a VPN server, a content provider being accessed, or a server that the client has manually configured.

When discovering DNS resolvers on a local network, clients have no mechanism to distinguish between cases where an active attacker with the above capabilities is interfering with discovery, and situations wherein the network has no encrypted resolver. Absent such a mechanism, an attacker can always succeed in these goals. Therefore, in such circumstances, viable solutions for local DNS resolver discovery should consider weaker attackers, such as those with only passive eavesdropping capabilities. It is unknown whether such relaxations represent a realistic attacker in practice. Thus, local discovery solutions designed around this threat model may have limited value.

7. Statement of Requirements

This section lists requirements that flow from the above sections.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1.1</td>
<td>Discovery MUST provide a local network the ability to announce to clients a set of, or absence of, equivalent resolvers.</td>
</tr>
<tr>
<td>R1.2</td>
<td>Discovery MUST provide a resolver the ability to announce to clients a set of, or absence of, equivalent resolvers.</td>
</tr>
<tr>
<td>R1.3</td>
<td>Discovery MUST support at least one encrypted DNS protocol.</td>
</tr>
<tr>
<td>R1.4</td>
<td>Discovery SHOULD support all standardised encrypted DNS protocols.</td>
</tr>
<tr>
<td>R2.1</td>
<td>Networks MUST be able to announce one or more equivalent encrypted DNS resolvers using existing mechanisms such as DHCPv4, DHCPv6, IPv6 Router Advertisement, and the Point-to-Point Protocol.</td>
</tr>
<tr>
<td>R2.2</td>
<td>The format for resolver information MUST be specified such that provisioning mechanisms defined outside of the IETF can advertise encrypted DNS resolvers.</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>R3.1</td>
<td>When discovery is instantiated from a resolver (R1.2), that resolver MAY be encrypted or not.</td>
</tr>
<tr>
<td>R3.2</td>
<td>When discovery is instantiated from a resolver (R1.2), that resolver MAY be locally or globally reachable. Both options MUST be supported.</td>
</tr>
<tr>
<td>R4.1</td>
<td>In a home network use case, if the local network forwarder does not offer encrypted DNS service, the ISP’s encrypted DNS server information MUST be retrievable via a query sent to a local network forwarder.</td>
</tr>
<tr>
<td>R4.2</td>
<td>Encrypted DNS server discovery MUST NOT require any changes to DNS forwardsers hosted on non-upgradable legacy network devices.</td>
</tr>
<tr>
<td>R5.1</td>
<td>Discovery MUST NOT worsen a client’s security or privacy posture.</td>
</tr>
<tr>
<td>R5.2</td>
<td>Threat modelling MUST assume that there is a passive eavesdropping attacker on the local network.</td>
</tr>
<tr>
<td>R5.3</td>
<td>Threat modelling MUST assume that an attacker can actively attack from outside the local network.</td>
</tr>
<tr>
<td>R5.4</td>
<td>Attackers MUST NOT be able to redirect encrypted DNS traffic to themselves when they would not otherwise handle DNS traffic.</td>
</tr>
<tr>
<td>R5.5</td>
<td>An attacker in the network MUST NOT be able to override or interfere with the resolver preferences of a user or administrator.</td>
</tr>
<tr>
<td>R5.6</td>
<td>Attackers MUST NOT be able to influence automatic discovery mechanisms such that a client uses one or more resolvers that are not otherwise involved with providing service to the client, including a network provider, a VPN server, a content provider being accessed, or a</td>
</tr>
</tbody>
</table>
8. Security Considerations

See Section 6.

9. IANA Considerations

This document has no IANA actions.

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

This document was started based on discussion during the ADD meeting of IETF108, the subsequent interims, on the list, and with text from draft-pauly-add-requirements. In particular this document was informed by contributions from Martin Thomson, Eric Rescorla, Tommy Jensen, Ben Schwartz, Paul Hoffman, Ralf Weber, Michael Richardson, Mohamed Boucadair, Sanjay Mishra, Jim Reid, Neil Cook, Nic Leymann and Andrew Campling.

