
JMAP N.M. Jenkins, Ed.
Internet-Draft Fastmail
Intended status: Standards Track M. Douglass, Ed.
Expires: 14 October 2024 Spherical Cow Group
 12 April 2024

 JMAP for Calendars
 draft-ietf-jmap-calendars-17

Abstract

 This document specifies a data model for synchronizing calendar data
 with a server using JMAP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 October 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Jenkins & Douglass Expires 14 October 2024 [Page 1]

Internet-Draft JMAP Calendars April 2024

Table of Contents

 1. Introduction . 4
 1.1. Notational Conventions 4
 1.2. Data Types . 4
 1.3. Terminology . 5
 1.4. Data Model Overview 5
 1.4.1. UIDs and CalendarEvent Ids 6
 1.5. Addition to the Capabilities Object 6
 1.5.1. urn:ietf:params:jmap:calendars 6
 1.5.2. urn:ietf:params:jmap:principals:availability 7
 1.5.3. urn:ietf:params:jmap:calendars:parse 7
 2. Principals and Sharing 7
 2.1. Principal Capability urn:ietf:params:jmap:calendars . . . 8
 2.2. Principal/getAvailability 8
 3. Participant Identities 11
 3.1. ParticipantIdentity/get 12
 3.2. ParticipantIdentity/changes 12
 3.3. ParticipantIdentity/set 12
 4. Calendars . 12
 4.1. Calendar/get . 17
 4.2. Calendar/changes . 18
 4.3. Calendar/set . 18
 5. Calendar Events . 19
 5.1. Additional JSCalendar properties 21
 5.1.1. calendarAddress 21
 5.1.2. mayInviteSelf . 21
 5.1.3. mayInviteOthers 22
 5.1.4. hideAttendees . 22
 5.2. Attachments . 22
 5.3. Per-user properties 22
 5.4. Recurring events . 23
 5.5. Updating for "this-and-future" 23
 5.5.1. Splitting an event 23
 5.5.2. Updating the base event and overriding previous . . . 24
 5.6. CalendarEvent/get . 24
 5.7. CalendarEvent/changes 25
 5.8. CalendarEvent/set . 26
 5.8.1. Patching . 29
 5.9. CalendarEvent/copy 32
 5.10. CalendarEvent/query 32
 5.10.1. Filtering . 32
 5.10.2. Sorting . 34
 5.11. CalendarEvent/queryChanges 34
 5.12. CalendarEvent/parse 34
 6. Alerts . 35
 6.1. Default alerts . 36
 6.2. Acknowledging an alert 36

Jenkins & Douglass Expires 14 October 2024 [Page 2]

Internet-Draft JMAP Calendars April 2024

 6.3. Snoozing an alert . 36
 6.4. Push events . 37
 7. Calendar Event Notifications 37
 7.1. Auto-deletion of Notifications 38
 7.2. Object Properties . 38
 7.3. CalendarEventNotification/get 39
 7.4. CalendarEventNotification/changes 39
 7.5. CalendarEventNotification/set 39
 7.6. CalendarEventNotification/query 40
 7.6.1. Filtering . 40
 7.6.2. Sorting . 40
 7.7. CalendarEventNotification/queryChanges 40
 8. Examples . 40
 8.1. Fetching initial data 40
 8.2. Creating an event . 43
 8.3. Snoozing an alert . 45
 8.4. Changing the default calendar 48
 8.5. Parsing an iCalendar file 48
 9. Security Considerations 50
 9.1. Privacy . 50
 9.2. Spoofing . 50
 9.3. Denial-of-service . 50
 9.3.1. Expanding Recurrences 51
 9.3.2. Firing alerts . 51
 9.3.3. Load spikes . 51
 9.4. Spam . 51
 10. IANA Considerations . 52
 10.1. JMAP Capability Registration for "calendars" 52
 10.2. JMAP Capability Registration for
 "principals:availability" 52
 10.3. JMAP Data Type Registration for "Calendar" 52
 10.4. JMAP Data Type Registration for "CalendarEvent" 53
 10.5. JMAP Data Type Registration for
 "CalendarEventNotification" 53
 10.6. JMAP Data Type Registration for "ParticipantIdentity" . 53
 10.7. JMAP Error Codes Registry 54
 10.7.1. calendarHasEvent 54
 10.7.2. noSupportedScheduleMethods 54
 10.7.3. cannotCalculateOccurrences 54
 10.8. Update to the JSCalendar Properties Registry 55
 10.8.1. Update to "JSCalendar Properties" Registry
 Template . 55
 10.8.2. Initial values for existing registrations 55
 10.9. JSCalendar Property Registrations 55
 10.9.1. id . 55
 10.9.2. baseEventId . 55
 10.9.3. calendarIds . 56
 10.9.4. isDraft . 56

Jenkins & Douglass Expires 14 October 2024 [Page 3]

Internet-Draft JMAP Calendars April 2024

 10.9.5. isOrigin . 56
 10.9.6. utcStart . 56
 10.9.7. utcEnd . 57
 10.9.8. calendarAddress 57
 10.9.9. mayInviteSelf 57
 10.9.10. mayInviteOthers 58
 10.9.11. hideAttendees 58
 11. Normative References . 58
 12. Informative References 59
 Authors’ Addresses . 60

1. Introduction

 JMAP ([RFC8620] JSON Meta Application Protocol) is a generic
 protocol for synchronizing data, such as mail, calendars or contacts,
 between a client and a server. It is optimized for mobile and web
 environments, and aims to provide a consistent interface to different
 data types.

 This specification defines a data model for synchronizing calendar
 data between a client and a server using JMAP. The data model is
 designed to allow a server to provide consistent access to the same
 data via CalDAV [RFC4791] as well as JMAP, however the functionality
 offered over the two protocols may differ. Unlike CalDAV, this
 specification does not define access to tasks or journal entries
 (VTODO or VJOURNAL iCalendar components in CalDAV).

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Type signatures, examples, and property descriptions in this document
 follow the conventions established in Section 1.1 of [RFC8620].

1.2. Data Types

 The Id data type defined in Section 1.2 of [RFC8620] is used in this
 document. So too are the UnsignedInt, UTCDateTime, LocalDateTime,
 Duration, and TimeZoneId data types defined in Sections 1.4.3, 1.4.4,
 1.4.5, 1.4.6, and 1.4.8 of [RFC8984] respectively.

