
COINRG D. Kutscher

Internet-Draft University of Applied Sciences Emden/Leer

Intended status: Experimental T. Kaerkkaeinen

Expires: February 1, 2021 J. Ott

 Technical University Muenchen

 July 31, 2020

 Directions for Computing in the Network

 draft-kutscher-coinrg-dir-02

Abstract

 In-network computing can be conceived in many different ways - from

 active networking, data plane programmability, running virtualized

 functions, service chaining, to distributed computing.

 This memo proposes a particular direction for Computing in the

 Networking (COIN) research and lists suggested research challenges.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 1, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

Kutscher, et al. Expires February 1, 2021 [Page 1]

Internet-Draft Directions for Computing in the Network July 2020

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Terminology . 4

 3. Computing in the Network vs Networked Computing vs Packet

 Processing . 4

 3.1. Networked Computing 5

 3.2. Packet Processing . 5

 3.3. Computing in the Network 6

 3.4. Elements for Computing in the Network 9

 4. Examples . 11

 4.1. Compute-First Networking with ICN 11

 4.2. Akka Toolkit . 12

 5. Research Challenges . 13

 5.1. Categorization of Different Use Cases for Computing in

 the Network . 13

 5.2. Networking and Remote-Method-Invocation Abstractions . . 13

 5.3. Transport Abstractions 14

 5.4. Programming Abstractions 16

 5.5. Security, Privacy, Trust Model 17

 5.6. Coordination . 18

 5.7. Fault Tolerance, Failure Handling, Debugging, Management 18

 6. Acknowledgements . 19

 7. ChangeLog . 19

 7.1. 02 . 19

 7.2. 01 . 19

 8. References . 19

 8.1. Informative References 19

 8.2. URIs . 21

 Authors’ Addresses . 21

1. Introduction

 Recent advances in platform virtualization, link layer technologies

 and data plane programmability have led to a growing set of use cases

 where computation near users or data consuming applications is needed

 - for example, for addressing minimal latency requirements for

 compute-intensive interactive applications (networked Augmented

 Reality, AR), for addressing privacy sensitivity (avoiding raw data

 copies outside a perimeter by processing data locally), and for

 speeding up distributed computation by putting computation at

 convenient places in a network topology.

Kutscher, et al. Expires February 1, 2021 [Page 2]

Internet-Draft Directions for Computing in the Network July 2020

 In-network computing has mainly been perceived in five variants so

 far: 1) Active Networking [ACTIVE], adapting the per-hop-behavior of

 network elements with respect to packets in flows, 2) Edge Computing

 as an extension of virtual-machine (VM) based platform-as-a-service,

 3) programming the data plane of SDN switches (through powerful

 programmable CPUs and programming abstractions, such as P4 [SAPIO]),

 4) application-layer data processing frameworks, and 5) Service

 Function Chaining (SFC).

 Active Networking has not found much deployment in the past due to

 its problematic security properties and complexity.

 Programmable data planes can be used in data centers with uniform

 infrastructure, good control over the infrastructure, and the

 feasibility of centralized control over function placement and

 scheduling. Due to the still limited, packet-based programmability

 model, most applications today are point solutions that can

 demonstrate benefits for particular optimizations, however, often

 without addressing transport protocol services or data security that

 would be required for most applications running in shared

 infrastructure today.

 Edge Computing (in the ETSI Multi-access Edge Computing [MEC]

 variant, as traditional cloud computing) has a fairly coarse-grained

 (VM-based) computation-model and is hence typically deploying

 centralized positioning/scheduling though virtual infrastructure

 management (VIM) systems. Besides such industry-driven activities,

 manifold research approaches to edge computing with varying

 granularity and orchestration approaches, among other differiating

 elements, have been pursued [EDGESURVEY] [FOGEDGE].

 Microservices can be seen as a (lightweight) extension of the cloud

 computing model (application logic in containers and orchestrators

 for resource allocation and other management functions), leveraging

 more lightweight platforms and fine-grained functions. Compared to

 traditional VM-based systems, microservice platforms typically employ

 a "stateless" approach, where the service/application state is not

 tied to the compute platform, thus achieving fault tolerance with

 respect to compute platform/process failures.

 Application-layer data processing such as Apache Flink [FLINK]

 provide attractive dataflow programming models for event-based stream

 processing and light-weight fault-tolerance mechanisms - however

 systems such as Flink are not designed for dynamic scheduling of

 compute functions.

 Modern distributed applications frameworks such as Ray [RAY], Sparrow

 [SPARROW] or Canary [CANARY] are more flexible in this regard - but

Kutscher, et al. Expires February 1, 2021 [Page 3]

Internet-Draft Directions for Computing in the Network July 2020

 since they are conceived as application-layer frameworks, their

 scheduling logic can only operate with coarse-granular cost

 information. For example, application-layer frameworks in general,

 can only infer network performance, anomalies, optimization potential

 indirectly (through observed performance or failure), so most

 scheduling decisions are based on metrics such as platform load.