Authors’ Addresses

Chris Box
BT
2000 Park Avenue
Bristol
United Kingdom

Email: chris.box@bt.com
Tommy Pauly
Apple
One Apple Park Way
Cupertino, California 95014,
United States of America

Email: tpauly@apple.com

Christopher A. Wood
Cloudflare
101 Townsend St
San Francisco,
United States of America

Email: caw@heapingbits.net

Tirumaleswar Reddy
McAfee
Embassy Golf Link Business Park
Bangalore
India

Email: TirumaleswarReddy_Konda@McAfee.com

Daniel Migault
Ericsson
8275 Trans Canada Route
Saint Laurent, QC
Canada

Email: daniel.migault@ericsson.com
Abstract

Adaptive DNS Discovery is chartered to define mechanisms that allow clients to discover and select encrypted DNS resolvers. This document describes one common use case, namely that of clients that connect to a network but where they cannot securely authenticate the identity of that network. In such cases the client would like to learn which encrypted DNS resolvers are designated by that network or by the Do53 resolver offered by that network. It lists requirements that any proposed discovery mechanisms should seek to address.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://github.com/ietf-wg-add/draft-add-requirements.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
1. Introduction

Several protocols for protecting DNS traffic with encrypted transports have been defined, such as DNS-over-TLS (DoT) [RFC7858] and DNS-over-HTTPS (DoH) [RFC8484]. Encrypted DNS can provide many security and privacy benefits for network clients.
While it is possible for clients to statically configure encrypted DNS resolvers to use, dynamic discovery and provisioning of encrypted resolvers can expand the usefulness and applicability of encrypted DNS to many more use cases.

The Adaptive DNS Discovery (ADD) Working Group is chartered to define mechanisms that allow clients to automatically discover and select encrypted DNS resolvers in a wide variety of network environments. This document describes one common use case, namely that of clients that connect to a network but where they cannot securely authenticate that network. Whether the network required credentials before the client was permitted to join is irrelevant; the client still cannot be sure that it has connected to the network it was expecting.

In such cases the client would like to learn which encrypted DNS resolvers are designated by that network, or by the Do53 resolver offered by that network. It lists requirements that any proposed discovery mechanisms should seek to address. They can do this either by providing a solution, or by explicitly stating why it is not in scope.

1.1. Requirements language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Terminology

This document makes use of the following terms.

Encrypted DNS: DNS-over-HTTPS [RFC8484], DNS-over-TLS [RFC7858], or any other encrypted DNS technology that the IETF may publish, such as DNS-over-QUIC [I-D.ietf-dprive-dnsoquic].

Do53: Unencrypted DNS over UDP port 53, or TCP port 53 [RFC1035].

Designated: See Section 3.1.

Designator: The network or resolver that issued the designation.
3. Use case description

It is often the case that a client possesses no specific configuration for how to operate DNS, and at some point joins a network that it cannot authenticate. It may have no prior knowledge of the network, or it may have connected previously to a network that looked the same. In either case the usual behaviour, because of lack of specific configuration, is to dynamically discover the network’s designated Do53 resolver and use it. This long-standing practice works in nearly all networks, but presents a number of privacy and security risks that were the motivation for the development of encrypted DNS.

The network’s designated Do53 resolver may have a number of properties that differ from a generic resolver. It may be able to answer names that are not known globally, it may exclude some names (for positive or negative reasons), and it may provide address answers that have improved proximity. In this use case it is assumed that the user who chose to join this network would also like to make use of these properties of the network’s unencrypted resolver, at least some of the time. However they would like to use an encrypted DNS protocol rather than Do53.

Using an encrypted and authenticated resolver can provide several benefits that are not possible if only unencrypted DNS is used:

* Prevent other devices on the network from observing client DNS messages
* Authenticate that the DNS resolver is the correct one
* Verify that answers come from the selected DNS resolver

To meet this case there should be a means by which the client can learn how to contact a set of encrypted DNS resolvers that are designated by the network it has joined.

