
JMAP R. Stepanek
Internet-Draft FastMail
Intended status: Standards Track M. Loffredo
Expires: 17 July 2022 IIT-CNR
 13 January 2022

 JSContact: A JSON representation of contact data
 draft-ietf-jmap-jscontact-10

Abstract

 This specification defines a data model and JSON representation of
 contact card information that can be used for data storage and
 exchange in address book or directory applications. It aims to be an
 alternative to the vCard data format and to be unambiguous,
 extendable and simple to process. In contrast to the JSON-based
 jCard format, it is not a direct mapping from the vCard data model
 and expands semantics where appropriate.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 17 July 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Stepanek & Loffredo Expires 17 July 2022 [Page 1]

Internet-Draft JSContact January 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Relation to the xCard and jCard formats 4
 1.2. Terminology . 4
 1.3. Vendor-specific Property Extensions and Values 4
 1.4. Type Signatures . 5
 1.5. Data types . 5
 1.5.1. Context . 5
 1.5.2. Id . 6
 1.5.3. PatchObject . 6
 1.5.4. Preference . 7
 1.5.5. UnsignedInt . 7
 1.5.6. UTCDateTime . 8
 2. Card . 8
 2.1. Metadata properties 8
 2.1.1. @type . 8
 2.1.2. uid . 8
 2.1.3. prodId . 8
 2.1.4. created . 8
 2.1.5. updated . 9
 2.1.6. kind . 9
 2.1.7. relatedTo . 9
 2.1.8. language . 10
 2.2. Name and Organization properties 10
 2.2.1. name . 10
 2.2.2. fullName . 11
 2.2.3. nickNames . 11
 2.2.4. organizations . 12
 2.2.5. titles . 12
 2.2.6. speakToAs . 12
 2.3. Contact and Resource properties 13
 2.3.1. emails . 13
 2.3.2. phones . 14
 2.3.3. online . 15
 2.3.4. photos . 15
 2.3.5. preferredContactMethod 16
 2.3.6. preferredContactLanguages 16
 2.4. Address and Location properties 17

Stepanek & Loffredo Expires 17 July 2022 [Page 2]

Internet-Draft JSContact January 2022

 2.4.1. addresses . 17
 2.5. Multilingual properties 19
 2.5.1. localizations . 19
 2.6. Additional properties 19
 2.6.1. anniversaries . 19
 2.6.2. personalInfo . 20
 2.6.3. notes . 21
 2.6.4. categories . 21
 2.6.5. timeZones . 21
 3. CardGroup . 21
 3.1. Group properties . 21
 3.1.1. @type . 21
 3.1.2. uid . 21
 3.1.3. members . 22
 3.1.4. name . 22
 3.1.5. card . 22
 4. Implementation Status . 22
 4.1. IIT-CNR/Registro.it 22
 5. IANA Considerations . 23
 6. Security Considerations 23
 7. References . 23
 7.1. Normative References 23
 7.2. Informative References 24
 Authors’ Addresses . 25

1. Introduction

 This document defines a data model for contact card data normally
 used in address book or directory applications and services. It aims
 to be an alternative to the vCard data format [RFC6350] and to
 provide a JSON-based standard representation of contact card data.

 The key design considerations for this data model are as follows:

 * Most of the initial set of attributes should be taken from the
 vCard data format [RFC6350] and extensions ([RFC6473], [RFC6474],
 [RFC6715], [RFC6869], [RFC8605]). The specification should add
 new attributes or value types, or not support existing ones, where
 appropriate. Conversion between the data formats need not fully
 preserve semantic meaning.

 * The attributes of the cards data represented must be described as
 a simple key-value pair, reducing complexity of its
 representation.

 * The data model should avoid all ambiguities and make it difficult
 to make mistakes during implementation.

Stepanek & Loffredo Expires 17 July 2022 [Page 3]

Internet-Draft JSContact January 2022

 * Extensions, such as new properties and components, MUST NOT lead
 to requiring an update to this document.

 The representation of this data model is defined in the I-JSON format
 [RFC7493], which is a strict subset of the JavaScript Object Notation
 (JSON) Data Interchange Format [RFC8259]. Using JSON is mostly a
 pragmatic choice: its widespread use makes Card easier to adopt, and
 the availability of production-ready JSON implementations eliminates
 a whole category of parser-related interoperability issues.