 Service Function Chaining (SFC, [RFC7665]) is about establishing IP

 tunnels between processing functions that are expected to work on

 packets or flows - for applications such as inspection and

 classification, so that some of these functions could be seen as

 elements in a COIN context as well.

2. Terminology

 We are using the following terms in this memo:

 Program: a set of computations requested by a user

 Program Instance: one currently executing instance of a program

 Function: a specific computation that can be invoked as part of a

 program

 Execution Platform: a specific host platform that can run function

 code

 Execution Environment: a class of target environments (execution

 platforms) for function execution, for example, a JVM-based

 execution environment that can run functions represented in JVM

 byte code

3. Computing in the Network vs Networked Computing vs Packet Processing

 Many applications that might intuitively be characterized as

 "computing in the network" are actually either about connecting

 compute nodes/processes or about IP packet processing in fairly

 traditional ways.

 Here, we try to contrast these existing and widely successful systems

 (that probably do not require new research) with a more novel

 "computing in the network (COIN)" approach that revisits the function

 split between computing and networking.

Kutscher, et al. Expires February 1, 2021 [Page 4]

Internet-Draft Directions for Computing in the Network July 2020

3.1. Networked Computing

 Networked Computing exists in various facets today (as described in

 the Introduction). Fundamentally, these systems make use of

 networking to connect compute instances - be it VMs, containers,

 processes or other forms of distributed computing instances.

 There are established frameworks for connecting these instances, from

 general purpose Remote Method Invocation/Remote Procedure Calls to

 system-specific application-layer protocols. With that, these

 systems are not actually realizing "computing in the network" - they

 are just using the network (and taking connectivity as granted).

 Most of the challenges here are related to compute resource

 allocation, i.e., orchestration methods for instantiating the right

 compute instance on a corresponding platform - for achieving fault

 tolerance, performance optimization and cost reduction.

 Examples of successful applications of networked computing are

 typical overlay systems such as CDNs. As overlays they do not need

 to be "in the network" - they are effectively applications. (Note:

 we sometimes refer to CDN as an "in-network" service because of the

 mental model of HTTP requests that are being directed and potentially

 forwarded by CDN systems. However, none of this happens "in the

 network" - it is just a successful application of HTTP and underlying

 transport protocols.)

3.2. Packet Processing

 Packet processing is a function "in the network" - in a sense that

 middleboxes reside in the network as transparent functions that apply

 processing functions (inspection, classification, filtering, load

 management etc.) - mostly _transparent_ to endpoints. Some middlebox

 functions (TCP split proxies, video optimizers) are more invasive in

 a sense that they do not only operate on IP flows but also try to

 impersonate transport endpoints (or interfere with their behavior).

 Since these systems can have severe impacts on service availability,

 security/privacy, and performance they are typically not very

 programmable - they just execute (usually) static code for

 predefined functions.

 Active Networking can be characterized as an attempt to offer

 abstractions for programmable packet processing from an "endpoint

 perspective", i.e., by using data packets to specify intended

 behavior in the network with the aforementioned security problems.

Kutscher, et al. Expires February 1, 2021 [Page 5]

Internet-Draft Directions for Computing in the Network July 2020

 Programmable Data Plane approaches such as P4 are providing

 abstractions of different types of network switch hardware (NPUs,

 CPUs, FPGA, PISA) from a switch/network programming perspective. The

 corresponding programs are constrained by the capabilities

 (instruction set, memory) of the target platform and typically

 operate on packets/flow abstractions (for example match-action-style

 processing).

 Network Functions Virtualization (NFV) is essentially a "Networked

 Computing" approach (after all, Network Functions are just

 virtualized compute functions that get instantiated on compute

 platforms by an orchestrator). However, some Virtual Network

 Functions (VNFs) happen to process/forward packets (e.g., gateways in

 provider networks, NATs or firewalls). Still, that does not affect

 their fundamental properties as virtualized computing functions.

 When connecting VNFs, there is the question of how to steer packet

 flows so that packets reach the right functions (and pass through

 them in the right order). One way is through configuration and

 network control/management (SDN), i.e., the VNFs are places in a

 virtual network, and there are configurations for meaningful next-hop

 IP addresses etc.

 A more dynamic way is through Service Function Chaining (SFC,

 [RFC7665]), where a dynamic chain of IP-addressable packet processors

 can be specified (in an encapsulation packet header structure) and

 where forwarding nodes are equipped to interpret these headers and

 forward the packets to the appropriate next hops.

 The SFC [RFC7665]) framework works with IP addresses for function

 (host) identifiers. Name-Based Service Function Forwarding

 [I-D.trossen-sfc-name-based-sff] takes this one step further by

 adding another layer of indirection and by identifying the Service

 Functions using a name rather than a routable IP endpoint (or Layer 2

 address). In addition to the naming concept,

 [I-D.trossen-sfc-name-based-sff] also described the possibility of

 using different transport and application layer protocols for the

 communication between functions - which could in principle extend the

 applicability from mere packet processing to some form of distributed

 computing.

