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Abstract

   In-network computing can be conceived in many different ways - from

   active networking, data plane programmability, running virtualized

   functions, service chaining, to distributed computing.

   This memo proposes a particular direction for Computing in the

   Networking (COIN) research and lists suggested research challenges.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on February 1, 2021.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents

   (https://trustee.ietf.org/license-info) in effect on the date of

   publication of this document.  Please review these documents

   carefully, as they describe your rights and restrictions with respect
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1.  Introduction

   Recent advances in platform virtualization, link layer technologies

   and data plane programmability have led to a growing set of use cases

   where computation near users or data consuming applications is needed

   - for example, for addressing minimal latency requirements for

   compute-intensive interactive applications (networked Augmented

   Reality, AR), for addressing privacy sensitivity (avoiding raw data

   copies outside a perimeter by processing data locally), and for

   speeding up distributed computation by putting computation at

   convenient places in a network topology.
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   In-network computing has mainly been perceived in five variants so

   far: 1) Active Networking [ACTIVE], adapting the per-hop-behavior of

   network elements with respect to packets in flows, 2) Edge Computing

   as an extension of virtual-machine (VM) based platform-as-a-service,

   3) programming the data plane of SDN switches (through powerful

   programmable CPUs and programming abstractions, such as P4 [SAPIO]),

   4) application-layer data processing frameworks, and 5) Service

   Function Chaining (SFC).

   Active Networking has not found much deployment in the past due to

   its problematic security properties and complexity.

   Programmable data planes can be used in data centers with uniform

   infrastructure, good control over the infrastructure, and the

   feasibility of centralized control over function placement and

   scheduling.  Due to the still limited, packet-based programmability

   model, most applications today are point solutions that can

   demonstrate benefits for particular optimizations, however, often

   without addressing transport protocol services or data security that

   would be required for most applications running in shared

   infrastructure today.

   Edge Computing (in the ETSI Multi-access Edge Computing [MEC]

   variant, as traditional cloud computing) has a fairly coarse-grained

   (VM-based) computation-model and is hence typically deploying

   centralized positioning/scheduling though virtual infrastructure

   management (VIM) systems.  Besides such industry-driven activities,

   manifold research approaches to edge computing with varying

   granularity and orchestration approaches, among other differiating

   elements, have been pursued [EDGESURVEY] [FOGEDGE].

   Microservices can be seen as a (lightweight) extension of the cloud

   computing model (application logic in containers and orchestrators

   for resource allocation and other management functions), leveraging

   more lightweight platforms and fine-grained functions.  Compared to

   traditional VM-based systems, microservice platforms typically employ

   a "stateless" approach, where the service/application state is not

   tied to the compute platform, thus achieving fault tolerance with

   respect to compute platform/process failures.

   Application-layer data processing such as Apache Flink [FLINK]

   provide attractive dataflow programming models for event-based stream

   processing and light-weight fault-tolerance mechanisms - however

   systems such as Flink are not designed for dynamic scheduling of

   compute functions.

   Modern distributed applications frameworks such as Ray [RAY], Sparrow

   [SPARROW] or Canary [CANARY] are more flexible in this regard - but
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   since they are conceived as application-layer frameworks, their

   scheduling logic can only operate with coarse-granular cost

   information.  For example, application-layer frameworks in general,

   can only infer network performance, anomalies, optimization potential

   indirectly (through observed performance or failure), so most

   scheduling decisions are based on metrics such as platform load.

   Service Function Chaining (SFC, [RFC7665]) is about establishing IP

   tunnels between processing functions that are expected to work on

   packets or flows - for applications such as inspection and

   classification, so that some of these functions could be seen as

   elements in a COIN context as well.

2.  Terminology

   We are using the following terms in this memo:

   Program:  a set of computations requested by a user

   Program Instance:  one currently executing instance of a program

   Function:  a specific computation that can be invoked as part of a

      program

   Execution Platform:  a specific host platform that can run function

      code

   Execution Environment:  a class of target environments (execution

      platforms) for function execution, for example, a JVM-based

      execution environment that can run functions represented in JVM

      byte code

3.  Computing in the Network vs Networked Computing vs Packet Processing

   Many applications that might intuitively be characterized as

   "computing in the network" are actually either about connecting

   compute nodes/processes or about IP packet processing in fairly

   traditional ways.