Jenkins & Douglass Expires 14 October 2024 [Page 4]

Internet-Draft JMAP Calendars April 2024

1.3. Terminology

 The same terminology is used in this document as in the core JMAP
 specification, see Section 1.6 of [RFC8620].

 The terms ParticipantIdentity, Calendar, CalendarEvent, and
 CalendarEventNotification (with these specific capitalizations) are
 used to refer to the data types defined in this document and
 instances of those data types.

1.4. Data Model Overview

 An Account (see Section 1.6.2 of [RFC8620]) with support for the
 calendar data model contains zero or more Calendar objects, which is
 a named collection of CalendarEvents. Calendars can also provide
 defaults, such as alerts and a color to apply to events in the
 calendar. Clients commonly let users toggle visibility of events
 belonging to a particular calendar on/off. Servers may allow an
 event to belong to multiple Calendars within an account.

 A CalendarEvent is a representation of an event or recurring series
 of events in JSCalendar Event [RFC8984] format. Simple clients may
 ask the server to expand recurrences for them within a specific time
 period, and optionally convert times into UTC so they do not have to
 handle time zone conversion. More full-featured clients will want to
 access the full event information and handle recurrence expansion and
 time zone conversion locally.

 CalendarEventNotification objects keep track of the history of
 changes made to a calendar by other users, allowing calendar clients
 to notify the user of changes to their schedule.

 The ParticipantIdentity data type represents the identities of the
 current user within an Account, which determines which events the
 user is a participant of and possibly their permissions related to
 that event.

 In servers with support for JMAP Sharing [I-D.ietf-jmap-sharing],
 data may be shared with other users. Sharing permissions are managed
 per calendar. For example, an individual may have separate calendars
 for personal and work activities, with both contributing to their
 free-busy availability, but only the work calendar shared in its
 entirety with colleagues. Principals may also represent schedulable
 entities, such as a meeting room.

Jenkins & Douglass Expires 14 October 2024 [Page 5]

Internet-Draft JMAP Calendars April 2024

 Users can normally subscribe to any calendar to which they have
 access. This indicates the user wants this calendar to appear in
 their regular list of calendars. The separate "isVisible" property
 stores whether the user would currently like to view the events in a
 subscribed calendar.

1.4.1. UIDs and CalendarEvent Ids

 Each CalendarEvent has a uid property (Section 4.1.2 of [RFC8984]),
 which is a globally unique identifier that identifies the same event
 in different Accounts, or different instances of the same recurring
 event within an Account.

 An Account MUST NOT contain more than one CalendarEvent with the same
 uid unless all of the CalendarEvent objects have distinct, non-null
 values for their recurrenceId property. (This situation occurs if
 the principal is added to one or more specific instances of a
 recurring event without being invited to the whole series.)

 Each CalendarEvent also has an id, which is scoped to the JMAP
 Account and used for referencing it in JMAP methods. There is no
 necessary link between the uid property and the CalendarEvent’s id.
 CalendarEvents with the same uid in different Accounts MAY have
 different ids.

1.5. Addition to the Capabilities Object

 The capabilities object is returned as part of the JMAP Session
 object; see Section 2 of [RFC8620]. This document defines three
 additional capability URIs.

1.5.1. urn:ietf:params:jmap:calendars

 This represents support for the Calendar, CalendarEvent,
 CalendarEventNotification, and ParticipantIdentity data types and
 associated API methods, except for "CalendarEvent/parse". The value
 of this property in the JMAP Session capabilities property is an
 empty object.

 The value of this property in an account’s accountCapabilities
 property is an object that MUST contain the following information on
 server capabilities and permissions for that account:

 * *maxCalendarsPerEvent*: UnsignedInt|null
 The maximum number of Calendars (see Section 4) that can be can
 assigned to a single CalendarEvent object (see Section 5). This
 MUST be an integer >= 1, or null for no limit (or rather, the
 limit is always the number of Calendars in the account).

Jenkins & Douglass Expires 14 October 2024 [Page 6]

Internet-Draft JMAP Calendars April 2024

 * *minDateTime*: LocalDateTime
 The earliest date-time the server is willing to accept for any
 date stored in a CalendarEvent.
 * *maxDateTime*: LocalDateTime
 The latest date-time the server is willing to accept for any date
 stored in a CalendarEvent.
 * *maxExpandedQueryDuration*: Duration
 The maximum duration the user may query over when asking the
 server to expand recurrences.
 * *maxParticipantsPerEvent*: UnsignedInt|null
 The maximum number of participants a single event may have, or
 null for no limit.
 * *mayCreateCalendar*: Boolean
 If true, the user may create a calendar in this account.

1.5.2. urn:ietf:params:jmap:principals:availability

 Represents support for the Principal/getAvailability method. Any
 account with this capability MUST also have the
 urn:ietf:params:jmap:principals capability (see Section 1.5.1 of
 [I-D.ietf-jmap-sharing]).

 The value of this property in the JMAP Session capabilities property
 is an empty object.

 The value of this property in an account’s accountCapabilities
 property is an object that MUST contain the following information on
 server capabilities and permissions for that account:

 * *maxAvailabilityDuration*: Duration
 The maximum duration over which the server is prepared to
 calculate availability in a single call (see Section 2.2).

1.5.3. urn:ietf:params:jmap:calendars:parse

 This represents support for the CalendarEvent/parse method (see
 Section 5.12). The value of this property is an empty object in both
 the JMAP session capabilities property and an account’s
 accountCapabilities property.

2. Principals and Sharing

 For systems that also support JMAP Sharing [I-D.ietf-jmap-sharing],
 the urn:ietf:params:jmap:calendars capability is used to indicate
 that this principal may be used with calendaring. A new method is
 defined to allow users to query availability when scheduling events.