3.1. Designation

Designation is the process by which a local network or a resolver can point clients towards a particular set of resolvers. This is not a new concept, as networks have been able to dynamically designate Do53 resolvers for decades (see Section 3.4). However here we extend the concept in two ways:

* To allow resolvers to designate other resolvers
* The inclusion of support for encrypted DNS
The designated set could be empty, or it could list the contact details (such as DoH URI Template) of DNS resolvers that it recommends. It is not required that there be any relationship between the resolvers in the set, simply that all of them are options that the designator asserts are safe and appropriate for the client to use without user intervention.

There are two possible sources of designation.

* The local network can designate one or more encrypted DNS resolvers (B, C, etc) in addition to any Do53 resolver (A) it may offer. This is known as network-identified.

* During communication with the (often unencrypted) resolver (A), this resolver can designate one or more encrypted DNS resolvers (B, C, etc). This is known as resolver-identified.

Network-identified has the advantages that it derives from the same source of information as the network’s Do53 announcement, and removes the need to talk to the Do53 resolver at all. However it cannot be the sole mechanism, at least for several years, since there is a large installed base of local network equipment that is difficult to upgrade with new features. Hence the second mechanism should support being able to designate resolvers using only existing widely-deployed DNS features.

3.2. Local addressing

Many networks offer a Do53 resolver on an address that is not globally meaningful, e.g. [RFC1918], link-local or unique local addresses. To support the discovery of encrypted DNS in these environments, a means is needed for the discovery process to work from a locally-addressed Do53 resolver to an encrypted DNS resolver that is accessible either at the same (local) address, or at a different global address. Both options need to be supported.

3.3. Use of designation information

After the client receives designation information, it must come to a decision on whether and when to use any of the designated resolvers.
In the case of resolver-identified designation, it would be advantageous for a solution to enable the client to validate the source of the assertion in some way. For example it may be possible to verify that the designation comes from an entity who already has full control of the client’s Do53 queries. Network-identified designation should not require this, unless the network-identified resolver in turn initiated a new resolver-identified designation. It would be beneficial to extend such a verification process to defend against attackers that have only transient control of such queries.

Clients may also seek to validate the identity of the designated resolver, beyond what is required by the relevant protocol. Authors of solution specifications should be aware that clients may impose arbitrary additional requirements and heuristics as they see fit.

3.4. Network-identified designated resolvers

DNS servers are often provisioned by a network as part of DHCP options [RFC2132], IPv6 Router Advertisement (RA) options [RFC8106], Point-to-Point Protocol (PPP) [RFC1877], or 3GPP Protocol Configuration Options (TS24.008). Historically this is usually one or more Do53 resolver IP addresses, to be used for traditional unencrypted DNS.

A solution is required that enhances the set of information delivered to include details of one or more designated encrypted DNS resolvers, or states that there are none. Such resolvers could be on the local network, somewhere upstream, or on the public Internet.

3.5. Resolver-identified designated resolvers

To support cases where the network is unable to identify an encrypted resolver, it should be possible to learn the details of one or more designated encrypted DNS resolvers by communicating with the network’s designated Do53 resolver. This should involve an exchange that uses standard DNS messages that can be handled, or forwarded, by existing deployed software.

Each resolver in the set may be at a different network location, which leads to several subcases for the mapping from Do53 to a particular designated resolver.
3.5.1. Local to local

If the local resolver has been upgraded to support encrypted DNS, the client may not initially be aware that its local resolver supports it. Discovering this may require communication with the local resolver, or an upstream resolver, over Do53. Clients that choose to use this local encrypted DNS gain the benefits of encryption while retaining the benefits of a local caching resolver with knowledge of the local topology.

Clients will be aware when the designated resolver has the same IP address as the Do53 (after looking up its name if required). They can use this information in their decision-making as to the level of trust to place in the designated resolver. In some networks it will not be possible to deploy encrypted DNS on the same IP address, e.g. because of the increased resource requirements of encrypted DNS. Discovery solutions should work in the presence of a change to a different local IP address.

An additional benefit of using a local resolver occurs with IoT devices. A common usage pattern for such devices is for it to "call home" to a service that resides on the public Internet, where that service is referenced through a domain name. As discussed in Manufacturer Usage Description Specification [RFC8520], because these devices tend to require access to very few sites, all other access should be considered suspect. However, if the query is not accessible for inspection, it becomes quite difficult for the infrastructure to suspect anything.