   Here, we try to contrast these existing and widely successful systems

   (that probably do not require new research) with a more novel

   "computing in the network (COIN)" approach that revisits the function

   split between computing and networking.
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3.1.  Networked Computing

   Networked Computing exists in various facets today (as described in

   the Introduction).  Fundamentally, these systems make use of

   networking to connect compute instances - be it VMs, containers,

   processes or other forms of distributed computing instances.

   There are established frameworks for connecting these instances, from

   general purpose Remote Method Invocation/Remote Procedure Calls to

   system-specific application-layer protocols.  With that, these

   systems are not actually realizing "computing in the network" - they

   are just using the network (and taking connectivity as granted).

   Most of the challenges here are related to compute resource

   allocation, i.e., orchestration methods for instantiating the right

   compute instance on a corresponding platform - for achieving fault

   tolerance, performance optimization and cost reduction.

   Examples of successful applications of networked computing are

   typical overlay systems such as CDNs.  As overlays they do not need

   to be "in the network" - they are effectively applications.  (Note:

   we sometimes refer to CDN as an "in-network" service because of the

   mental model of HTTP requests that are being directed and potentially

   forwarded by CDN systems.  However, none of this happens "in the

   network" - it is just a successful application of HTTP and underlying

   transport protocols.)

3.2.  Packet Processing

   Packet processing is a function "in the network" - in a sense that

   middleboxes reside in the network as transparent functions that apply

   processing functions (inspection, classification, filtering, load

   management etc.) - mostly _transparent_ to endpoints.  Some middlebox

   functions (TCP split proxies, video optimizers) are more invasive in

   a sense that they do not only operate on IP flows but also try to

   impersonate transport endpoints (or interfere with their behavior).

   Since these systems can have severe impacts on service availability,

   security/privacy, and performance they are typically not very

   _programmable_ - they just execute (usually) static code for

   predefined functions.

   Active Networking can be characterized as an attempt to offer

   abstractions for programmable packet processing from an "endpoint

   perspective", i.e., by using data packets to specify intended

   behavior in the network with the aforementioned security problems.
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   Programmable Data Plane approaches such as P4 are providing

   abstractions of different types of network switch hardware (NPUs,

   CPUs, FPGA, PISA) from a switch/network programming perspective.  The

   corresponding programs are constrained by the capabilities

   (instruction set, memory) of the target platform and typically

   operate on packets/flow abstractions (for example match-action-style

   processing).

   Network Functions Virtualization (NFV) is essentially a "Networked

   Computing" approach (after all, Network Functions are just

   virtualized compute functions that get instantiated on compute

   platforms by an orchestrator).  However, some Virtual Network

   Functions (VNFs) happen to process/forward packets (e.g., gateways in

   provider networks, NATs or firewalls).  Still, that does not affect

   their fundamental properties as virtualized computing functions.

   When connecting VNFs, there is the question of how to steer packet

   flows so that packets reach the right functions (and pass through

   them in the right order).  One way is through configuration and

   network control/management (SDN), i.e., the VNFs are places in a

   virtual network, and there are configurations for meaningful next-hop

   IP addresses etc.

   A more dynamic way is through Service Function Chaining (SFC,

   [RFC7665]), where a dynamic chain of IP-addressable packet processors

   can be specified (in an encapsulation packet header structure) and

   where forwarding nodes are equipped to interpret these headers and

   forward the packets to the appropriate next hops.

   The SFC [RFC7665]) framework works with IP addresses for function

   (host) identifiers.  Name-Based Service Function Forwarding

   [I-D.trossen-sfc-name-based-sff] takes this one step further by

   adding another layer of indirection and by identifying the Service

   Functions using a name rather than a routable IP endpoint (or Layer 2

   address).  In addition to the naming concept,

   [I-D.trossen-sfc-name-based-sff] also described the possibility of

   using different transport and application layer protocols for the

   communication between functions - which could in principle extend the

   applicability from mere packet processing to some form of distributed

   computing.

3.3.  Computing in the Network

   In some deployments, networked computing and packet processing go

   well together, for example, when network virtualization (multiplexing

   physical infrastructure for multiple isolated subnetworks) is

   achieved through data-plane programming (SDN-style) to provide

   connectivity for VMs of a tenant system.
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   While such deployments are including both computing and networking,

   they are not really doing computing _in the network_. VM/containers

   are virtualized hosts/processes using the existing network, and

   packet processing/programmable networks is about packet-level

   manipulation.  While it is possible to implement certain

   optimizations (for example, processing logic for data aggregation) -

   the applicability is rather limited especially for applications where

   application-data units do not map to packets and where additional

   transport protocols and security requirements have to be considered.