Jenkins & Douglass Expires 14 October 2024 [Page 7]

Internet-Draft JMAP Calendars April 2024

2.1. Principal Capability urn:ietf:params:jmap:calendars

 A urn:ietf:params:jmap:calendars property is added to the Principal
 "capabilities" object, the value of which is an object with the
 following properties:

 * *accountId*: Id|null
 Id of Account with the urn:ietf:params:jmap:calendars capability
 that contains the calendar data for this principal, or null if
 none (e.g. the Principal is a group just used for permissions
 management), or the user does not have access to any data in the
 account (with the exception of free/busy, which is governed by the
 mayGetAvailability property). The corresponding Account object
 can be found in the principal’s "accounts" property, as per
 Section 2 of [I-D.ietf-jmap-sharing].
 * *mayGetAvailability*: Boolean
 May the user call the "Principal/getAvailability" method with this
 Principal?
 * *mayShareWith*: Boolean
 May the user add this principal as a calendar sharee (by adding
 them to the shareWith property of a calendar, see Section 4)?
 * *calendarAddress*: String
 If this principal may be added as a participant to an event, this
 is the calendarAddress to use to represent it.
 * *sendTo*: String[String]|null
 If this principal may be added as a participant to an event, this
 is the Participant#sendTo property to add (see Section 4.4.5 of
 [RFC8984]) for scheduling messages to reach it.

2.2. Principal/getAvailability

 This method calculates the availability of the principal for
 scheduling within a requested time period. It takes the following
 arguments:

 * *accountId*: Id
 The id of the account to use.
 * *id*: Id
 The id of the Principal to calculate availability for.
 * *utcStart*: UTCDateTime
 The start time (inclusive) of the period for which to return
 availability.
 * *utcEnd*: UTCDateTime
 The end time (exclusive) of the period for which to return
 availability.
 * *showDetails*: Boolean
 If true, event details will be returned if the user has permission
 to view them.

Jenkins & Douglass Expires 14 October 2024 [Page 8]

Internet-Draft JMAP Calendars April 2024

 * *eventProperties*: String[]|null
 A list of properties to include in any JSCalendar Event object
 returned. If null, all properties of the event will be returned.
 Otherwise, only properties with names in the given list will be
 returned.

 The server will first find all relevant events, expanding any
 recurring events. Relevant events are ones where all of the
 following is true:

 * The principal is subscribed to the calendar.
 * The "includeInAvailability" property of the calendar for the
 principal is "all" or "attending".
 * The user has the "mayReadFreeBusy" permission for the calendar.
 * The event finishes after the "utcStart" argument and starts before
 the "utcEnd" argument.
 * The event’s "privacy" property is not "secret".
 * The "freeBusyStatus" property of the event is "busy" (or omitted,
 as this is the default).
 * The "status" property of the event is not "cancelled".
 * If the "includeInAvailability" property of the calendar is
 "attending", then the principal is a participant of the event, and
 has a "participationStatus" of "accepted" or "tentative".

 If an event is in more than one calendar, it is relevant if all of
 the above are true for any one calendar that it is in.

 The server then generates a BusyPeriod object for each of these
 events. A *BusyPeriod* object has the following properties:

 * *utcStart*: UTCDateTime

 The start time (inclusive) of the period this represents.

 * *utcEnd*: UTCDateTime

 The end time (exclusive) of the period this represents.

 * *busyStatus*: String (optional, default "unavailable")

 This MUST be one of

 - confirmed: The event status is "confirmed" and the principal’s
 "participationStatus" is "attending".
 - tentative: The event status is "tentative" or the principal’s
 "participationStatus" is "tentative".
 - unavailable: The principal is not available for scheduling at
 this time

Jenkins & Douglass Expires 14 October 2024 [Page 9]

Internet-Draft JMAP Calendars April 2024

 for any other reason.

 * *event*: JSCalendar Event|null

 The JSCalendar Event representation of the event, or null if any
 of the following are true:

 - The "showDetails" argument is false.
 - The "privacy" property of the event is "private".
 - The user does not have the "mayReadItems" permission for any of
 the calendars the event is in.

 If an eventProperties argument was given, any properties in the
 JSCalendar Event that are not in the eventProperties list are
 removed from the returned representation.

 The server MAY also generate BusyPeriod objects based on other
 information it has about the principal’s availability, such as office
 hours.

 Finally, the server MUST merge and split BusyPeriod objects where the
 "event" property is null, such that none of them overlap and either
 there is a gap in time between any two objects (the utcEnd of one
 does not equal the utcStart of another) or those objects have a
 different busyStatus property. If there are overlapping BusyPeriod
 time ranges with different "busyStatus" properties the server MUST
 choose the value in the following order: confirmed > unavailable >
 tentative.

 The response has the following argument:

 * *list*: BusyPeriod[]
 The list of BusyPeriod objects calculated as described above.

 The following additional errors may be returned instead of the
 "Principal/getAvailability" response:

 notFound: No principal with this id exists, or the user does not have
 permission to see that this principal exists.

 forbidden: The user does not have permission to query this
 principal’s availability.

 tooLarge: The duration between utcStart and utcEnd is longer than the
 server is willing to calculate availability for.

 rateLimit: Too many availability requests have been made recently and
 the user is being rate limited. It may work to try again later.

Jenkins & Douglass Expires 14 October 2024 [Page 10]

Internet-Draft JMAP Calendars April 2024

3. Participant Identities

 A ParticipantIdentity stores information about a URI that represents
 the user within that account in an event’s participants. It has the
 following properties:

 * *id*: Id (immutable; server-set)

 The id of the ParticipantIdentity.

 * *name*: String (default: ")

 The display name of the participant to use when adding this
 participant to an event, e.g. "Joe Bloggs".

 * *calendarAddress*: String

 The URI that represents this participant for scheduling. This URI
 may also be the URI for one of the sendTo methods.

 * *sendTo*: String[String]

 Represents methods by which the participant may receive
 invitations and updates to an event.

 The keys in the property value are the available methods and MUST
 only contain ASCII alphanumeric characters (A-Za-z0-9). The value
 is a URI for the method specified in the key.

 * *isDefault*: Boolean (server-set)

 This SHOULD be true for exactly one participant identity in any
 account, and MUST NOT be true for more than one participant
 identity within an account. The default identity should be used
 by clients whenever they need to choose an identity for the user
 within this account, and they do not have any other information on
 which to make a choice. For example, if creating a scheduled
 event in this account, the default identity may be automatically
 added as an owner. (But the client may ignore this if, for
 example, it has its own feature to allow users to choose which
 identity to use based on the invitees.)