1.1. Relation to the xCard and jCard formats

 The xCard [RFC6351] and jCard [RFC7095] specifications define
 alternative representations for vCard data, in XML and JSON format
 respectively. Both explicitly aim to not change the underlying data
 model. Accordingly, they are regarded as equal to vCard in the
 context of this document.

1.2. Terminology

 The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL in this
 document are to be interpreted as described in BCP 14 [RFC2119]
 [RFC8174] when, and only when, they appear in all capitals, as shown
 here.

1.3. Vendor-specific Property Extensions and Values

 Vendors MAY add additional properties to the contact object to
 support their custom features. To avoid conflict, the names of these
 properties MUST be prefixed by a domain name controlled by the vendor
 followed by a colon, e.g., "example.com:customprop". If the value is
 a new JSContact object, it either MUST include an "@type" property,
 or it MUST explicitly be specified to not require a type designator.
 The type name MUST be prefixed with a domain name controlled by the
 vendor.

 Some JSContact properties allow vendor-specific value extensions.
 Such vendor-specific values MUST be prefixed by a domain name
 controlled by the vendor followed by a colon, e.g.,
 "example.com:customrel".

 Vendors are strongly encouraged to register any new property values
 or extensions that are useful to other systems as well, rather than
 use a vendor-specific prefix.

Stepanek & Loffredo Expires 17 July 2022 [Page 4]

Internet-Draft JSContact January 2022

1.4. Type Signatures

 Type signatures are given for all JSON values in this document. The
 following conventions are used:

 * * - The type is undefined (the value could be any type, although
 permitted values may be constrained by the context of this value).

 * String - The JSON string type.

 * Number - The JSON number type.

 * Boolean - The JSON boolean type.

 * A[B] - A JSON object where the keys are all of type A, and the
 values are all of type B.

 * A[] - An array of values of type A.

 * A|B - The value is either of type A or of type B.

1.5. Data types

 In addition to the standard JSON data types, a couple of additional
 data types are common to the definitions of JSContact objects and
 properties.

1.5.1. Context

 Contact information typically is associated with a context in which
 it should be used. For example, someone might have distinct phone
 numbers for work and private contexts. The Context data type
 enumerates common contexts.

 Common context values are:

 * private: The contact information may be used to contact the card
 holder in a private context.

 * work: The contact information may be used to contact the card
 holder in a professional context.

 Additional allowed values may be defined in the properties or data
 types that make use of the Context data type, registered in a future
 RFC, or a vendor-specific value.

Stepanek & Loffredo Expires 17 July 2022 [Page 5]

Internet-Draft JSContact January 2022

1.5.2. Id

 Where Id is given as a data type, it means a String of at least 1 and
 a maximum of 255 octets in size, and it MUST only contain characters
 from the URL and Filename Safe base64url alphabet, as defined in
 Section 5 of [RFC4648], excluding the pad character (=). This means
 the allowed characters are the ASCII alphanumeric characters (A-Za-
 z0-9), hyphen (-), and underscore (_).

 In many places in JSContact a JSON map is used where the map keys are
 of type Id and the map values are all the same type of object. This
 construction represents an unordered set of objects, with the added
 advantage that each entry has a name (the corresponding map key).
 This allows for more concise patching of objects, and, when
 applicable, for the objects in question to be referenced from other
 objects within the JSContact object.

 Unless otherwise specified for a particular property, there are no
 uniqueness constraints on an Id value (other than, of course, the
 requirement that you cannot have two values with the same key within
 a single JSON map). For example, two Card objects might use the same
 Ids in their respective photos properties. Or within the same Card
 object the same Id could appear in the emails and phones properties.
 These situations do not imply any semantic connections among the
 objects.

1.5.3. PatchObject

 A PatchObject is of type String[*], and represents an unordered set
 of patches on a JSON object. Each key is a path represented in a
 subset of JSON pointer format [RFC6901]. The paths have an implicit
 leading /, so each key is prefixed with / before applying the JSON
 pointer evaluation algorithm.

 A patch within a PatchObject is only valid if all of the following
 conditions apply:

 1. The pointer MUST NOT reference inside an array (i.e., you MUST
 NOT insert/delete from an array; the array MUST be replaced in
 its entirety instead).