   Multi-access Edge Computing [MEC] is a particular architecture that

   leverages the virtual host platform concept, and that is focused on

   management and orchestration for such platforms.  MEC can be combined

   with virtual networking concepts such as "Network Slicing" in 5G

   [MEC5G] to assure a certain QoS for connectivity to MEC platform

   instances.  It should be noted that there may be other forms of edge

   computing that are not VM-based.

   Distributed Computing (stream processing, edge computing) on the

   other side is an area where many application-layer frameworks exist

   that actually _could_ benefit from a better integration of computing

   and networking, i.e., from a new "computing in the network" approach.

   For example, when running a distributed application that requires

   dynamic function/process instantiation, traditional frameworks

   typically deploy an orchestrator that keeps track of available host

   platforms and assigned functions/processes.  The orchestrator

   typically has good visibility of the availability of and current load

   on host platforms, so it can pick suitable candidates for

   instantiating a new function.

   However, it is typically agnostic of the network itself - as

   application layer overlays the function instances and orchestrators

   take the network as a given, assuming full connectivity between all

   hosts and functions.  While some optimizations may still be feasible

   (for example co-locating interacting functions/processes on a single

   host platform), these systems cannot easily reason about

   o  shortest paths between function instances; function off-loading

   o  opportunities on topologically convenient next hops; and

   o  availability of new, not yet utilized resources in the network.

   While it is possible to perform optimizations like these in

   application layers overlays, it involves significant monitoring

   effort and would often duplicate information (topology, latency) that

   is readily available inside the network.  In addition to the
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   associated overhead, such systems also operate at different time

   scales so that direct reaction in fine-grained computing environments

   is difficult to achieve.

   When asking the question of how the network can support distributed

   computing better, it may be helpful to characterize this problem as a

   resource allocation optimization problem: Can we integrate computing

   and networking in a way that enables a joint optimization of

   computing and networking resource usage?  Can we apply this approach

   to achieve certain optimization goals such as:

   o  low latency for certain function calls or compute threads;

   o  high throughput for a pipeline of data processing functions;

   o  high availability for an overall application/service;

   o  load management (balancing, concentration) according to

      performance/cost constraints; and

   o  consideration of security/privacy constraints with respect to

      platform selection and function execution?

   o  Also: can we do this at the speed of network dynamics, which may

      be substantially higher than the rate at which distributed

      computing applications change?

   Considering computing and networking resource holistically could be

   the key for achieving these optimization goals (without considerable

   overhead through telemetry, management and orchestration systems).

   If we are able to dissolve the layer boundaries between the

   networking domain (that is typically concerned with routing,

   forwarding, packet/flow-level load balancing) and the distributed

   computing domain (that is typically concerned with ’processor’

   allocation, scaling, reaction to failure for functions/processes), we

   might get a handle to achieve a joint resource optimization and

   enable the distributed computing layer to leverage network-provided

   mechanisms directly.

   For example, if distributing information about available/suitable

   compute platform could be a routing function, we might be able to

   obtain and utilize this information in a distributed fashion.  If

   instantiating a new function (or offloading some piece of

   computation) could consider live performance data obtained from a in-

   network forwarding/offloading service (similar to IP packet

   forwarding in traditional IP networks), the "next-hop" decision could

   be based both on network performance and node load/availability).
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   Integrating computing and networking in this manner would not rule

   out highly optimized systems leveraging sophisticated orchestrators.

   Instead, it would provide a (possibly somewhat uniform) framework

   that could allow several operating and optimization modes, including

   totally distributed modes, centralized orchestration, or hybrid

   forms, where policies or intents are injected into the distributed

   decision-making layer, i.e., as parameters for resource allocation

   and forwarding decisions.