 A participant in an event corresponds to a ParticipantIdentity if the
 calendarAddress property of the participant is equivalent to the
 calendarAddress property of the identity after syntax-based
 normalisation, as per Section 6.2.2 of [RFC3986].

 The following JMAP methods are supported.

Jenkins & Douglass Expires 14 October 2024 [Page 11]

Internet-Draft JMAP Calendars April 2024

3.1. ParticipantIdentity/get

 This is a standard "/get" method as described in Section 5.1 of
 [RFC8620]. The "ids" argument may be null to fetch all at once.

3.2. ParticipantIdentity/changes

 This is a standard "/changes" method as described in Section 5.2 of
 [RFC8620].

3.3. ParticipantIdentity/set

 This is a standard "/set" method as described in Section 5.3 of
 [RFC8620], but with the following additional request argument:

 * *onSuccessSetIsDefault*: Id|null
 If an id is given, and all creates, updates and destroys (if any)
 succeed without error, the server will try to set this identity as
 the default. (For references to ParticipantIdentity creations,
 this is equivalent to a creation-reference, so the id will be the
 creation id prefixed with a "#".)

 If the id is not found, or the change is not permitted by the server
 for policy reasons, it MUST be ignored and the currently default
 ParticipantIdentity (if any) will remain as such. No error is
 returned to the client in this case.

 As per Section 5.3 of [RFC8620], if the default is successfully
 changed, any changed objects MUST be reported in either the "created"
 or "updated" argument in the response as appropriate, with the
 server-set value included.

 The server MAY restrict the uri values the user may claim, for
 example only allowing mailto: URIs with email addresses that belong
 to the user. A standard forbidden error is returned to reject non-
 permissible changes.

4. Calendars

 A Calendar is a named collection of events. All events are
 associated with at least one calendar.

 A *Calendar* object has the following properties:

 * *id*: Id (immutable; server-set)
 The id of the calendar.
 * *name*: String

Jenkins & Douglass Expires 14 October 2024 [Page 12]

Internet-Draft JMAP Calendars April 2024

 The user-visible name of the calendar. This may be any UTF-8
 string of at least 1 character in length and maximum 255 octets in
 size.
 * *description*: String|null (default: null)
 An optional longer-form description of the calendar, to provide
 context in shared environments where users need more than just the
 name.
 * *color*: String|null (default: null)
 A color to be used when displaying events associated with the
 calendar.
 If not null, the value MUST be a case-insensitive color name taken
 from the set of names defined in Section 4.3 of CSS Color Module
 Level 3 COLORS (https://www.w3.org/TR/css-color-3/), or an RGB
 value in hexadecimal notation, as defined in Section 4.2.1 of CSS
 Color Module Level 3.
 The color SHOULD have sufficient contrast to be used as text on a
 white background.

 * *sortOrder*: UnsignedInt (default: 0)

 Defines the sort order of calendars when presented in the client’s
 UI, so it is consistent between devices. The number MUST be an
 integer in the range 0 <= sortOrder < 2^(31.)

 A calendar with a lower order is to be displayed before a calendar
 with a higher order in any list of calendars in the client’s UI.
 Calendars with equal order should be sorted in alphabetical order
 by name. The sorting should take into account locale-specific
 character order convention.

 * *isSubscribed*: Boolean

 True if the user has indicated they wish to see this Calendar in
 their client. This should default to false for Calendars in
 shared accounts the user has access to and true for any new
 Calendars created by the user themself.

 If false, the calendar should only be displayed when the user
 explicitly requests it or to offer it for the user to subscribe
 to. For example, a company may have a large number of shared
 calendars which all employees have permission to access, but you
 would only subscribe to the ones you care about and want to be
 able to have normally accessible.

 * *isVisible*: Boolean (default: true)

Jenkins & Douglass Expires 14 October 2024 [Page 13]

Internet-Draft JMAP Calendars April 2024

 Should the calendar’s events be displayed to the user at the
 moment? Clients MUST ignore this property if isSubscribed is
 false. If an event is in multiple calendars, it should be
 displayed if isVisible is true for any of those calendars.

 * *isDefault*: Boolean (server-set)

 This SHOULD be true for exactly one calendar in any account, and
 MUST NOT be true for more than one calendar within an account.
 The default calendar should be used by clients whenever they need
 to choose a calendar for the user within this account, and they do
 not have any other information on which to make a choice. For
 example, if the user creates a new event, the client may
 automatically set the event as belonging to the default calendar
 from the user’s primary account.

 * *includeInAvailability*: String

 Should the calendar’s events be used as part of availability
 calculation? This MUST be one of:

 - all: all events are considered.
 - attending: events the user is a confirmed or tentative
 participant of are considered.
 - none: all events are ignored (but may be considered if also in
 another calendar).

 This should default to "all" for the calendars in the user’s own
 account, and "none" for calendars shared with the user.

 * *defaultAlertsWithTime*: Id[Alert]|null

 A map of alert ids to Alert objects (see Section 4.5.2 of
 [RFC8984]) to apply for events where "showWithoutTime" is false
 and "useDefaultAlerts" is true. Ids MUST be unique across all
 default alerts in the account, including those in other calendars;
 a UUID is recommended.

 If omitted on creation, the default is server dependent. For
 example, servers may choose to always default to null, or may copy
 the alerts from the default calendar.

 * *defaultAlertsWithoutTime*: Id[Alert]|null

Jenkins & Douglass Expires 14 October 2024 [Page 14]

Internet-Draft JMAP Calendars April 2024

 A map of alert ids to Alert objects (see Section 4.5.2 of
 [RFC8984]) to apply for events where "showWithoutTime" is true and
 "useDefaultAlerts" is true. Ids MUST be unique across all default
 alerts in the account, including those in other calendars; a UUID
 is recommended.

 If omitted on creation, the default is server dependent. For
 example, servers may choose to always default to null, or may copy
 the alerts from the default calendar.

 * *timeZone*: TimeZoneId|null (default: null)

 The time zone to use for events without a time zone when the
 server needs to resolve them into absolute time, e.g., for alerts
 or availability calculation. The value MUST be a time zone id
 from the IANA Time Zone Database TZDB (https://www.iana.org/time-
 zones). If null, the timeZone of the account’s associated
 Principal will be used. Clients SHOULD use this as the default
 for new events in this calendar if set.