 2. All parts prior to the last (i.e., the value after the final
 slash) MUST already exist on the object being patched.

 3. There MUST NOT be two patches in the PatchObject where the
 pointer of one is the prefix of the pointer of the other, e.g.,
 addresses/1/city and addresses.

Stepanek & Loffredo Expires 17 July 2022 [Page 6]

Internet-Draft JSContact January 2022

 4. The value for the patch MUST be valid for the property being set
 (of the correct type and obeying any other applicable
 restrictions), or if null the property MUST be optional.

 The value associated with each pointer determines how to apply that
 patch:

 * If null, remove the property from the patched object. If the key
 is not present in the parent, this a no-op.

 * If non-null, set the value given as the value for this property
 (this may be a replacement or addition to the object being
 patched).

 A PatchObject does not define its own @type property. Instead, a
 @type property in a patch MUST be handled as any other patched
 property value.

 Implementations MUST reject in its entirety a PatchObject if any of
 its patches is invalid. Implementations MUST NOT apply partial
 patches.

1.5.4. Preference

 This data type allows to define a preference order on same-typed
 contact information. For example, a card holder may have two email
 addresses and prefer to be contacted with one of them.

 A preference value MUST be an integer number in the range 1 and 100.
 Lower values correspond to a higher level of preference, with 1 being
 most preferred. If no preference is set, then the contact
 information MUST be interpreted as being least preferred.

 Note that the preference only is defined in relation to contact
 information of the same type. For example, the preference orders
 within emails and phone numbers are indendepent of each other. Also
 note that the _preferredContactMethod_ property allows to define a
 preferred contact method across method types.

1.5.5. UnsignedInt

 Where UnsignedInt is given as a data type, it means an integer in the
 range 0 <= value <= 2^53-1, represented as a JSON Number.

Stepanek & Loffredo Expires 17 July 2022 [Page 7]

Internet-Draft JSContact January 2022

1.5.6. UTCDateTime

 This is a string in [RFC3339] date-time format, with the further
 restrictions that any letters MUST be in uppercase, and the time
 offset MUST be the character Z. Fractional second values MUST NOT be
 included unless non-zero and MUST NOT have trailing zeros, to ensure
 there is only a single representation for each date-time.

 For example, 2010-10-10T10:10:10.003Z is conformant, but
 2010-10-10T10:10:10.000Z is invalid and is correctly encoded as
 2010-10-10T10:10:10Z.

2. Card

 MIME type: application/jscontact+json;type=card

 A Card object stores information about a person, organization or
 company.

2.1. Metadata properties

2.1.1. @type

 Type: String (mandatory).

 Specifies the type of this object. This MUST be Card.

2.1.2. uid

 Type: String (mandatory).

 An identifier, used to associate the object as the same across
 different systems, addressbooks and views. [RFC4122] describes a
 range of established algorithms to generate universally unique
 identifiers (UUID), and the random or pseudo-random version is
 recommended. For compatibility with [RFC6350] UIDs, implementations
 MUST accept both URI and free-form text.

2.1.3. prodId

 Type: String (optional).

 The identifier for the product that created the Card object.

2.1.4. created

 Type: UTCDateTime (optional).

Stepanek & Loffredo Expires 17 July 2022 [Page 8]

Internet-Draft JSContact January 2022

 The date and time when this Card object was created.

2.1.5. updated

 Type: UTCDateTime (optional).

 The date and time when the data in this Card object was last
 modified.

2.1.6. kind

 Type: String (optional). The kind of the entity the Card represents.

 The value MUST be either one of the following values, registered in a
 future RFC, or a vendor-specific value:

 * individual: a single person

 * org: an organization

 * location: a named location

 * device: a device, such as appliances, computers, or network
 elements

 * application: a software application

2.1.7. relatedTo

 Type: String[Relation] (optional).

 Relates the object to other Card and CardGroup objects. This is
 represented as a map, where each key is the uid of the related Card
 or CardGroup and the value defines the relation. The Relation object
 has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be Relation.

 * relation: String[Boolean] (optional, default: empty Object)
 Describes how the linked object is related to the linking object.
 The relation is defined as a set of relation types. If empty, the
 relationship between the two objects is unspecified. Keys in the
 set MUST be one of the RELATED property [RFC6350] type parameter
 values, or an IANA-registered value, or a vendor-specific value.
 The value for each key in the set MUST be true.