3.4.  Elements for Computing in the Network

   In-network computing requires computing resources (CPU, possibly

   GPUs, memory, ...), physical or virtualized to some extent by a

   suitable platform.  These computing resources may be available in a

   number of places, as partly already discussed above, including the

   following:

   o  They may be found on dedicated machines co-locating with the

      routing infrastructure, e.g., having a set of servers next to each

      router as one may find in access network concentrators.  This

      would come closest to today’s principles of edge computing.

   o  They may be integrated with routers or other network operations

      infrastructure and thus be tightly integrated within the same

      physical device.

   o  They may be integrated within switches, similar to the (limited)

      P4 compute capabilities offered today.

   o  They may be located on NICs (in hosts) or line cards (routers) and

      be able to proactively perform some application functions, in the

      sense of a generalized variant of "offloading" that protocol

      stacks perform to reduce main CPU load.

   o  They might add novel types of dedicated hardware to execute

      certain functions more efficiently, e.g., GPU nodes for

      (distributed) analytics.

   o  They might include low-end (embedded) devices such as

      microcontrollers that support decentralized computation at low

      cost and limited performance.

   o  They may also encompass additional resources at the edge of the

      network, such as sensor nodes.  Associated sensors could be

      physical (as in IoT) or logical (as in MIB data about a network

      device).
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   o  Even user devices along the lines of crowd computing [CROWD] or

      mist computing [MIST] may contribute compute resources and

      dynamically become part of the network.

   Depending on the type of execution platform, as already alluded to

   above, a suitable execution framework must be put in place: from

   lambda functions to threads to processes or process VMs to unikernels

   to containers to full-blown VMs.  This should support mutual

   isolation and, depending on the service in question, a set of

   security features (e.g., authentication, trustworthy execution,

   accountability).  Further, it may be desirable to be able to compose

   the executable units, e.g., by chaining lambda functions or allowing

   unikernels to provide services to each other - both within a local

   execution platform and between remote platform instances across the

   network.

   The code to be executed may be pre-installed (as firmware, as

   microcode, as operating system functions, as libraries, as *aaS

   offering, among others) or may be dynamically supplied.  While the

   former is governed by the entity operating the execution device or

   supplying it (the vendor), the code to be executed may have different

   origins.  Fundamentally, we can distinguish between two cases:

   1.  The code may be "centrally" provisioned, originating from an

       application or other service provider inside the network.  This

       is analogous to CDNs, in which an application provider contracts

       a CDN provider to host content and service logic on its behalf.

       The deployment is usually long-term, even if instantiations of

       the code may vary.  The code thus originates from rather few -

       known - sources.  In this setting, applications only invoke this

       code and pass on their parameters, context, data, etc.

   2.  The code may be provided in a decentralized manner from a user

       device or other service that requires a certain function or

       service to be carried out.  At the coarse granularity of entire

       application images, this has been explored as "code offloading";

       recent approaches have moved towards finer granularities of

       offloading (sets of) functions, for which also some frameworks

       for smartphones were developed, leading to finer granularities

       down to individual functions.  In this setting, application

       transfer mobile code - along with suitable parameters, etc. -

       into the network that is executed by suitable execution

       platforms.  This code is naturally expected to be less trusted as

       it may come from an arbitrary source.

   Obviously, 1. and 2. may be combined as mobile code may make use of

   other in-network functions and services, allowing for flexible

   application decomposition.  Essentially, computing in the network may
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   support everything from full application offloading to decomposing an

   application into small snippets of code (e.g., at class, objects, or

   function granularity) that are fully distributed inside the network

   and executed in a distributed fashion according to the control flow

   of the application.  This may lead to iterative or recursive calling

   from application code on the initiating host to mobile code to pre-

   provisioned code.

   Another dimension beyond where the code comes from is how tightly the

   code and the data are coupled.  At one extreme, approaches like

   Active Messages combine the data and the code that operates (only) on

   that data into transmission units, while at the other extreme

   approaches like Network Function Virtualization are only concerned

   with the instantiation of the code in the network.  The underlying

   architectural question is whether the goal is to enable the network

   to perform computations on the data passing through it, or whether

   the goal is to enable distributed computational processes to be built

   in the network.  And, of course, complete applications may leverage

   both approaches.

   With these different existing and possibly emerging platforms and

   execution environments and different ways to provision functions in

   the network, it does not seem useful to assume any particular

   platform and any particular "mobile code" representation as _the_

   "computing in the network" environment.  Instead, it seems more

   promising to reason about properties that are relevant with respect

   to distributed program semantics and protocols/interfaces that would

   be used to integrate functions on heterogeneous platforms into one

   application context.  We discuss these ideas and associated

   challenges in the following section.