3.5.2. Local to upstream

It is frequently the case that Do53 resolvers announced by home networks are difficult to upgrade to support encrypted operation. In such cases it is possible that the only option for encrypted operation is to refer to a separate globally-addressed encrypted DNS resolver, somewhere upstream. Other networks may choose deploy their encrypted DNS resolver away from the local network, for other reasons.

The use of an upstream resolver can mean the loss of local knowledge, such as the ability to respond to queries for locally-relevant names. Solutions should consider how to guide clients when to direct their queries to the local Do53. For example this could be through pre-emptive communication ("if you ever need to query *.example.com, use your local Do53"), or reactively ("I don’t know the answer to that, but your local Do53 should know").
3.5.3. Public to public

In cases where the local network has designated a Do53 resolver on the public Internet, this resolver may designate its own or another public encrypted DNS service. Since public IP addresses may appear in TLS certificates, solutions may use this as one way to validate that the designated encrypted resolver is legitimately associated with the original Do53.

3.6. Identification over an encrypted channel

In cases where the designation is delivered over an authenticated and encrypted channel, such as when one encrypted DNS resolver designates another, one form of attack is removed. Specifically, clients may be more confident that the received designation was actually sent by the designator. Clients may take this into account when deciding whether to follow the designation.

4. Privacy and security requirements

Encrypted (and authenticated) DNS improves the privacy and security of DNS queries and answers in the presence of malicious attackers. Such attackers are assumed to interfere with or otherwise impede DNS traffic and corresponding discovery mechanisms. They may be on-path or off-path between the client and entities with which the client communicates [RFC3552]. These attackers can inject, tamper, or otherwise interfere with traffic as needed. Given these capabilities, an attacker may have a variety of goals, including, though not limited to:

* Monitor and profile clients by observing unencrypted DNS traffic
* Modify unencrypted DNS traffic to filter or augment the user experience
* Block encrypted DNS

Given this type of attacker, resolver discovery mechanisms must be designed carefully to not worsen a client’s security or privacy posture. In particular, attackers under consideration must not be able to:

* Redirect secure DNS traffic to themselves when they would not otherwise handle DNS traffic.
* Override or interfere with the resolver preferences of a user or administrator.
* Cause clients to use a discovered resolver which has no designation from a client-known entity.

When discovering DNS resolvers on a local network, clients have no mechanism to distinguish between cases where an active attacker with the above capabilities is interfering with discovery, and situations wherein the network has no encrypted resolver. Absent such a mechanism, an attacker can always succeed in these goals. Therefore, in such circumstances, viable solutions for local DNS resolver discovery should consider weaker attackers, such as those with only passive eavesdropping capabilities. It is unknown whether such relaxations represent a realistic attacker in practice. Thus, local discovery solutions designed around this threat model may have limited value.

5. Statement of Requirements

This section lists requirements that flow from the above sections.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1.1</td>
<td>Discovery SHOULD provide a local network the ability to announce to clients a set of, or absence of, designated resolvers.</td>
</tr>
<tr>
<td>R1.2</td>
<td>Discovery SHOULD provide a resolver the ability to announce to clients a set of, or absence of, designated resolvers.</td>
</tr>
<tr>
<td>R1.3</td>
<td>Discovery SHOULD support all encrypted DNS protocols standardised by the IETF.</td>
</tr>
<tr>
<td>R2.1</td>
<td>Networks SHOULD be able to announce one or more designated encrypted DNS resolvers using existing mechanisms such as DHCPv4, DHCPv6, IPv6 Router Advertisement, and the Point-to-Point Protocol.</td>
</tr>
<tr>
<td>R2.2</td>
<td>The format for resolver designation SHOULD be specified such that provisioning mechanisms defined outside of the IETF can advertise encrypted DNS resolvers.</td>
</tr>
<tr>
<td>R2.3</td>
<td>This format SHOULD convey, at minimum, the information the client needs to make contact with each designated resolver.</td>
</tr>
<tr>
<td>R2.4</td>
<td>This format MAY convey additional resolver</td>
</tr>
</tbody>
</table>
In resolver-identified designation (R1.2), the communication with the designator MAY be encrypted or not, depending on the capability of the resolver.