Stepanek & Loffredo Expires 17 July 2022 [Page 9]

Internet-Draft JSContact January 2022

2.1.8. language

 Type: String (optional).

 This defines the locale in which free-text property values can be
 assumed to be written in. The value MUST be a language tag as
 defined in [RFC5646]. Note that such values MAY be localized in the
 localizations Section 2.5.1 property.

2.2. Name and Organization properties

2.2.1. name

 Type: Name (optional).

 The name of the entity represented by this Card.

 A Name object has the following properties

 * @type: Name (mandatory). Specifies the type of this object. This
 MUST be Name.

 * components: NameComponent[] (mandatory). The components making up
 the name. The component list MUST have at least one entry. Name
 components SHOULD be ordered such that their values joined by
 whitespace produce a valid full name of this entity. Doing so,
 implementations MAY ignore any components of type separator.

 * locale: String (optional). The locale of the name. The value
 MUST be a language tag as defined [RFC5646].

 A NameComponent object has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be NameComponent.

 * value: String (mandatory). The value of this name component.

 * type: String (mandatory). The type of this name component. The
 value MUST be either one of the following values, registered in a
 future RFC, or a vendor-specific value:

 - prefix. The value is a honorific title(s), e.g. "Mr", "Ms",
 "Dr".

 - given. The value is a given name, also known as "first name",
 "personal name".

Stepanek & Loffredo Expires 17 July 2022 [Page 10]

Internet-Draft JSContact January 2022

 - surname. The value is a surname, also known as "last name",
 "family name".

 - middle. The value is a middle name, also known as "additional
 name".

 - suffix. The value is a honorific suffix, e.g. "B.A.", "Esq.".

 - separator. A formatting separator for two name components.
 The value property of the component includes the verbatim
 separator, for example a newline character.

 * nth: UnsignedInt (optional, default: 1). Defines the rank of this
 name component to other name components of the same type. If set,
 the property value MUST be higher than or equal to 1.

 For example, two name components of type surname may have their
 nth property value set to 1 and 2, respectively. In this case,
 the first name component defines the surname, and the second name
 component the secondary surname.

 Note that this property value does not indicate the order in which
 to print name components of the same type. Some cultures print
 the secondary surname before the first surname, others the first
 before the second. Implementations SHOULD inspect the locale
 property of the Name object to determine the appropriate
 formatting. They MAY print name components in order of appearance
 in the components property of the Name object.

2.2.2. fullName

 Type: String (optional).

 The full name (e.g. the personal name and surname of an individual,
 the name of an organization) of the entity represented by this card.
 The purpose of this property is to define a name, even if the
 individual name components are not known. In addition, it is meant
 to provide alternative versions of the name for internationalisation.
 Implementations SHOULD prefer using the _name_ property over this one
 and SHOULD NOT store the concatenated name component values in this
 property.

2.2.3. nickNames

 Type: String[] (optional).

 The nick names of the entity represented by this card.

Stepanek & Loffredo Expires 17 July 2022 [Page 11]

Internet-Draft JSContact January 2022

2.2.4. organizations

 Type: Id[Organization] (optional).

 The companies or organization names and units associated with this
 card. An Organization object has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be Organization.

 * name: String (mandatory). The name of this organization.

 * units: String[] (optional). Additional levels of organizational
 unit names.

2.2.5. titles

 Type : Id[Title] (optional).

 The job titles or functional positions of the entity represented by
 this card. A Title has object the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be Title.

 * title: String (mandatory). The title of the entity represented by
 this card.

 * organization: Id (optional). The id of the organization in which
 this title is held.

2.2.6. speakToAs

 Type: SpeakToAs (optional).

 Provides information how to address, speak to or refer to the entity
 that is represented by this card. A SpeakToAs object has the
 following properties, of which at least one property other than @type
 MUST be set:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be SpeakToAs.

 * grammaticalGender: String (optional). Defines which grammatical
 gender to use in salutations and other grammatical constructs.
 Allowed values are:

 - animate

Stepanek & Loffredo Expires 17 July 2022 [Page 12]

Internet-Draft JSContact January 2022

 - female

 - inanimate

 - male

 - neuter

 Note that the grammatical gender does not allow to infer the
 gender identities or biological sex of the contact.