 * *shareWith*: Id[CalendarRights]|null (default: null)

 A map of Principal id to rights for principals this calendar is
 shared with. The principal to which this calendar belongs MUST
 NOT be in this set. This is null if the calendar is not shared
 with anyone. May be modified only if the user has the mayAdmin
 right. The account id for the principals may be found in the
 urn:ietf:params:jmap:principals:owner capability of the Account to
 which the calendar belongs.

 * *myRights*: CalendarRights (server-set)

 The set of access rights the user has in relation to this
 Calendar. If any event is in multiple calendars, the user has the
 following rights:

 - The user may fetch the event if they have the mayReadItems
 right on any calendar the event is in.
 - The user may remove an event from a calendar (by modifying the
 event’s "calendarIds" property) if the user has the appropriate
 permission for that calendar.
 - The user may make other changes to the event if they have the
 right to do so in *all* calendars to which the event belongs.

 A *CalendarRights* object has the following properties:

 * *mayReadFreeBusy*: Boolean

Jenkins & Douglass Expires 14 October 2024 [Page 15]

Internet-Draft JMAP Calendars April 2024

 The user may read the free-busy information for this calendar as
 part of a call to Principal/getAvailability (see Section 2.2).

 * *mayReadItems*: Boolean

 The user may fetch the events in this calendar.

 * *mayWriteAll*: Boolean

 The user may create, modify or destroy all events in this
 calendar, or move events to or from this calendar. If this is
 true, the mayWriteOwn, mayUpdatePrivate and mayRSVP properties
 MUST all also be true.

 * *mayWriteOwn*: Boolean

 The user may create, modify or destroy an event on this calendar
 if either they are the owner of the event (see below) or the event
 has no owner. This means the user may also transfer ownership by
 updating an event so they are no longer an owner.

 * *mayUpdatePrivate*: Boolean

 The user may modify per-user properties (see Section 5.3) on all
 events in the calendar, even if they would not otherwise have
 permission to modify that event. These properties MUST all be
 stored per-user, and changes do not affect any other user of the
 calendar.

 The user may also modify these properties on a per-occurrence
 basis for recurring events (updating the "recurrenceOverrides"
 property of the event to do so).

 * *mayRSVP*: Boolean

 The user may modify the following properties of any Participant
 object that corresponds to one of the user’s ParticipantIdentity
 objects in the account, even if they would not otherwise have
 permission to modify that event:

 - participationStatus
 - participationComment
 - expectReply
 - scheduleAgent
 - scheduleSequence
 - scheduleUpdated

Jenkins & Douglass Expires 14 October 2024 [Page 16]

Internet-Draft JMAP Calendars April 2024

 If the event has its "mayInviteSelf" property set to true (see
 Section 5.1.2), then the user may also add a new Participant to
 the event with calendarAddress/sendTo properties that are the same
 as the calendarAddress/sendTo properties of one of the user’s
 ParticipantIdentity objects in the account. The roles property of
 the participant MUST only contain "attendee".

 If the event has its "mayInviteOthers" property set to true (see
 Section 5.1.3) and there is an existing Participant in the event
 corresponding to one of the user’s ParticipantIdentity objects in
 the account, then the user may also add new participants. The
 roles property of any new participant MUST only contain
 "attendee".

 The user may also do all of the above on a per-occurrence basis
 for recurring events (updating the recurrenceOverrides property of
 the event to do so).

 * *mayAdmin*: Boolean

 The user may modify the "shareWith" property for this calendar.

 * *mayDelete*: Boolean

 The user may delete the calendar itself.

 The user is an *owner* for an event if the CalendarEvent object has a
 "participants" property, and one of the Participant objects both:

 a. Has the "owner" role.

 b. Corresponds to one of the user’s ParticipantIdentity objects in
 the account (as per Section 3).

 An event has no owner if its participants property is null or
 omitted, or if none of the Participant objects have the "owner" role.

4.1. Calendar/get

 This is a standard "/get" method as described in Section 5.1 of
 [RFC8620]. The "ids" argument may be null to fetch all at once.

 If mayReadFreeBusy is the only permission the user has, the calendar
 MUST NOT be returned in Calendar/get and Calendar/query; it must
 behave as though it did not exist. The data is just used as part of
 Principal/getAvailability.

Jenkins & Douglass Expires 14 October 2024 [Page 17]

Internet-Draft JMAP Calendars April 2024

4.2. Calendar/changes

 This is a standard "/changes" method as described in Section 5.2 of
 [RFC8620].

4.3. Calendar/set

 This is a standard "/set" method as described in Section 5.3 of
 [RFC8620] but with the following additional request arguments:

 * *onDestroyRemoveEvents*: Boolean (default: false)
 If false, any attempt to destroy a Calendar that still has
 CalendarEvents in it will be rejected with a calendarHasEvent
 SetError. If true, any CalendarEvents that were in the Calendar
 will be removed from it, and if in no other Calendars they will be
 destroyed. This SHOULD NOT send scheduling messages to
 participants or create CalendarEventNotification objects.
 * *onSuccessSetIsDefault*: Id|null
 If an id is given, and all creates, updates and destroys (if any)
 succeed without error, the server will try to set this calendar as
 the default. (For references to Calendar creations, this is
 equivalent to a creation-reference, so the id will be the creation
 id prefixed with a "#".)
 If the id is not found, or the change is not permitted by the
 server for policy reasons, it MUST be ignored and the currently
 default calendar (if any) will remain as such. No error is
 returned to the client in this case.
 As per Section 5.3 of [RFC8620], if the default is successfully
 changed, any changed objects MUST be reported in either the
 "created" or "updated" argument in the response as appropriate,
 with the server-set value included.

 The "shareWith" property may only be set by users that have the
 mayAdmin right. When modifying the shareWith property, the user
 cannot give a right to a principal if the principal did not already
 have that right and the user making the change also does not have
 that right. Any attempt to do so must be rejected with a forbidden
 SetError.

 Users can subscribe or unsubscribe to a calendar by setting the
 "isSubscribed" property. The server MAY forbid users from
 subscribing to certain calendars even though they have permission to
 see them, rejecting the update with a forbidden SetError.