3.3. Computing in the Network

 In some deployments, networked computing and packet processing go

 well together, for example, when network virtualization (multiplexing

 physical infrastructure for multiple isolated subnetworks) is

 achieved through data-plane programming (SDN-style) to provide

 connectivity for VMs of a tenant system.

Kutscher, et al. Expires February 1, 2021 [Page 6]

Internet-Draft Directions for Computing in the Network July 2020

 While such deployments are including both computing and networking,

 they are not really doing computing _in the network_. VM/containers

 are virtualized hosts/processes using the existing network, and

 packet processing/programmable networks is about packet-level

 manipulation. While it is possible to implement certain

 optimizations (for example, processing logic for data aggregation) -

 the applicability is rather limited especially for applications where

 application-data units do not map to packets and where additional

 transport protocols and security requirements have to be considered.

 Multi-access Edge Computing [MEC] is a particular architecture that

 leverages the virtual host platform concept, and that is focused on

 management and orchestration for such platforms. MEC can be combined

 with virtual networking concepts such as "Network Slicing" in 5G

 [MEC5G] to assure a certain QoS for connectivity to MEC platform

 instances. It should be noted that there may be other forms of edge

 computing that are not VM-based.

 Distributed Computing (stream processing, edge computing) on the

 other side is an area where many application-layer frameworks exist

 that actually _could_ benefit from a better integration of computing

 and networking, i.e., from a new "computing in the network" approach.

 For example, when running a distributed application that requires

 dynamic function/process instantiation, traditional frameworks

 typically deploy an orchestrator that keeps track of available host

 platforms and assigned functions/processes. The orchestrator

 typically has good visibility of the availability of and current load

 on host platforms, so it can pick suitable candidates for

 instantiating a new function.

 However, it is typically agnostic of the network itself - as

 application layer overlays the function instances and orchestrators

 take the network as a given, assuming full connectivity between all

 hosts and functions. While some optimizations may still be feasible

 (for example co-locating interacting functions/processes on a single

 host platform), these systems cannot easily reason about

 o shortest paths between function instances; function off-loading

 o opportunities on topologically convenient next hops; and

 o availability of new, not yet utilized resources in the network.

 While it is possible to perform optimizations like these in

 application layers overlays, it involves significant monitoring

 effort and would often duplicate information (topology, latency) that

 is readily available inside the network. In addition to the

Kutscher, et al. Expires February 1, 2021 [Page 7]

Internet-Draft Directions for Computing in the Network July 2020

 associated overhead, such systems also operate at different time

 scales so that direct reaction in fine-grained computing environments

 is difficult to achieve.

 When asking the question of how the network can support distributed

 computing better, it may be helpful to characterize this problem as a

 resource allocation optimization problem: Can we integrate computing

 and networking in a way that enables a joint optimization of

 computing and networking resource usage? Can we apply this approach

 to achieve certain optimization goals such as:

 o low latency for certain function calls or compute threads;

 o high throughput for a pipeline of data processing functions;

 o high availability for an overall application/service;

 o load management (balancing, concentration) according to

 performance/cost constraints; and

 o consideration of security/privacy constraints with respect to

 platform selection and function execution?

 o Also: can we do this at the speed of network dynamics, which may

 be substantially higher than the rate at which distributed

 computing applications change?

 Considering computing and networking resource holistically could be

 the key for achieving these optimization goals (without considerable

 overhead through telemetry, management and orchestration systems).

 If we are able to dissolve the layer boundaries between the

 networking domain (that is typically concerned with routing,

 forwarding, packet/flow-level load balancing) and the distributed

 computing domain (that is typically concerned with ’processor’

 allocation, scaling, reaction to failure for functions/processes), we

 might get a handle to achieve a joint resource optimization and

 enable the distributed computing layer to leverage network-provided

 mechanisms directly.

 For example, if distributing information about available/suitable

 compute platform could be a routing function, we might be able to

 obtain and utilize this information in a distributed fashion. If

 instantiating a new function (or offloading some piece of

 computation) could consider live performance data obtained from a in-

 network forwarding/offloading service (similar to IP packet

 forwarding in traditional IP networks), the "next-hop" decision could

 be based both on network performance and node load/availability).

Kutscher, et al. Expires February 1, 2021 [Page 8]

Internet-Draft Directions for Computing in the Network July 2020

 Integrating computing and networking in this manner would not rule

 out highly optimized systems leveraging sophisticated orchestrators.

 Instead, it would provide a (possibly somewhat uniform) framework

 that could allow several operating and optimization modes, including

 totally distributed modes, centralized orchestration, or hybrid

 forms, where policies or intents are injected into the distributed

 decision-making layer, i.e., as parameters for resource allocation

 and forwarding decisions.