4.  Examples

4.1.  Compute-First Networking with ICN

   [CFN] is an example of a computing-in-the-network system that is

   based on computation graph representation for distributed programs.

   These programs are composed of stateful actors and stateful functions

   that are dynamically instantiated on available compute resources.

   The first motivating use case was a real-time health monitoring

   system that analyzed audio samples from coughing noises which

   involves processing several audio feeds for noise addition and

   subtraction and for feature extraction.

   The key concept of CFN is to provide a general-purpose distributed

   computing framework that can be programmed without knowledge about
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   the runtime environment but that can leverage the dynamic resource

   properties automatically, and with reasonable efficiency.

   CFN can lay out compute graphs over the available computing platforms

   in a network to perform flexible load management and performance

   optimizations, taking into account function/actor location and data

   location, as well as platform load and network performance.

   In CFN, compute nodes that can execute functions within a given

   program instance are called workers.  The allocation of functions and

   actors to workers happens in a distributed fashion.  A CFN system

   knows the current utilization of available resources and the least

   cost paths to copies of needed input data.  It can dynamically decide

   which worker to use, performing optimizations such as instantiating

   functions close to big data inputs.  The bindings that control which

   execution platforms host which program interfaces (or individual

   functions/actors) is maintained through a computation graph.

   To realize this distributed scheduling, workers in each resource pool

   advertise their available resources.  This information is shared

   among all workers in the pool.  A worker execution environment can

   decide, without a centralized scheduler, which set of workers to

   prefer to invoke a function or to instantiate an actor.  In order to

   direct function invocation requests to specific worker nodes, CFN

   utilizes the underlying ICN network’s forwarding capabilities - the

   network performs late binding through name-based forwarding and

   workers can provide forwarding hints to steer the flow of work.

4.2.  Akka Toolkit

   The Akka toolkit [1] for building concurrent and distributed

   applications on the the JVM that is used by frameworks such as Apache

   Flink [2].  Akka is implements the Actor model, a way of realizing

   distributed computing as asynchronous message-based communication

   between concurrent processes that encapsulate application logic.

   Communication between distributed actors is based on symmetric peer-

   to-peer model (actors can send each other messages) and is

   implemented by TCP-based protocols [3].

   Akka actors are logically organized in a tree hierarchy [4], and

   there are two addressing concepts: 1) Actor References that unique

   identify an actor instance and 2) Actor Paths, hierarchically

   structured names that specify the logical position of an actor

   instance in system tree.  Actor path can have an address component

   that specified location information (e.g., host and port number).
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   Akka has a routing concept [5] that can duplicate and distribute

   messages to a set of actors (for example for map-reduce like

   parallelism).

   The Akka toolkit support cluster features [6], i.e., the management

   of a collection of JVMs that can be monitored for resource and

   failure management.

5.  Research Challenges

   Conceiving computing in the network as a joint resource optimization

   problem as described above incurs a set of interesting, novel

   research challenges that are particularly relevant from an Internet

   Research perspective.

5.1.  Categorization of Different Use Cases for Computing in the Network

   There are different applications but also different configuration

   classes of Computing in the Network systems.  For example, a data

   processing pipeline might be different from a distributed application

   employing some stateful actor components.  It is worthwhile analyzing

   different typical use cases and identify commonalities (for example,

   fundamental protocol elements etc.) and differences.

5.2.  Networking and Remote-Method-Invocation Abstractions

   In distributed systems, there are different classes of functions that

   can be distinguished, for example:

   1.  Strictly stateless functions that do not keep any context state

       beyond their activation time

   2.  Stateful functions/modules/programs that can be instantiated,

       invoked and eventually destroyed that do keep state over a series

       of function invocations

   Modern frameworks such as Ray are offering a clear separation of

   stateless functions and stateful actors and offer corresponding

   abstractions in their programming environment.  The aforementioned

   analysis of use cases should provide a diverse set of use cases for

   deriving a minimal yet sufficient set of function classes.

   Beyond this fundamental categorization of functions/actors, there is

   the question of interfaces and protocols mechanisms - as building

   blocks to utilize functions in programs.  For example, stateful

   functions are typically invoked through some Remote Method Invocation

   (RMI) protocol that identifies functions, allows for specifying/

   transferring parameters and function results etc.  Stateful actors

Kutscher, et al.        Expires February 1, 2021               [Page 13]



Internet-Draft   Directions for Computing in the Network       July 2020

   could provide class-like interfaces that offer a set of functions

   (some of which might manipulate actor state).