 * pronouns: String (optional). Defines the gender pronouns that the
 contact chooses to use for themselves. Any value or form is
 allowed. Examples in English include she/her and they/them/
 theirs.

 The property values SHOULD be localized in the language defined in
 the language property. They MAY be overridden in the localizations
 property (Section 2.5.1).

2.3. Contact and Resource properties

2.3.1. emails

 Type: Id[EmailAddress] (optional).

 The email addresses to contact the entity represented by this card.
 An EmailAddress object has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be EmailAddress.

 * email: String (mandatory). The email address. This MUST be an
 addr-spec value as defined in Section 3.4.1 of [RFC5322].

 * contexts: Context[Boolean] (optional) The contexts in which to use
 this email address. The value for each key in the object MUST be
 true.

 * pref: Preference (optional) The preference of this email address
 in relation to other email addresses.

 * label: String (optional). A label describing the value in more
 detail.

Stepanek & Loffredo Expires 17 July 2022 [Page 13]

Internet-Draft JSContact January 2022

2.3.2. phones

 Type: Id[Phone] (optional).

 The phone numbers to contact the entity represented by this card. A
 Phone object has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be Phone.

 * phone: String (mandatory). The phone value, as either a URI or a
 free-text phone number. Typical URI schemes are the [RFC3966] tel
 or [RFC3261] sip schemes, but any URI scheme is allowed.

 * features: String[Boolean] (optional). The set of contact features
 that this phone number may be used for. The set is represented as
 an object, with each key being a method type. The value for each
 key in the object MUST be true. The method type MUST be either
 one of the following values, registered in a future RFC, or a
 vendor-specific value:

 - voice The number is for calling by voice.

 - fax The number is for sending faxes.

 - pager The number is for a pager or beeper.

 - text The number supports text messages (SMS).

 - cell The number is for a cell phone.

 - textphone The number is for a device for people with hearing or
 speech difficulties.

 - video The number supports video conferencing.

 * contexts: Context[Boolean] (optional) The contexts in which to use
 this number. The value for each key in the object MUST be true.

 * pref: Preference (optional) The preference of this number in
 relation to other numbers.

 * label: String (optional). A label describing the value in more
 detail.

Stepanek & Loffredo Expires 17 July 2022 [Page 14]

Internet-Draft JSContact January 2022

2.3.3. online

 Type: Id[Resource] (optional).

 The online resources and services that are associated with the entity
 represented by this card. A Resource object has the following
 properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be Resource.

 * resource: String (mandatory). The resource value, where the
 allowed value form is defined by the the _type_ property. In any
 case the value MUST NOT be empty.

 * type: String (optional). The type of the resource value. Allowed
 values are:

 - uri The resource value is a URI, e.g. a website link. This
 MUST be a valid _URI_ as defined in Section 3 of [RFC3986] and
 updates.

 - username The resource value is a username associated with the
 entity represented by this card (e.g. for social media, or an
 IM client). The _label_ property SHOULD be included to
 identify what service this is for. For compatibility between
 clients, this label SHOULD be the canonical service name,
 including capitalisation. e.g. Twitter, Facebook, Skype,
 GitHub, XMPP. The resource value may be any non-empty free
 text.

 * mediaType: String (optional). Used for URI resource values.
 Provides the media type [RFC2046] of the resource identified by
 the URI.

 * contexts: Context[Boolean] (optional) The contexts in which to use
 this resource. The value for each key in the object MUST be true.

 * pref: Preference (optional) The preference of this resource in
 relation to other resources.

 * label: String (optional). A label describing the value in more
 detail.

2.3.4. photos

 Type: Id[File] (optional).

Stepanek & Loffredo Expires 17 July 2022 [Page 15]

Internet-Draft JSContact January 2022

 A map of photo ids to File objects that contain photographs or images
 associated with this card. A typical use case is to include an
 avatar for display along the contact name.

 A File object has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be File.

 * href: String (mandatory). A URI where to fetch the data of this
 file.

 * mediaType: String (optional). The content-type of the file, if
 known.

 * size: UnsignedInt (optional). The size, in octets, of the file
 when fully decoded (i.e., the number of octets in the file the
 user would download), if known.

 * pref: Preference (optional) The preference of this photo in
 relation to other photos.

 * label: String (optional). A label describing the value in more
 detail.