3.4. Elements for Computing in the Network

 In-network computing requires computing resources (CPU, possibly

 GPUs, memory, ...), physical or virtualized to some extent by a

 suitable platform. These computing resources may be available in a

 number of places, as partly already discussed above, including the

 following:

 o They may be found on dedicated machines co-locating with the

 routing infrastructure, e.g., having a set of servers next to each

 router as one may find in access network concentrators. This

 would come closest to today’s principles of edge computing.

 o They may be integrated with routers or other network operations

 infrastructure and thus be tightly integrated within the same

 physical device.

 o They may be integrated within switches, similar to the (limited)

 P4 compute capabilities offered today.

 o They may be located on NICs (in hosts) or line cards (routers) and

 be able to proactively perform some application functions, in the

 sense of a generalized variant of "offloading" that protocol

 stacks perform to reduce main CPU load.

 o They might add novel types of dedicated hardware to execute

 certain functions more efficiently, e.g., GPU nodes for

 (distributed) analytics.

 o They might include low-end (embedded) devices such as

 microcontrollers that support decentralized computation at low

 cost and limited performance.

 o They may also encompass additional resources at the edge of the

 network, such as sensor nodes. Associated sensors could be

 physical (as in IoT) or logical (as in MIB data about a network

 device).

Kutscher, et al. Expires February 1, 2021 [Page 9]

Internet-Draft Directions for Computing in the Network July 2020

 o Even user devices along the lines of crowd computing [CROWD] or

 mist computing [MIST] may contribute compute resources and

 dynamically become part of the network.

 Depending on the type of execution platform, as already alluded to

 above, a suitable execution framework must be put in place: from

 lambda functions to threads to processes or process VMs to unikernels

 to containers to full-blown VMs. This should support mutual

 isolation and, depending on the service in question, a set of

 security features (e.g., authentication, trustworthy execution,

 accountability). Further, it may be desirable to be able to compose

 the executable units, e.g., by chaining lambda functions or allowing

 unikernels to provide services to each other - both within a local

 execution platform and between remote platform instances across the

 network.

 The code to be executed may be pre-installed (as firmware, as

 microcode, as operating system functions, as libraries, as *aaS

 offering, among others) or may be dynamically supplied. While the

 former is governed by the entity operating the execution device or

 supplying it (the vendor), the code to be executed may have different

 origins. Fundamentally, we can distinguish between two cases:

 1. The code may be "centrally" provisioned, originating from an

 application or other service provider inside the network. This

 is analogous to CDNs, in which an application provider contracts

 a CDN provider to host content and service logic on its behalf.

 The deployment is usually long-term, even if instantiations of

 the code may vary. The code thus originates from rather few -

 known - sources. In this setting, applications only invoke this

 code and pass on their parameters, context, data, etc.

 2. The code may be provided in a decentralized manner from a user

 device or other service that requires a certain function or

 service to be carried out. At the coarse granularity of entire

 application images, this has been explored as "code offloading";

 recent approaches have moved towards finer granularities of

 offloading (sets of) functions, for which also some frameworks

 for smartphones were developed, leading to finer granularities

 down to individual functions. In this setting, application

 transfer mobile code - along with suitable parameters, etc. -

 into the network that is executed by suitable execution

 platforms. This code is naturally expected to be less trusted as

 it may come from an arbitrary source.

 Obviously, 1. and 2. may be combined as mobile code may make use of

 other in-network functions and services, allowing for flexible

 application decomposition. Essentially, computing in the network may

Kutscher, et al. Expires February 1, 2021 [Page 10]

Internet-Draft Directions for Computing in the Network July 2020

 support everything from full application offloading to decomposing an

 application into small snippets of code (e.g., at class, objects, or

 function granularity) that are fully distributed inside the network

 and executed in a distributed fashion according to the control flow

 of the application. This may lead to iterative or recursive calling

 from application code on the initiating host to mobile code to pre-

 provisioned code.

 Another dimension beyond where the code comes from is how tightly the

 code and the data are coupled. At one extreme, approaches like

 Active Messages combine the data and the code that operates (only) on

 that data into transmission units, while at the other extreme

 approaches like Network Function Virtualization are only concerned

 with the instantiation of the code in the network. The underlying

 architectural question is whether the goal is to enable the network

 to perform computations on the data passing through it, or whether

 the goal is to enable distributed computational processes to be built

 in the network. And, of course, complete applications may leverage

 both approaches.

 With these different existing and possibly emerging platforms and

 execution environments and different ways to provision functions in

 the network, it does not seem useful to assume any particular

 platform and any particular "mobile code" representation as _the_

 "computing in the network" environment. Instead, it seems more

 promising to reason about properties that are relevant with respect

 to distributed program semantics and protocols/interfaces that would

 be used to integrate functions on heterogeneous platforms into one

 application context. We discuss these ideas and associated

 challenges in the following section.