In resolver-identified designation (R1.2), that resolver MAY be locally or globally reachable. Both options SHOULD be supported.

If the local network resolver is a forwarder that does not offer encrypted DNS service, an upstream encrypted resolver SHOULD be retrievable via queries sent to that forwarder.

Achieving requirement 4.1 SHOULD NOT require any changes to DNS forwarders hosted on non-upgradable legacy network devices.

Discovery MUST NOT worsen a client’s security or privacy posture.

Threat modelling MUST assume that there is a passive eavesdropping attacker on the local network.

Threat modelling MUST assume that an attacker can actively attack from outside the local network.

Attackers MUST NOT be able to redirect encrypted DNS traffic to themselves when they would not otherwise handle DNS traffic.

Table 1

6. Security Considerations

See Section 4.

7. IANA Considerations

This document has no IANA actions.

8. References

8.1. Normative References

Box, et al. Expires 28 July 2021
8.2. Informative References

[I-D.ietf-dprive-dnsoquic]

Acknowledgments

This document was started based on discussion during the ADD meeting of IETF108, subsequent meetings, on the list, and with text from draft-pauly-add-requirements. In particular this document was informed by contributions from Martin Thomson, Eric Rescorla, Tommy Jensen, Ben Schwartz, Paul Hoffman, Ralf Weber, Michael Richardson, Mohamed Boucadair, Sanjay Mishra, Jim Reid, Neil Cook, Nic Leymann, Andrew Campling, Eric Orth, Ted Hardie, Paul Vixie, Vittorio Bertola, and Vinny Parla.

Authors’ Addresses

Chris Box
BT
2000 Park Avenue
Bristol
United Kingdom

Email: chris.box@bt.com

Tommy Pauly
Apple
One Apple Park Way
Cupertino, California 95014,
United States of America

Email: tpauly@apple.com

Christopher A. Wood
Cloudflare
101 Townsend St
San Francisco,
United States of America

Email: caw@heapingbits.net

Tirumaleswar Reddy
McAfee
Embassy Golf Link Business Park
Bangalore
India

Email: TirumaleswarReddy_Konda@McAfee.com

Daniel Migault
Ericsson
8275 Trans Canada Route
Saint Laurent, QC
Canada

Email: daniel.migault@ericsson.com
Abstract

This document defines Discovery of Equivalent Encrypted Resolvers (DEER), a mechanism for DNS clients to use DNS records to discover a resolver’s encrypted DNS configuration. This mechanism can be used to move from unencrypted DNS to encrypted DNS when only the IP address of an encrypted resolver is known. It can also be used to discover support for encrypted DNS protocols when the name of an encrypted resolver is known. This mechanism is designed to be limited to cases where equivalent encrypted and unencrypted resolvers are operated by the same entity.
1. Introduction

When DNS clients wish to use encrypted DNS protocols such as DNS-over-TLS (DoT) [RFC7858] or DNS-over-HTTPS (DoH) [RFC8484], they require additional information beyond the IP address of the DNS server, such as the resolver’s hostname, non-standard ports, or URL paths. However, common configuration mechanisms only provide the resolver’s IP address during configuration. Such mechanisms include network provisioning protocols like DHCP [RFC2132] and IPv6 Router Advertisement (RA) options [RFC8106], as well as manual configuration.

This document defines two mechanisms for clients to discover equivalent resolvers using DNS server Service Binding (SVCB, [I-D.ietf-dnsop-svcb-https]) records:

Pauly, et al. Expires 6 May 2021
1. When only an IP address of an Unencrypted Resolver is known, the client queries a special use domain name to discover DNS SVCB records associated with the Unencrypted Resolver (Section 4).

2. When the hostname of an encrypted DNS server is known, the client requests details by sending a query for a DNS SVCB record. This can be used to discover alternate encrypted DNS protocols supported by a known server, or to provide details if a resolver name is provisioned by a network (Section 5).