2.3.5. preferredContactMethod

 Type : String (optional)

 Defines the preferred method to contact the holder of this card. The
 value MUST be the property names: emails, phones, online.

2.3.6. preferredContactLanguages

 Type : String[ContactLanguage[]] (optional)

 Defines the preferred languages for contacting the entity associated
 with this card. The keys in the object MUST be [RFC5646] language
 tags. The values are a (possibly empty) list of contact language
 preferences for this language. A valid ContactLanguage object MUST
 have at least one of its properties set.

 A ContactLanguage object has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be ContactLanguage.

Stepanek & Loffredo Expires 17 July 2022 [Page 16]

Internet-Draft JSContact January 2022

 * context: Context (optional). Defines the context in which to use
 this language.

 * pref: Preference (optional). Defines the preference of this
 language in relation to other languages of the same context.

 Also see the definition of the VCARD LANG property (Section 6.4.4.,
 [RFC6350]).

2.4. Address and Location properties

2.4.1. addresses

 Type: Id[Address] (optional).

 A map of address ids to Address objects, containing physical
 locations. An Address object has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be Address.

 * fullAddress: String (optional). The complete address, excluding
 type and label. This property is mainly useful to represent
 addresses of which the individual address components are unknown,
 or to provide localized representations.

 * street: StreetComponent[] (optional). The street address. The
 concatenation of the component values, separated by whitespace,
 SHOULD result in a valid street address for the address locale.
 Doing so, implementations MAY ignore any separator components.
 The StreetComponent object type is defined in the paragraph below.

 * locality: String (optional). The city, town, village, post town,
 or other locality within which the street address may be found.

 * region: String (optional). The province, such as a state, county,
 or canton within which the locality may be found.

 * country: String (optional). The country name.

 * postcode: String (optional). The postal code, post code, ZIP code
 or other short code associated with the address by the relevant
 country’s postal system.

 * countryCode: String (optional). The ISO-3166-1 country code.

 * coordinates: String (optional) A [RFC5870] "geo:" URI for the
 address.

Stepanek & Loffredo Expires 17 July 2022 [Page 17]

Internet-Draft JSContact January 2022

 * timeZone: String (optional) Identifies the time zone this address
 is located in. This either MUST be a time zone name registered in
 the IANA Time Zone Database (https://www.iana.org/time-zones), or
 it MUST be a valid TimeZoneId as defined in [RFC8984]. For the
 latter, a corresponding time zone MUST be defined in the timeZones
 property.

 * contexts: Context[Boolean] (optional). The contexts of the
 address information. In addition to the common contexts, allowed
 values are:

 - billing An address to be used for billing.

 - postal An address to be used for delivering physical items.
 The value for each key in the object MUST be true.

 * pref: Preference (optional) The preference of this address in
 relation to other addresses.

 * label: String (optional). A label describing the value in more
 detail.

 A StreetComponent object has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be StreetComponent.

 * type: String (mandatory). The type of this street component. The
 value MUST be either one of the following values, registered in a
 future RFC, or a vendor-specific value:

 - name. The street name.

 - number. The street number.

 - apartment. The apartment number or identifier.

 - room. The room number or identifier.

 - extension. The extension designation or box number.

 - direction. The cardinal direction, e.g. "North".

 - building. The building or building part this address is
 located in.

 - floor. The floor this address is located on.

Stepanek & Loffredo Expires 17 July 2022 [Page 18]

Internet-Draft JSContact January 2022

 - postOfficeBox. The post office box number or identifier.

 - separator. A separator for two street components. The value
 property of the component includes the verbatim separator, for
 example a newline character.

 - unknown. A name component value for which no type is known.

 * value: String (mandatory). The value of this street component.

2.5. Multilingual properties

2.5.1. localizations

 Type: String[PatchObject] (optional).

 A map of language tags [RFC5646] to patches, which localize a
 property value into the locale of the respective language tag. The
 paths in the PatchObject keys are relative to the Card object that
 includes the localizations property. A patch MUST NOT target the
 localizations property.

 The following example shows a Card object, where one of its addresses
 Tokyo is localized for the jp locale.

 "@type": "Card",
 ...
 "addresses": {
 "addr1": {
 "@type": "Address",
 "locality": "Tokyo",
 }
 },
 "localizations": {
 "jp": {
 "addresses/addr1/locality":""
 }
 }

 Figure 1

2.6. Additional properties

2.6.1. anniversaries

 Type : Id[Anniversary] (optional).