   Another aspect is about identity (and naming) of functions and

   actors.  For actors that are typically used to achieve real-world

   effects or to enable multiple invocations of functions manipulating

   actor state over time, it is obvious that there needs to be a concept

   of specific instances.  Invoking an actor function would then require

   specifying some actor instance identifier.

   Stateless functions may be different: an invoking instance may be

   oblivious with respect to the specific function instance and locus

   (on an execution platform) and might just want to leave it to the

   network to find the "best" instance or locus for a new instantiation.

   Some fine-granular functions might just be instantiated for one

   invocation.  On the other hand, a function might be tied to a

   particular execution platform, for example an GPU-supported host

   system.  The naming and identity framework must allow for specifying

   such a function (or at least equivalence classes) accordingly.

   Stateful functions may share state within the same program context,

   i.e., across multiple invocations by the same application (as, e.g.,

   holds for web services that preserve context - locally or on the

   client side).  But stateful functions may also hold state across

   applications and possibly across different instantiations of a

   function on different compute nodes.  Such will require data

   synchronization mechanisms and the implementation of suitable data

   structure to achieve a certain degree of consistency.  The targeted

   degree of consistency may vary depending on the function and so may

   the mechanisms used to achieve the desired consistency.

   Finally, execution platforms will require efficient resource

   management techniques to operate with different types of stateless

   and stateful functions and their associated resources, as well as for

   dynamically instantiated mobile code.  Besides the aforementioned

   location of suitable compute platforms and scheduling (possibly

   queuing) functions and function invocations, this also includes

   resource recovery ("garbage collection").

5.3.  Transport Abstractions

   When implementing Computing in the Network and building blocks such

   as function invocation it seems that IP packet processing is not the

   right abstraction.  First of all, carrying the context for some

   function invocation might require many IP packets - possibly

   something like Application Data Units (ADUs).  But even if such ADUs

   could be fit into network layer packets, other problems still need to
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   be addressed, for example message formats, reliability mechanisms,

   flow and congestion control etc.

   It could be argued that today’s distributed computing overlays solve

   that by using TCP and corresponding application layer formats (such

   as HTTP) - however this begs the question whether a fine-granular

   distributed computing system, aiming to leverage the network for

   certain tasks, is best served by a TCP/IP-based approach that entails

   issues such as

   o  need for additional resolution/mapping system to find IP addresses

      for functions;

   o  possible overhead for establishing TCP connections for fine-

      granular function invocation;

   o  defining and managing security properties of such connections and

      coping with the associated setup/validation overhead; and

   o  mismatch between TCP end-to-end semantics and the intention to

      defer next-hop selection etc. to the network.

   Moreover, some Computing in the Network applications such as Big Data

   processing (Hadoop-style etc.) can benefit significantly from data-

   oriented concepts such as

   o  in-network caching (of data objects that represent function

      parameters or results);

   o  reasoning about the tradeoffs between moving data to function vs.

      moving code to data assets; and

   o  sharing data (e.g., function results) between sets of consuming

      entities.

   RMI systems such as RICE [RICE] enable Remote Method Invocation of

   ICN (data-oriented network/transport).  Research questions include

   investigating how such approaches can be used to design general-

   purpose distributed computing systems.  More specifically, this would

   involve questions such as:

   o  What is the role of network elements in forwarding RMI requests?

   o  What visibility into load, performance and other properties should

      endpoints and the network have to make forwarding/offloading

      decisions and how can such visibility be afforded?
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   o  What is the notion of transport services in this concept and how

      intertwined is traditional transport with RMI invocation?

   o  What kind of feedback mechanisms would be desirable for supporting

      corresponding transport services?

5.4.  Programming Abstractions

   When creating SDKs and programming environments (as opposed to

   individual point solutions) questions arise such as:

   o  How to use concepts such as stateless functions, actor models and

      RMI in actual programs, i.e., what are minimal/ideal bindings or

      extensions to programming languages so that programmers can take

      advantage of Computing in the Network?

   o  Are there additional, potentially higher-layer, abstractions that

      are needed/useful, for example data set synchronization, data

      types for distributed computing such as CRDTs?