 The following properties may be set by anyone who is subscribed to
 the calendar and are always stored per-user:

 * name

Jenkins & Douglass Expires 14 October 2024 [Page 18]

Internet-Draft JMAP Calendars April 2024

 * color
 * sortOrder
 * isVisible
 * timeZone
 * includeInAvailability
 * defaultAlertsWithoutTime
 * defaultAlertsWithTime

 The "name", "color", and "timeZone" properties are initially
 inherited from the owner’s copy of the calendar, but if set by a
 sharee then they get their own copy of the property; it does not
 change for any other principals. If the value of the property in the
 owner’s calendar changes after this, it does not overwrite the
 sharee’s value.

 The "sortOrder", "isVisible", "includeInAvailability",
 "defaultAlertsWithTime", and "defaultAlertsWithoutTime" properties
 are initally the default value for each sharee; they are not
 inherited from the owner.

 The following extra SetError type is defined:

 For "destroy":

 * *calendarHasEvent*: The Calendar has at least one CalendarEvent
 assigned to it, and the "onDestroyRemoveEvents" argument was
 false.

5. Calendar Events

 A *CalendarEvent* object contains information about an event, or
 recurring series of events, that takes place at a particular time.
 It is a JSCalendar Event object, as defined in [RFC8984], with the
 following additional properties:

 * *id*: Id (immutable; server-set)

 The id of the CalendarEvent. The id uniquely identifies a
 JSCalendar Event with a particular "uid" and "recurrenceId" within
 a particular account.

 * *baseEventId*: Id|null (immutable; server-set)

 This is only defined if the "id" property is a synthetic id,
 generated by the server to represent a particular instance of a
 recurring event (see Section 5.10). This property gives the id of
 the "real" CalendarEvent this was generated from.

Jenkins & Douglass Expires 14 October 2024 [Page 19]

Internet-Draft JMAP Calendars April 2024

 * *calendarIds*: Id[Boolean]

 The set of Calendar ids this event belongs to. An event MUST
 belong to one or more Calendars at all times (until it is
 destroyed). The set is represented as an object, with each key
 being a Calendar id. The value for each key in the object MUST be
 true.

 * *isDraft*: Boolean (default: false)

 If true, this event is to be considered a draft. The server will
 not send any scheduling messages to participants or send push
 notifications for alerts. This may only be set to true upon
 creation. Once set to false, the value cannot be updated to true.
 This property MUST NOT appear in "recurrenceOverrides".

 * *isOrigin*: Boolean (server-set)

 Is this the authoritative source for this event (i.e., does it
 control scheduling for this event; the event has not been added as
 a result of an invitation from another calendar system)? This is
 true if, and only if:

 - the event’s "replyTo" property is null; or
 - the account will receive messages sent to at least one of the
 methods specified in the "replyTo" property of the event.

 * *utcStart*: UTCDateTime

 For simple clients that do not implement time zone support.
 Clients should only use this if also asking the server to expand
 recurrences, as you cannot accurately expand a recurrence without
 the original time zone.

 This property is calculated at fetch time by the server. Time
 zones are political and they can and do change at any time.
 Fetching exactly the same property again may return a different
 results if the time zone data has been updated on the server.
 Time zone data changes are not considered "updates" to the event.

 If set, the server will convert the UTC date to the event’s
 current time zone and store the local time.

 This property is not included in CalendarEvent/get responses by
 default and must be requested explicitly.

 Floating events (events without a time zone) will be interpreted
 as per the time zone given as a CalendarEvent/get argument.

Jenkins & Douglass Expires 14 October 2024 [Page 20]

Internet-Draft JMAP Calendars April 2024

 Note that it is not possible to accurately calculate the expansion
 of recurrence rules or recurrence overrides with the utcStart
 property rather than the local start time. Even simple
 recurrences such as "repeat weekly" may cross a daylight-savings
 boundary and end up at a different UTC time. Clients that wish to
 use "utcStart" are RECOMMENDED to request the server expand
 recurrences (see Section 5.10).

 * *utcEnd*: UTCDateTime

 The server calculates the end time in UTC from the start/timeZone/
 duration properties of the event. This property is not included
 by default and must be requested explicitly. Like utcStart, it is
 calculated at fetch time if requested and may change due to time
 zone data changes. Floating events will be interpreted as per the
 time zone given as a CalendarEvent/get argument.

 CalendarEvent objects MUST NOT have a "method" property as this is
 only used when representing iTIP [RFC5546] scheduling messages, not
 events in a data store.

5.1. Additional JSCalendar properties

 This document defines four new JSCalendar properties for common use.

5.1.1. calendarAddress

 Type: String

 Context: Participant

 This is a URI as defined by [RFC3986] or any other IANA-registered
 form for a URI. It is the same as the CAL-ADDRESS value of an
 ATTENDEE or ORGANIZER in iCalendar ([RFC5545]) it globally
 identifies a particular participant, even across different events.

5.1.2. mayInviteSelf

 Type: Boolean (default: false)

 Context: Event, Task

 If true, anyone may add themselves to the event as a participant with
 the "attendee" role. This property MUST NOT be altered in the
 recurrenceOverrides; it may only be set on the base object.

Jenkins & Douglass Expires 14 October 2024 [Page 21]

Internet-Draft JMAP Calendars April 2024

5.1.3. mayInviteOthers

 Type: Boolean (default: false)

 Context: Event, Task

 If true, any current participant with the "attendee" role may add new
 participants with the "attendee" role to the event. This property
 MUST NOT be altered in the recurrenceOverrides; it may only be set on
 the base object.

5.1.4. hideAttendees

 Type: Boolean (default: false)

 Context: Event, Task

 If true, only the owners of the event may see the full set of
 participants. Other sharees of the event may only see the owners and
 themselves. This property MUST NOT be altered in the
 recurrenceOverrides; it may only be set on the base object.

5.2. Attachments

 The Link object, as defined in Section 4.2.7 of [RFC8984], with a
 "rel" property equal to "enclosure" is used to represent attachments.
 Instead of mandating an "href" property, clients may set a "blobId"
 property instead to reference a blob of binary data in the account,
 as per Section 6 of [RFC8620].