4. Examples

4.1. Compute-First Networking with ICN

 [CFN] is an example of a computing-in-the-network system that is

 based on computation graph representation for distributed programs.

 These programs are composed of stateful actors and stateful functions

 that are dynamically instantiated on available compute resources.

 The first motivating use case was a real-time health monitoring

 system that analyzed audio samples from coughing noises which

 involves processing several audio feeds for noise addition and

 subtraction and for feature extraction.

 The key concept of CFN is to provide a general-purpose distributed

 computing framework that can be programmed without knowledge about

Kutscher, et al. Expires February 1, 2021 [Page 11]

Internet-Draft Directions for Computing in the Network July 2020

 the runtime environment but that can leverage the dynamic resource

 properties automatically, and with reasonable efficiency.

 CFN can lay out compute graphs over the available computing platforms

 in a network to perform flexible load management and performance

 optimizations, taking into account function/actor location and data

 location, as well as platform load and network performance.

 In CFN, compute nodes that can execute functions within a given

 program instance are called workers. The allocation of functions and

 actors to workers happens in a distributed fashion. A CFN system

 knows the current utilization of available resources and the least

 cost paths to copies of needed input data. It can dynamically decide

 which worker to use, performing optimizations such as instantiating

 functions close to big data inputs. The bindings that control which

 execution platforms host which program interfaces (or individual

 functions/actors) is maintained through a computation graph.

 To realize this distributed scheduling, workers in each resource pool

 advertise their available resources. This information is shared

 among all workers in the pool. A worker execution environment can

 decide, without a centralized scheduler, which set of workers to

 prefer to invoke a function or to instantiate an actor. In order to

 direct function invocation requests to specific worker nodes, CFN

 utilizes the underlying ICN network’s forwarding capabilities - the

 network performs late binding through name-based forwarding and

 workers can provide forwarding hints to steer the flow of work.

4.2. Akka Toolkit

 The Akka toolkit [1] for building concurrent and distributed

 applications on the the JVM that is used by frameworks such as Apache

 Flink [2]. Akka is implements the Actor model, a way of realizing

 distributed computing as asynchronous message-based communication

 between concurrent processes that encapsulate application logic.

 Communication between distributed actors is based on symmetric peer-

 to-peer model (actors can send each other messages) and is

 implemented by TCP-based protocols [3].

 Akka actors are logically organized in a tree hierarchy [4], and

 there are two addressing concepts: 1) Actor References that unique

 identify an actor instance and 2) Actor Paths, hierarchically

 structured names that specify the logical position of an actor

 instance in system tree. Actor path can have an address component

 that specified location information (e.g., host and port number).

Kutscher, et al. Expires February 1, 2021 [Page 12]

Internet-Draft Directions for Computing in the Network July 2020

 Akka has a routing concept [5] that can duplicate and distribute

 messages to a set of actors (for example for map-reduce like

 parallelism).

 The Akka toolkit support cluster features [6], i.e., the management

 of a collection of JVMs that can be monitored for resource and

 failure management.

5. Research Challenges

 Conceiving computing in the network as a joint resource optimization

 problem as described above incurs a set of interesting, novel

 research challenges that are particularly relevant from an Internet

 Research perspective.

5.1. Categorization of Different Use Cases for Computing in the Network

 There are different applications but also different configuration

 classes of Computing in the Network systems. For example, a data

 processing pipeline might be different from a distributed application

 employing some stateful actor components. It is worthwhile analyzing

 different typical use cases and identify commonalities (for example,

 fundamental protocol elements etc.) and differences.

5.2. Networking and Remote-Method-Invocation Abstractions

 In distributed systems, there are different classes of functions that

 can be distinguished, for example:

 1. Strictly stateless functions that do not keep any context state

 beyond their activation time

 2. Stateful functions/modules/programs that can be instantiated,

 invoked and eventually destroyed that do keep state over a series

 of function invocations

 Modern frameworks such as Ray are offering a clear separation of

 stateless functions and stateful actors and offer corresponding

 abstractions in their programming environment. The aforementioned

 analysis of use cases should provide a diverse set of use cases for

 deriving a minimal yet sufficient set of function classes.

 Beyond this fundamental categorization of functions/actors, there is

 the question of interfaces and protocols mechanisms - as building

 blocks to utilize functions in programs. For example, stateful

 functions are typically invoked through some Remote Method Invocation

 (RMI) protocol that identifies functions, allows for specifying/

 transferring parameters and function results etc. Stateful actors

Kutscher, et al. Expires February 1, 2021 [Page 13]

Internet-Draft Directions for Computing in the Network July 2020

 could provide class-like interfaces that offer a set of functions

 (some of which might manipulate actor state).

 Another aspect is about identity (and naming) of functions and

 actors. For actors that are typically used to achieve real-world

 effects or to enable multiple invocations of functions manipulating

 actor state over time, it is obvious that there needs to be a concept

 of specific instances. Invoking an actor function would then require

 specifying some actor instance identifier.