   In addition to programming languages, bindings, and data types, there

   is the question of execution environments and mobile code

   representation.  With the vast number of different platforms (CPUs,

   GPUs, FPGAs etc.) it does not seem useful to assume exactly one

   environment.  Instead, interesting applications might actually

   benefit from running one particular function on a highly optimized

   platform but are agnostic with respect to platforms for other, less

   performance-critical functions.  Being able to support a

   heterogenous, evolving set of execution environments brings about

   questions such as:

   o  How to discover available platforms (and understand their

      properties)?

   o  How to specify application needs and map them to available

      platforms?

   o  Can a certain function/application service be provided with

      different fidelity levels, e.g., can an application leverage a GPU

      platform if available and fall back to a reduced feature set in

      case such a platform is not available?

   In this context, updates and versioning could entail another

   dimension of variability for Computing in the Network:

   o  How to manage coexistence of multiple versions of functions and

      services, also for service routing and request forwarding?
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   o  Is there potential for fallback and version negotiation if needed

      (considering the risk of "bidding downs" attacks?)

   o  How to retire old versions?

   o  How to securely and reliably deal with function updates and

      corresponding maintenance tasks?

5.5.  Security, Privacy, Trust Model

   Computing in the Network has interesting security-related challenges,

   including:

   o  How can a caller trust that a remote function works as expected?

      This entails several questions such as

      *  How to securely bind "function names" to actual function code?

      *  How to trust the execution platform (in its entirety)?

      *  How to trust the network that is forwards requests (and result

         messages) reliably and securely?

      *  How to ascertain that a function does what it claims to do?

   o  What levels of authentication are needed for callers (assuming

      that not everybody can invoke any function)?

   o  How to authenticate and achieve confidentiality for requests,

      their parameters and result data (especially when considering

      sharing of results)?

   Many of these questions are related to other design decisions such as

   o  What kind of session concept do we assume, i.e., is there a

      concept of distributed application session that represents a trust

      domain for its members?

   o  Where is trust anchored?  Can the system enable decentralized

      operation?

   All of these questions are not new, but conceiving networking and

   computing holistically seems to revisit distributed systems and

   network security - because some established concepts and technologies

   may not be directly applicable (such as transport layer security and

   corresponding web PKI).
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5.6.  Coordination

   For distributed systems, coordination is a key function and involves

   several functions such as configuration management, service

   discovery, application state management, and consensus schemes.

   How these functions are implemented depends a lot on the nature of

   specific systems.  For example, Apache ZooKeeper [7] is a logically

   centralized coordination service that provides coordination

   primitives to client application modules.  The ZooKeeper itself is

   implemented as a distributed system consisting of a set of tightly

   coupled server instances that replicate the ZooKeeper state.

   Other systems, such as the ICN-based CFN (Section 4.1) implement

   these services in a distributed way, employing different mechanisms

   for synchronization and consensus building.

   While the fundamental concepts and mechanisms for coordination

   services are well understood, applying these concepts and mechanisms

   to a specific system design requires careful consideration.

5.7.  Fault Tolerance, Failure Handling, Debugging, Management

   Distributed computing naturally provides different types of failures

   and exceptions.  In fine-granular distributed computing, some

   failures may by more tolerable (think microservices), i.e., platform

   crash or function abort due to isolated problems could be handled by

   just re-starting/re-running a particular function.  Similarly,

   "message loss" or incorrect routing information may be repairable by

   the system itself (after time).

   When failure cannot be repaired (or just tolerated) by the

   distributed computing framework, this raises questions such as:

   o  What are strategies for retrying vs aborting function invocation?

   o  How to signal exceptions and enable robust response to failures?

   Failure handling and debugging also has a management aspect that

   leads to questions such as:

   o  What monitoring and instrumentation interfaces are needed?

   o  How can we represent, visualize, and understand the (dynamically

      changing) properties of Computing in the Network infrastructure as

      well as of the currently running/instantiated entities?

Kutscher, et al.        Expires February 1, 2021               [Page 18]



Internet-Draft   Directions for Computing in the Network       July 2020

6.  Acknowledgements

   The authors would like to thank Dave Oran, Michal Krol, Spyridon

   Mastorakis, Yiannis Psaras, Eve Schooler, Dirk Trossen, and Phil

   Eardley for previous fruitful discussions on Computing in the Network

   topics and for feedback on this draft.

7.  ChangeLog

7.1.  02

   o  fixed errors and updates references

   o  new Section 5.6 on Coordination
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7.2.  01
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