Both of these approaches allow clients to confirm that a discovered Encrypted Resolver is equivalent to the originally provisioned resolver. "Equivalence" in this context means that the resolvers are operated by the same entity; for example, the resolvers are accessible on the same IP address, or there is a certificate that claims ownership over both resolvers.

1.1. Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Terminology

This document defines the following terms:

DEER: Discovery of Equivalent Encrypted Resolvers. Refers to the mechanisms defined in this document.

Encrypted Resolver: A DNS resolver using any encrypted DNS transport. This includes current mechanisms such as DoH and DoT as well as future mechanisms.

Equivalent Encrypted Resolver: An Encrypted Resolver which is considered to provide answers equivalent to a given resolver. This equivalency can be authenticated with TLS certificates.

Unencrypted Resolver: A DNS resolver using TCP or UDP port 53.

3. DNS Service Binding Records

DNS resolvers can advertise one or more Equivalent Encrypted Resolvers that offer equivalent services over encrypted channels and are controlled by the same entity.
When a client discovers Equivalent Encrypted Resolvers, it learns information such as the supported protocols, ports, and server name to use in certificate validation. This information is provided in Service Binding (SVCB) records for DNS Servers, defined by [I-D.schwartz-svcb-dns].

The following is an example of an SVCB record describing a DoH server:

```
_dns.example.net 7200 IN SVCB 1 . (alpn=h2 dohpath=/dns-query{?dns} ipv4hint=x.y.z.w)
```

The following is an example of an SVCB record describing a DoT server:

```
_dns.example.net 7200 IN SVCB 1 dot.example.net (alpn=dot port=8530 ipv4hint=x.y.z.w)
```

If multiple Equivalent Encrypted Resolvers are available, using one or more encrypted DNS protocols, the resolver deployment can indicate a preference using the priority fields in each SVCB record [I-D.ietf-dnsop-svcb-https].

This document focuses on discovering DoH and DoT Equivalent Encrypted Resolvers. Other protocols can also use the format defined by [I-D.schwartz-svcb-dns]. However, if any protocol does not involve some form of certificate validation, new validation mechanisms will need to be defined to support validating equivalence as defined in Section 4.1.

4. Discovery Using Resolver IP Addresses

When a DNS client is configured with an Unencrypted Resolver IP address, it SHOULD query the resolver for SVCB records for "dns://resolver.arpa" before making other queries. Specifically, the client issues a query for "_dns.resolver.arpa" with the SVCB resource record type (64) [I-D.ietf-dnsop-svcb-https].

If the recursive resolver that receives this query has one or more Equivalent Encrypted Resolvers, it will return the corresponding SVCB records. When responding to these special queries for "dns://resolver.arpa", the SVCB records SHOULD contain at least one "ipv4hint" and/or "ipv6hint" keys. These address hints indicate the address on which the corresponding Encrypted Resolver can be reached and avoid additional DNS lookup for the A and AAAA records of the Encrypted Resolver name.
4.1. Authenticated Discovery

In order to be considered an authenticated Equivalent Encrypted Resolver, the TLS certificate presented by the Encrypted Resolver MUST contain both the domain name (from the SVCB answer) and the IP address of its equivalent Unencrypted Resolver within the SubjectAlternativeName certificate field. The client MUST check the SubjectAlternativeName field for both the Unencrypted Resolver’s IP address and the advertised name of the Equivalent Encrypted Resolver. If the certificate can be validated, the client SHOULD use the discovered Equivalent Encrypted Resolver for any cases in which it would have otherwise used the Unencrypted Resolver. If the Equivalent Encrypted Resolver has a different IP address than the Unencrypted Resolver and the TLS certificate does not cover the Unencrypted Resolver address, the client MUST NOT use the discovered Encrypted Resolver. Additionally, the client SHOULD suppress any further queries for Equivalent Encrypted Resolvers using this Unencrypted Resolver for the length of time indicated by the SVCB record’s Time to Live (TTL).