 Stateless functions may be different: an invoking instance may be

 oblivious with respect to the specific function instance and locus

 (on an execution platform) and might just want to leave it to the

 network to find the "best" instance or locus for a new instantiation.

 Some fine-granular functions might just be instantiated for one

 invocation. On the other hand, a function might be tied to a

 particular execution platform, for example an GPU-supported host

 system. The naming and identity framework must allow for specifying

 such a function (or at least equivalence classes) accordingly.

 Stateful functions may share state within the same program context,

 i.e., across multiple invocations by the same application (as, e.g.,

 holds for web services that preserve context - locally or on the

 client side). But stateful functions may also hold state across

 applications and possibly across different instantiations of a

 function on different compute nodes. Such will require data

 synchronization mechanisms and the implementation of suitable data

 structure to achieve a certain degree of consistency. The targeted

 degree of consistency may vary depending on the function and so may

 the mechanisms used to achieve the desired consistency.

 Finally, execution platforms will require efficient resource

 management techniques to operate with different types of stateless

 and stateful functions and their associated resources, as well as for

 dynamically instantiated mobile code. Besides the aforementioned

 location of suitable compute platforms and scheduling (possibly

 queuing) functions and function invocations, this also includes

 resource recovery ("garbage collection").

5.3. Transport Abstractions

 When implementing Computing in the Network and building blocks such

 as function invocation it seems that IP packet processing is not the

 right abstraction. First of all, carrying the context for some

 function invocation might require many IP packets - possibly

 something like Application Data Units (ADUs). But even if such ADUs

 could be fit into network layer packets, other problems still need to

Kutscher, et al. Expires February 1, 2021 [Page 14]

Internet-Draft Directions for Computing in the Network July 2020

 be addressed, for example message formats, reliability mechanisms,

 flow and congestion control etc.

 It could be argued that today’s distributed computing overlays solve

 that by using TCP and corresponding application layer formats (such

 as HTTP) - however this begs the question whether a fine-granular

 distributed computing system, aiming to leverage the network for

 certain tasks, is best served by a TCP/IP-based approach that entails

 issues such as

 o need for additional resolution/mapping system to find IP addresses

 for functions;

 o possible overhead for establishing TCP connections for fine-

 granular function invocation;

 o defining and managing security properties of such connections and

 coping with the associated setup/validation overhead; and

 o mismatch between TCP end-to-end semantics and the intention to

 defer next-hop selection etc. to the network.

 Moreover, some Computing in the Network applications such as Big Data

 processing (Hadoop-style etc.) can benefit significantly from data-

 oriented concepts such as

 o in-network caching (of data objects that represent function

 parameters or results);

 o reasoning about the tradeoffs between moving data to function vs.

 moving code to data assets; and

 o sharing data (e.g., function results) between sets of consuming

 entities.

 RMI systems such as RICE [RICE] enable Remote Method Invocation of

 ICN (data-oriented network/transport). Research questions include

 investigating how such approaches can be used to design general-

 purpose distributed computing systems. More specifically, this would

 involve questions such as:

 o What is the role of network elements in forwarding RMI requests?

 o What visibility into load, performance and other properties should

 endpoints and the network have to make forwarding/offloading

 decisions and how can such visibility be afforded?

Kutscher, et al. Expires February 1, 2021 [Page 15]

Internet-Draft Directions for Computing in the Network July 2020

 o What is the notion of transport services in this concept and how

 intertwined is traditional transport with RMI invocation?

 o What kind of feedback mechanisms would be desirable for supporting

 corresponding transport services?

5.4. Programming Abstractions

 When creating SDKs and programming environments (as opposed to

 individual point solutions) questions arise such as:

 o How to use concepts such as stateless functions, actor models and

 RMI in actual programs, i.e., what are minimal/ideal bindings or

 extensions to programming languages so that programmers can take

 advantage of Computing in the Network?

 o Are there additional, potentially higher-layer, abstractions that

 are needed/useful, for example data set synchronization, data

 types for distributed computing such as CRDTs?

 In addition to programming languages, bindings, and data types, there

 is the question of execution environments and mobile code

 representation. With the vast number of different platforms (CPUs,

 GPUs, FPGAs etc.) it does not seem useful to assume exactly one

 environment. Instead, interesting applications might actually

 benefit from running one particular function on a highly optimized

 platform but are agnostic with respect to platforms for other, less

 performance-critical functions. Being able to support a

 heterogenous, evolving set of execution environments brings about

 questions such as:

 o How to discover available platforms (and understand their

 properties)?

 o How to specify application needs and map them to available

 platforms?

 o Can a certain function/application service be provided with

 different fidelity levels, e.g., can an application leverage a GPU

 platform if available and fall back to a reduced feature set in

 case such a platform is not available?