Stepanek & Loffredo Expires 17 July 2022 [Page 19]

Internet-Draft JSContact January 2022

 These are memorable dates and events for the entity represented by
 this card. An Anniversary object has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be Anniversary.

 * type: String (optional). Specifies the type of the anniversary.
 This RFC predefines the following types, but implementations MAY
 use additional values:

 - birth: a birth day anniversary

 - death: a death day anniversary

 * date: String (mandatory). The date of this anniversary, in the
 form "YYYY-MM-DD" (any part may be all 0s for unknown) or a
 [RFC3339] timestamp.

 * place: Address (optional). An address associated with this
 anniversary, e.g. the place of birth or death.

 * label: String (optional). A label describing the value in more
 detail.

2.6.2. personalInfo

 Type: Id[PersonalInformation] (optional).

 Defines personal information about the entity represented by this
 card. A PersonalInformation object has the following properties:

 * @type: String (mandatory). Specifies the type of this object.
 This MUST be PersonalInformation.

 * type: String (mandatory). Specifies the type for this personal
 information. Allowed values are:

 - expertise: a field of expertise or credential

 - hobby: a hobby

 - interest: an interest

 * value: String (mandatory). The actual information. This
 generally is free-text, but future specifications MAY restrict
 allowed values depending on the type of this PersonalInformation.

Stepanek & Loffredo Expires 17 July 2022 [Page 20]

Internet-Draft JSContact January 2022

 * level: String (optional) Indicates the level of expertise, or
 engagement in hobby or interest. Allowed values are: high, medium
 and low.

 * label: String (optional). A label describing the value in more
 detail.

2.6.3. notes

 Type: String (optional).

 Arbitrary notes about the entity represented by this card.

2.6.4. categories

 Type: String[Boolean] (optional). The set of free-text or URI
 categories that relate to the card. The set is represented as an
 object, with each key being a category. The value for each key in
 the object MUST be true.

2.6.5. timeZones

 Type: String[TimeZone] (optional). Maps identifiers of custom time
 zones to their time zone definitions. For a description of this
 property see the timeZones property definition in [RFC8984].

3. CardGroup

 MIME type: application/jscontact+json;type=cardgroup

 A CardGroup object represents a group of cards. Its members may be
 Cards or CardGroups.

3.1. Group properties

3.1.1. @type

 Type: String (mandatory).

 Specifies the type of this object. This MUST be CardGroup.

3.1.2. uid

 Type: String (mandatory). The uid of this group. Both CardGroup and
 Card share the same namespace for the uid property.

Stepanek & Loffredo Expires 17 July 2022 [Page 21]

Internet-Draft JSContact January 2022

3.1.3. members

 Type: String[Boolean] (mandatory). The members of this group.

 The set is represented as an object, with each key being the uid of
 another Card or CardGroup. The value for each key in the object MUST
 be true.

3.1.4. name

 Type: String (optional). The user-visible name for the group, e.g.
 "Friends". This may be any UTF-8 string of at least 1 character in
 length and maximum 255 octets in size. The same name may be used by
 two different groups.

3.1.5. card

 Type: Card (optional). The card that represents this group.

4. Implementation Status

 NOTE: Please remove this section and the reference to [RFC7942] prior
 to publication as an RFC. This section records the status of known
 implementations of the protocol defined by this specification at the
 time of posting of this Internet-Draft, and is based on a proposal
 described in [RFC7942]. The description of implementations in this
 section is intended to assist the IETF in its decision processes in
 progressing drafts to RFCs. Please note that the listing of any
 individual implementation here does not imply endorsement by the
 IETF. Furthermore, no effort has been spent to verify the
 information presented here that was supplied by IETF contributors.
 This is not intended as, and must not be construed to be, a catalog
 of available implementations or their features. Readers are advised
 to note that other implementations may exist. According to
 [RFC7942], "this will allow reviewers and working groups to assign
 due consideration to documents that have the benefit of running code,
 which may serve as evidence of valuable experimentation and feedback
 that have made the implemented protocols more mature. It is up to
 the individual working groups to use this information as they see
 fit".