If the Equivalent Encrypted Resolver and the Unencrypted Resolver share an IP address, clients MAY choose to opportunistically use the Encrypted Resolver even without this certificate check (Section 4.2).

4.2. Opportunistic Discovery

There are situations where authenticated discovery of encrypted DNS configuration over unencrypted DNS is not possible. This includes Unencrypted Resolvers on non-public IP addresses whose identity cannot be confirmed using TLS certificates.

Opportunistic Privacy is defined for DoT in Section 4.1 of [RFC7858] as a mode in which clients do not validate the name of the resolver presented in the certificate. A client MAY use information from the SVCB record for "dns://resolver.arpa" with this "opportunistic" approach (not validating the names presented in the SubjectAlternativeName field of the certificate) as long as the IP address of the Encrypted Resolver does not differ from the IP address of the Unencrypted Resolver, and that IP address is a private address (such as those defined in [RFC1918]). This approach can be used for DoT or DoH.

If the IP addresses of the Encrypted and Unencrypted Resolvers are not the same, or the shared IP address is not a private IP address, the client MUST NOT use the Encrypted Resolver opportunistically.
5. Discovery Using Resolver Names

A DNS client that already knows the name of an Encrypted Resolver can use DEER to discover details about all supported encrypted DNS protocols. This situation can arise if a client has been configured to use a given Encrypted Resolver, or if a network provisioning protocol (such as DHCP or IPv6 Router Advertisements) provides a name for an Encrypted Resolver alongside the resolver IP address.

For these cases, the client simply sends a DNS SVCB query using the known name of the resolver. This query can be issued to the named Encrypted Resolver itself or to any other resolver. Unlike the case of bootstrapping from an Unencrypted Resolver (Section 4), these records SHOULD be available in the public DNS.

For example, if the client already knows about a DoT server "resolver.example.com", it can issue an SVCB query for ".dns.resolver.example.com" to discover if there are other encrypted DNS protocols available. In the following example, the SVCB answers indicate that "resolver.example.com" supports both DoH and DoT, and that the DoH server indicates a higher priority than the DoT server.

```
_dns.resolver.example.com 7200 IN SVCB 1 . {
   alpn=h2 dohpath=/dns-query{?dns} 
}
_dns.resolver.example.com 7200 IN SVCB 2 . {
   alpn=dot 
}
```

Often, the various supported encrypted DNS protocols will be accessible using the same hostname. In the example above, both DoH and DoT use the name "resolver.example.com" for their TLS certificates. If a deployment uses a different hostname for one protocol, but still wants clients to treat the DNS servers as equivalent, the TLS certificates MUST include both names in the SubjectAlternativeName fields. Note that this name verification is not related to the DNS resolver that provided the SVCB answer.

For example, being able to discover an Equivalent Encrypted Resolver for a known Encrypted Resolver is useful when a client has a DoT configuration for "foo.resolver.example.com" but is on a network that blocks DoT traffic. The client can still send a query to any other accessible resolver (either the local network resolver or an accessible DoH server) to discover if there is an equivalent DoH server for "foo.resolver.example.com".

6. Deployment Considerations

Resolver deployments that support DEER are advised to consider the following points.
6.1. Caching Forwarders

If a caching forwarder consults multiple resolvers, it may be possible for it to cache records for the "resolver.arpa" Special Use Domain Name (SUDN) for multiple resolvers. This may result in clients sending queries intended to discover Equivalent Encrypted Resolvers for resolver "foo" and receiving answers for resolvers "foo" and "bar".

A client will successfully reject unintended connections because the authenticated discovery will fail or the resolver addresses do not match. Clients that attempt unauthenticated connections to resolvers discovered through SVCB queries run the risk of connecting to the wrong server in this scenario.

To prevent unnecessary traffic from clients to incorrect resolvers, DNS caching resolvers SHOULD NOT cache results for the "resolver.arpa" SUDN other than for Equivalent Encrypted Resolvers under their control.

6.2. Certificate Management

Resolver owners that support authenticated discovery will need to list valid referring IP addresses in their TLS certificates. This may pose challenges for resolvers with a large number of referring IP addresses.