 In this context, updates and versioning could entail another

 dimension of variability for Computing in the Network:

 o How to manage coexistence of multiple versions of functions and

 services, also for service routing and request forwarding?

Kutscher, et al. Expires February 1, 2021 [Page 16]

Internet-Draft Directions for Computing in the Network July 2020

 o Is there potential for fallback and version negotiation if needed

 (considering the risk of "bidding downs" attacks?)

 o How to retire old versions?

 o How to securely and reliably deal with function updates and

 corresponding maintenance tasks?

5.5. Security, Privacy, Trust Model

 Computing in the Network has interesting security-related challenges,

 including:

 o How can a caller trust that a remote function works as expected?

 This entails several questions such as

 * How to securely bind "function names" to actual function code?

 * How to trust the execution platform (in its entirety)?

 * How to trust the network that is forwards requests (and result

 messages) reliably and securely?

 * How to ascertain that a function does what it claims to do?

 o What levels of authentication are needed for callers (assuming

 that not everybody can invoke any function)?

 o How to authenticate and achieve confidentiality for requests,

 their parameters and result data (especially when considering

 sharing of results)?

 Many of these questions are related to other design decisions such as

 o What kind of session concept do we assume, i.e., is there a

 concept of distributed application session that represents a trust

 domain for its members?

 o Where is trust anchored? Can the system enable decentralized

 operation?

 All of these questions are not new, but conceiving networking and

 computing holistically seems to revisit distributed systems and

 network security - because some established concepts and technologies

 may not be directly applicable (such as transport layer security and

 corresponding web PKI).

Kutscher, et al. Expires February 1, 2021 [Page 17]

Internet-Draft Directions for Computing in the Network July 2020

5.6. Coordination

 For distributed systems, coordination is a key function and involves

 several functions such as configuration management, service

 discovery, application state management, and consensus schemes.

 How these functions are implemented depends a lot on the nature of

 specific systems. For example, Apache ZooKeeper [7] is a logically

 centralized coordination service that provides coordination

 primitives to client application modules. The ZooKeeper itself is

 implemented as a distributed system consisting of a set of tightly

 coupled server instances that replicate the ZooKeeper state.

 Other systems, such as the ICN-based CFN (Section 4.1) implement

 these services in a distributed way, employing different mechanisms

 for synchronization and consensus building.

 While the fundamental concepts and mechanisms for coordination

 services are well understood, applying these concepts and mechanisms

 to a specific system design requires careful consideration.

5.7. Fault Tolerance, Failure Handling, Debugging, Management

 Distributed computing naturally provides different types of failures

 and exceptions. In fine-granular distributed computing, some

 failures may by more tolerable (think microservices), i.e., platform

 crash or function abort due to isolated problems could be handled by

 just re-starting/re-running a particular function. Similarly,

 "message loss" or incorrect routing information may be repairable by

 the system itself (after time).

 When failure cannot be repaired (or just tolerated) by the

 distributed computing framework, this raises questions such as:

 o What are strategies for retrying vs aborting function invocation?

 o How to signal exceptions and enable robust response to failures?

 Failure handling and debugging also has a management aspect that

 leads to questions such as:

 o What monitoring and instrumentation interfaces are needed?

 o How can we represent, visualize, and understand the (dynamically

 changing) properties of Computing in the Network infrastructure as

 well as of the currently running/instantiated entities?

Kutscher, et al. Expires February 1, 2021 [Page 18]

Internet-Draft Directions for Computing in the Network July 2020

6. Acknowledgements

 The authors would like to thank Dave Oran, Michal Krol, Spyridon

 Mastorakis, Yiannis Psaras, Eve Schooler, Dirk Trossen, and Phil

 Eardley for previous fruitful discussions on Computing in the Network

 topics and for feedback on this draft.

7. ChangeLog

7.1. 02

 o fixed errors and updates references

 o new Section 5.6 on Coordination

 o renamed Section 5.7 to Fault Tolerance, Failure Handling,

 Debugging, Management

 o new Section 4.2 on Akka in Section 4

7.2. 01

 o added explanation of MEC and network slicing in Section 3.

 o added clarification that edge computing is not limited to MEC

 o added description of named service function chaining

 o new Section 4 with a description of CFN-ICN

8. References

8.1. Informative References

 [ACTIVE] Tennenhouse, D. and D. Wetherall, "Towards an active

 network architecture", ACM SIGCOMM Computer Communication

 Review Vol. 26, pp. 5-17, DOI 10.1145/231699.231701, April

 1996.

 [CANARY] Qu et al, H., "Canary -- A scheduling architecture for

 high performance cloud computing", 2016,

 <https://arxiv.org/abs/1602.01412>.

 [CFN] KrA^3l, M., Mastorakis, S., Oran, D., and D. Kutscher,

 "Compute First Networking", Proceedings of the 6th ACM

 Conference on Information-Centric Networking,

 DOI 10.1145/3357150.3357395, September 2019.