 The server MUST translate this to an embedded data: URL [RFC2397]
 when sending the event to a system that cannot access the blob.
 Servers that support CalDAV access to the same data are recommended
 to expose these files as managed attachments [?@RFC8607].

5.3. Per-user properties

 In shared calendars, any top-level property registered in the IANA
 registry as "Is Per-User: yes" (see Section 10.8) MUST be stored per-
 user. This includes:

 * keywords
 * color
 * freeBusyStatus
 * useDefaultAlerts
 * alerts

Jenkins & Douglass Expires 14 October 2024 [Page 22]

Internet-Draft JMAP Calendars April 2024

 If the user modifies any such properties on a per-occurrence basis
 for recurring events then again, these MUST also be stored per-user.
 Sharees initially receive the default value for each of these
 properties, not whatever value another user may have set.

 When writing only per-user properties, the "updated" property MUST
 also be stored just for that user if set. When fetching the
 "updated" property, the value to return is whichever is later of the
 per-user updated time or the updated time of the base event.

5.4. Recurring events

 Events may recur, in which case they represent multiple occurrences
 or instances. The data store will either contain a single base
 event, containing a recurrence rule and/or recurrence overrides; or,
 a set of individual instances (when invited to specific occurrences
 only).

 The client may ask the server to expand recurrences within a specific
 time range in "CalendarEvent/query". This will generate synthetic
 ids representing individual instances in the requested time range.
 The client can fetch and update the objects using these ids and the
 server will make the appropriate changes to the base event.
 Synthetic ids do not appear in "CalendarEvent/changes" responses;
 only the ids of events as actually stored on the server.

 If the user is invited to specific instances then later added to the
 base event, "CalendarEvent/changes" will show the ids of all the
 individual instances being destroyed and the id for the base event
 being created.

5.5. Updating for "this-and-future"

 When editing a recurring event, you can either update the base event
 (affecting all instances unless overriden) or update an override for
 a specific occurrence. To update all occurrences from a specific
 point onwards, there are therefore two options: split the event, or
 update the base event and override all occurrences before the split
 point back to their original values.

5.5.1. Splitting an event

 If the event is not scheduled (has no participants), the simplest
 thing to do is to duplicate the event, modifying the recurrence rules
 of the original so it finishes before the split point, and the
 duplicate so it starts at the split point. As per JSCalendar
 Section 4.1.3 of [RFC8984], a "next" and "first" relation MUST be set
 on the new objects respectively.

Jenkins & Douglass Expires 14 October 2024 [Page 23]

Internet-Draft JMAP Calendars April 2024

 Splitting an event however is problematic in the case of a scheduled
 event, because the participants will see it as two separate changes,
 and may not understand the connection between the two.

5.5.2. Updating the base event and overriding previous

 For scheduled events, a better approach is to avoid splitting and
 instead update the base event with the new property value for "this
 and future", then create overrides for all occurrences before the
 split point to restore the property to its previous value. Indeed,
 this may be the only option the user has permission to do if not an
 owner of the event.

 Clients may choose to skip creating the overrides if the old data is
 not important, for example if the "alerts" property is being updated,
 it is probably not important to create overrides for events in the
 past with the alerts that have already fired.

5.6. CalendarEvent/get

 This is a standard "/get" method as described in Section 5.1 of
 [RFC8620], with three extra arguments:

 * *recurrenceOverridesBefore*: UTCDateTime|null
 If given, only recurrence overrides with a recurrence id before
 this date (when translated into UTC) will be returned.
 * *recurrenceOverridesAfter*: UTCDateTime|null
 If given, only recurrence overrides with a recurrence id on or
 after this date (when translated into UTC) will be returned.
 * *reduceParticipants*: Boolean (default: false)
 If true, only participants with the "owner" role or corresponding
 to the user’s participant identities will be returned in the
 "participants" property of the base event and any recurrence
 overrides. If false, all participants will be returned.
 * *timeZone*: TimeZoneId (default "Etc/UTC")
 The time zone to use when calculating the utcStart/utcEnd property
 of floating events. This argument has no effect if those
 properties are not requested.

 A CalendarEvent object is a JSCalendar Event object so may have
 arbitrary properties. If the client makes a "CalendarEvent/get" call
 with a null or omitted "properties" argument, all properties defined
 on the JSCalendar Event object in the store are returned, along with
 the "id", "calendarIds", "isDraft", and "isOrigin" properties. The
 "utcStart" and "utcEnd" computed properties are only returned if
 explicitly requested. If either are requested, the
 "recurrenceOverrides" property MUST NOT be requested (recurrence
 overrides cannot be interpreted accurately with just the UTC times).

Jenkins & Douglass Expires 14 October 2024 [Page 24]

Internet-Draft JMAP Calendars April 2024

 If specific properties are requested from the JSCalendar Event and
 the property is not present on the object in the server’s store, the
 server MUST return the default value if known for that property.

 A requested id may represent a server-expanded single instance of a
 recurring event if the client asked the server to expand recurrences
 in "CalendarEvent/query". In such a case, the server will resolve
 any overrides and set the appropriate "start" and "recurrenceId"
 properties on the CalendarEvent object returned to the client. The
 "recurrenceRules" and "recurrenceOverrides" properties MUST be
 returned as null if requested for such an event.

 An event with the same uid/recurrenceId may appear in different
 accounts. Clients may coalesce the view of such events, but must be
 aware that the data may be different in the different accounts due to
 per-user properties, difference in permissions, etc.

 The "hideAttendees" property of a JSCalendar Event object allows the
 event owner(s) to reduce the visibility of sharees into the set of
 participants. If this is true, when a non-owner sharee fetches the
 event, the server MUST only return participants with the "owner" role
 or corresponding to the user’s participant identities.

 The "privacy" property of a JSCalendar Event object allows the
 principal that owns the calendar to override how sharees of the
 calendar see the event. If set to "private", then when a sharee
 fetches the event the server MUST only return properties that are:

 * the basic time and metadata properties of the JSCalendar Event
 object as specified in Section 4.4.3 of [RFC8984]; or
 * properties that are wholly derived from these permitted properties
 (i.e., utcStart, utcEnd); or
 * Additional CalendarEvent properties not derived from the
 JSCalendar Event data (i.e., id, baseEventId, calendarIds,
 isDraft, isOrigin).