7. Security Considerations

Since clients can receive DNS SVCB answers over unencrypted DNS, on-path attackers can prevent successful discovery by dropping SVCB packets. Clients should be aware that it might not be possible to distinguish between resolvers that do not have any Equivalent Encrypted Resolver and such an active attack.

While the IP address of the Unencrypted Resolver is often provisioned over insecure mechanisms, it can also be provisioned securely, such as via manual configuration, a VPN, or on a network with protections like RA guard [RFC6105]. An attacker might try to direct Encrypted DNS traffic to itself by causing the client to think that a discovered Equivalent Encrypted Resolver uses a different IP address from the Unencrypted Resolver. Such an Encrypted Resolver might have a valid certificate, but be operated by an attacker that is trying to observe or modify user queries without the knowledge of the client or network.
If the IP address of an Equivalent Encrypted Resolver differs from that of an Unencrypted Resolver, clients MUST validate that the IP address of the Unencrypted Resolver is covered by the SubjectAlternativeName of the Encrypted Resolver’s TLS certificate (Section 4.1).

Opportunistic use of Encrypted Resolvers MUST be limited to cases where the Unencrypted Resolver and Equivalent Encrypted Resolver have the same IP address (Section 4.2).

8. IANA Considerations

8.1. Special Use Domain Name "resolver.arpa"

This document calls for the creation of the "resolver.arpa" SUDN. This will allow resolvers to respond to queries directed at themselves rather than a specific domain name. While this document uses "resolver.arpa" to return SVCB records indicating equivalent encrypted capability, the name is generic enough to allow future reuse for other purposes where the resolver wishes to provide information about itself to the client.

9. References

9.1. Normative References

[I-D.ietf-dnsop-svcb-https]

[I-D.ietf-tls-esni]

[I-D.schwartz-svcb-dns]
9.2. Informative References

Appendix A. Rationale for using SVCB records

This mechanism uses SVCB/HTTPS resource records [I-D.ietf-dnsop-svcb-https] to communicate that a given domain designates a particular Equivalent Encrypted Resolver for clients to use in place of an Unencrypted Resolver (using a SUDN) or another Encrypted Resolver (using its domain name).

There are various other proposals for how to provide similar functionality. There are several reasons that this mechanism has chosen SVCB records:

* Discovering encrypted resolver using DNS records keeps client logic for DNS self-contained and allows a DNS resolver operator to define which resolver names and IP addresses are related to one another.

* Using DNS records also does not rely on bootstrapping with higher-level application operations (such as [I-D.schinazi-httpbis-doh-preference-hints]).

* SVCB records are extensible and allow definition of parameter keys. This makes them a superior mechanism for extensibility as compared to approaches such as overloading TXT records. The same keys can be used for discovering Equivalent Encrypted Resolvers of different transport types as well as those advertised by Unencrypted Resolvers or another Encrypted Resolver.

* Clients and servers that are interested in privacy of names will already need to support SVCB records in order to use Encrypted TLS Client Hello [I-D.ietf-tls-esni]. Without encrypting names in TLS, the value of encrypting DNS is reduced, so pairing the solutions provides the largest benefit.

* Clients that support SVCB will generally send out three queries when accessing web content on a dual-stack network: A, AAAA, and HTTPS queries. Discovering an Equivalent Encrypted Resolver as part of one of these queries, without having to add yet another query, minimizes the total number of queries clients send. While [RFC5507] recommends adding new RRTypes for new functionality, SVCB provides an extension mechanism that simplifies client behavior.
Authors’ Addresses

Tommy Pauly
Apple Inc.
One Apple Park Way
Cupertino, California 95014,
United States of America

Email: tpauly@apple.com

Eric Kinnear
Apple Inc.
One Apple Park Way
Cupertino, California 95014,
United States of America

Email: ekinnear@apple.com

Christopher A. Wood
Cloudflare
101 Townsend St
San Francisco,
United States of America

Email: caw@heapingbits.net

Patrick McManus
Fastly

Email: mcmanus@ducksong.com

Tommy Jensen
Microsoft

Email: tojens@microsoft.com