Kutscher, et al. Expires February 1, 2021 [Page 19]

Internet-Draft Directions for Computing in the Network July 2020

 [CROWD] Murray, D., Yoneki, E., Crowcroft, J., and S. Hand, "The

 case for crowd computing", Proceedings of the second ACM

 SIGCOMM workshop on Networking, systems, and applications

 on mobile handhelds - MobiHeld ’10,

 DOI 10.1145/1851322.1851334, 2010.

 [EDGESURVEY]

 Mach et al, P., "Mobile Edge Computing -- A Survey on

 Architecture and Computation Offloading", 2017,

 <https://ieeexplore.ieee.org/document/7879258>.

 [FLINK] Katsifodimos, A. and S. Schelter, "Apache Flink: Stream

 Analytics at Scale", 2016 IEEE International Conference on

 Cloud Engineering Workshop (IC2EW),

 DOI 10.1109/ic2ew.2016.56, April 2016.

 [FOGEDGE] Salaht, F., Desprez, F., and A. Lebre, "An Overview of

 Service Placement Problem in Fog and Edge Computing", ACM

 Computing Surveys Vol. 53, pp. 1-35, DOI 10.1145/3391196,

 July 2020.

 [I-D.trossen-sfc-name-based-sff]

 Trossen, D., Purkayastha, D., and A. Rahman, "Name-Based

 Service Function Forwarder (nSFF) component within SFC

 framework", draft-trossen-sfc-name-based-sff-07 (work in

 progress), May 2019.

 [MEC] ETSI, ., "Multi-access Edge Computing (MEC)", 2020,

 <https://www.etsi.org/technologies/multi-access-edge-

 computing>.

 [MEC5G] Sami Kekki et al, ., "MEC in 5G Networks", 2018,

 <https://www.etsi.org/images/files/ETSIWhitePapers/

 etsi_wp28_mec_in_5G_FINAL.pdf>.

 [MIST] Barik, R., Dubey, A., Tripathi, A., Pratik, T., Sasane,

 S., Lenka, R., Dubey, H., Mankodiya, K., and V. Kumar,

 "Mist Data: Leveraging Mist Computing for Secure and

 Scalable Architecture for Smart and Connected Health",

 Procedia Computer Science Vol. 125, pp. 647-653,

 DOI 10.1016/j.procs.2017.12.083, 2018.

 [RAY] Moritz et al, P., "Ray -- A Distributed Framework for

 Emerging AI Applications", 2018,

 <http://dl.acm.org/citation.cfm?id=3291168.3291210>.

Kutscher, et al. Expires February 1, 2021 [Page 20]

Internet-Draft Directions for Computing in the Network July 2020

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function

 Chaining (SFC) Architecture", RFC 7665,

 DOI 10.17487/RFC7665, October 2015,

 <https://www.rfc-editor.org/info/rfc7665>.

 [RICE] KrA^3l, M., Habak, K., Oran, D., Kutscher, D., and I.

 Psaras, "RICE", Proceedings of the 5th ACM Conference on

 Information-Centric Networking,

 DOI 10.1145/3267955.3267956, September 2018.

 [SAPIO] Sapio, A., Abdelaziz, I., Aldilaijan, A., Canini, M., and

 P. Kalnis, "In-Network Computation is a Dumb Idea Whose

 Time Has Come", Proceedings of the 16th ACM Workshop on

 Hot Topics in Networks, DOI 10.1145/3152434.3152461,

 November 2017.

 [SPARROW] Ousterhout, K., Wendell, P., Zaharia, M., and I. Stoica,

 "Sparrow", Proceedings of the Twenty-Fourth ACM Symposium

 on Operating Systems Principles - SOSP ’13,

 DOI 10.1145/2517349.2522716, 2013.

8.2. URIs

 [1] https://akka.io/

 [2] https://flink.apache.org/

 [3] https://doc.akka.io/docs/akka/2.3/scala/remoting.html

 [4] https://doc.akka.io/docs/akka/current/general/addressing.html

 [5] https://doc.akka.io/docs/akka/current/typed/routers.html

 [6] https://doc.akka.io/docs/akka/current/typed/cluster.html

 [7] https://zookeeper.apache.org/

Authors’ Addresses

 Dirk Kutscher

 University of Applied Sciences Emden/Leer

 Constantiaplatz 4

 Emden D-26723

 Germany

 Email: ietf@dkutscher.net

Kutscher, et al. Expires February 1, 2021 [Page 21]

Internet-Draft Directions for Computing in the Network July 2020

 Teemu Kaerkkaeinen

 Technical University Muenchen

 Boltzmannstrasse 3

 Munich

 Germany

 Email: kaerkkae@in.tum.de

 Joerg Ott

 Technical University Muenchen

 Boltzmannstrasse 3

 Munich

 Germany

 Email: jo@in.tum.de

Kutscher, et al. Expires February 1, 2021 [Page 22]