4.1. IIT-CNR/Registro.it

 * Responsible Organization: Institute of Informatics and Telematics
 of National Research Council (IIT-CNR)/Registro.it

 * Location: https://rdap.pubtest.nic.it/
 (https://rdap.pubtest.nic.it/)

Stepanek & Loffredo Expires 17 July 2022 [Page 22]

Internet-Draft JSContact January 2022

 * Description: This implementation includes support for RDAP queries
 using data from the public test environment of .it ccTLD. The
 RDAP server returns responses including Card in place of jCard
 when queries contain the parameter jscard=1.

 * Level of Maturity: This is an "alpha" test implementation.

 * Coverage: This implementation includes all of the features
 described in this specification.

 * Contact Information: Mario Loffredo, mario.loffredo@iit.cnr.it

5. IANA Considerations

 TBD

6. Security Considerations

 TBD

7. References

7.1. Normative References

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/info/rfc2046>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC5870] Mayrhofer, A. and C. Spanring, "A Uniform Resource
 Identifier for Geographic Locations (’geo’ URI)",
 RFC 5870, DOI 10.17487/RFC5870, June 2010,
 <https://www.rfc-editor.org/info/rfc5870>.

Stepanek & Loffredo Expires 17 July 2022 [Page 23]

Internet-Draft JSContact January 2022

 [RFC6350] Perreault, S., "vCard Format Specification", RFC 6350,
 DOI 10.17487/RFC6350, August 2011,
 <https://www.rfc-editor.org/info/rfc6350>.

 [RFC6351] Perreault, S., "xCard: vCard XML Representation",
 RFC 6351, DOI 10.17487/RFC6351, August 2011,
 <https://www.rfc-editor.org/info/rfc6351>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC7095] Kewisch, P., "jCard: The JSON Format for vCard", RFC 7095,
 DOI 10.17487/RFC7095, January 2014,
 <https://www.rfc-editor.org/info/rfc7095>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,
 RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8984] Jenkins, N. and R. Stepanek, "JSCalendar: A JSON
 Representation of Calendar Data", RFC 8984,
 DOI 10.17487/RFC8984, July 2021,
 <https://www.rfc-editor.org/info/rfc8984>.

7.2. Informative References

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

Stepanek & Loffredo Expires 17 July 2022 [Page 24]

Internet-Draft JSContact January 2022

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3966] Schulzrinne, H., "The tel URI for Telephone Numbers",
 RFC 3966, DOI 10.17487/RFC3966, December 2004,
 <https://www.rfc-editor.org/info/rfc3966>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC6473] Saint-Andre, P., "vCard KIND:application", RFC 6473,
 DOI 10.17487/RFC6473, December 2011,
 <https://www.rfc-editor.org/info/rfc6473>.

 [RFC6474] Li, K. and B. Leiba, "vCard Format Extensions: Place of
 Birth, Place and Date of Death", RFC 6474,
 DOI 10.17487/RFC6474, December 2011,
 <https://www.rfc-editor.org/info/rfc6474>.

 [RFC6715] Cauchie, D., Leiba, B., and K. Li, "vCard Format
 Extensions: Representing vCard Extensions Defined by the
 Open Mobile Alliance (OMA) Converged Address Book (CAB)
 Group", RFC 6715, DOI 10.17487/RFC6715, August 2012,
 <https://www.rfc-editor.org/info/rfc6715>.

 [RFC6869] Salgueiro, G., Clarke, J., and P. Saint-Andre, "vCard
 KIND:device", RFC 6869, DOI 10.17487/RFC6869, February
 2013, <https://www.rfc-editor.org/info/rfc6869>.

 [RFC8605] Hollenbeck, S. and R. Carney, "vCard Format Extensions:
 ICANN Extensions for the Registration Data Access Protocol
 (RDAP)", RFC 8605, DOI 10.17487/RFC8605, May 2019,
 <https://www.rfc-editor.org/info/rfc8605>.

Authors’ Addresses

Stepanek & Loffredo Expires 17 July 2022 [Page 25]

Internet-Draft JSContact January 2022

 Robert Stepanek
 FastMail
 PO Box 234, Collins St West
 Melbourne VIC 8007
 Australia

 Email: rsto@fastmailteam.com

 Mario Loffredo
 IIT-CNR
 Via Moruzzi,1
 56124 Pisa
 Italy

 Email: mario.loffredo@iit.cnr.it

Stepanek & Loffredo Expires 17 July 2022 [Page 26]