 If "privacy" is set to "secret", the server MUST behave as though the
 event does not exist for all users other than the principal that owns
 the calendar.

5.7. CalendarEvent/changes

 This is a standard "/changes" method as described in Section 5.2 of
 [RFC8620].

 Synthetic ids generated by the server expanding recurrences in
 "CalendarEvent/query" do not appear in "CalendarEvent/changes"
 responses; only the ids of events as actually stored on the server.

Jenkins & Douglass Expires 14 October 2024 [Page 25]

Internet-Draft JMAP Calendars April 2024

5.8. CalendarEvent/set

 This is a standard "/set" method as described in Section 5.3 of
 [RFC8620], with the following extra argument:

 * *sendSchedulingMessages*: Boolean (default: false)
 If true then any changes to scheduled events will be sent to all
 the participants (if the server is the origin of the event) or
 back to the origin (otherwise). If false, the changes only affect
 this account and no scheduling messages will be sent.
 The server may send the scheduling message via any of the methods
 defined on the sendTo property of a participant (if the server is
 the origin) or the replyTo property of the event (otherwise) that
 it supports. If no supported methods are available, the server
 MUST reject the change with a noSupportedScheduleMethods SetError.
 At time of writing, the most common interoperable protocol for
 sending scheduling methods between participants on different
 servers is iMIP [RFC5546]. A future document will provide
 recommendations of what iMIP messages to send based on the change
 for best compatibility.

 An id may represent a server-expanded single instance of a recurring
 event if the client asked the server to expand recurrences in
 "CalendarEvent/query". When the synthetic id for such an instance is
 given, the server MUST process an update as an update to the
 recurrence override for that instance on the base event, and a
 destroy as removing just that instance.

 Clients MUST NOT send an update/destroy to both the base event and a
 synthetic instance in a single "/set" request; the result of this is
 undefined. Note however, a client may replace a series of explicit
 instances (each with the same uid but a different recurrenceId
 property) with the base event (same uid, no recurrenceId) in a single
 "/set" call. (So the /set will destroy the existing instances and
 create the new base event.) This will happen when someone is
 initially invited to a specific instance or instances of a recurring
 event, then later invited to the whole series.

 If a property is set to null in a create/update, this is equivalent
 to omitting/removing the property from the JSCalendar Event object.

 Servers MUST enforce the user’s permissions as returned in the
 "myRights" property of the Calendar objects and reject changes with a
 forbidden SetError if not allowed.

 The "privacy" property of a JSCalendar Event object allows the
 principal to override how sharees of the calendar see the event. If
 this is set to "private", a sharee may not delete or update the event

Jenkins & Douglass Expires 14 October 2024 [Page 26]

Internet-Draft JMAP Calendars April 2024

 (even if only modifying per-user properties); any attempt to modify
 such an event MUST be rejected with a forbidden SetError. If set to
 "secret", the server MUST behave as though the event does not exist
 for all users other than the principal that owns the calendar.

 The "privacy" property MUST NOT be set to anything other than
 "public" (the default) for events in a calendar that does not belong
 to the user (e.g. a shared team calendar, or a calendar shared by
 another user). The server MUST reject this with an invalidProperties
 SetError.

 If omitted on create, the server MUST set the following properties to
 an appropriate value:

 * @type
 * uid
 * created

 If (and only if) the server is the origin of the event (i.e., the
 event’s "isOrigin" property is true), the "updated" property MUST be
 set to the current time by the server whenever an event is created or
 updated. If the client tries to set a value for this property it is
 not an error, but it MUST be overridden and replaced with the
 server’s time. If the event is being created and the overridden
 "updated" time is now earlier than a client-supplied "created" time,
 the "created" time MUST also be overridden to the server’s time. If
 the server is not the origin of the event it MUST NOT automatically
 set an "updated" time, as this can break correct processing of
 scheduling messages.

 Clients SHOULD NOT allow users to manually edit anything other than
 per-user properties when the "isOrigin" property is false, even if
 the calendar "myRights" allows them to do so. All other properties
 may be overwritten when a future update arrives to this event from
 the origin (e.g., via an iTIP REQUEST message). Such updates may be
 directly applied by the server, or applied at the user’s request by a
 client if it has access to the data through some other means (e.g.,
 the client also has access to the user’s email and can parse an iMIP
 message).

 When updating an event, if all of:

 * a property has been changed other than "calendarIds", "isDraft",
 "updated" or a per-user property (see Section 5.3); and
 * the server is the origin of the event (the "isOrigin" property is
 true); and

Jenkins & Douglass Expires 14 October 2024 [Page 27]

Internet-Draft JMAP Calendars April 2024

 * the "sequence" property is not explicitly set in the update, or
 the given value is less than or equal to the current "sequence"
 value on the server;

 then the server MUST increment the "sequence" value by one.

 The "method" property MUST NOT be set. Any attempt to do so is
 rejected with a standard invalidProperties SetError.

 If "utcStart" is set, this is translated into a "start" property
 using the server’s current time zone information. It MUST NOT be set
 in addition to a "start" property and it cannot be set inside
 "recurrenceOverrides"; this MUST be rejected with an
 invalidProperties SetError.

 Similarly, the "utcEnd" property is translated into a "duration"
 property if set. It MUST NOT be set in addition to a "duration"
 property and it cannot be set inside "recurrenceOverrides"; this MUST
 be rejected with an invalidProperties SetError.

 The server does not automatically reset the "partipationStatus" or
 "expectReply" properties of a Participant when changing other event
 details. Clients should either be intelligent about whether the
 change invalidates previous RSVPs, or ask the user whether to reset
 them.

 The server MAY enforce that all events have an owner, for example in
 team calendars. If the user tries to create an event without
 participants in such a calendar, the server MUST automatically add a
 participant with the "owner" role corresponding to one of the user’s
 ParticipantIdentities (see Section 3).

 When creating an event with participants, or adding participants to
 an event that previously did not have participants, the server MUST
 set the "replyTo" property of the event if not present. Clients
 SHOULD NOT set the "replyTo" property for events when the user adds
 participants; the server is better positioned to add all the methods
 it supports to receive replies.

 The following extra SetError type is defined:

 * *noSupportedScheduleMethods*: The server was requested to send
 scheduling messages, but does not support any of the methods
 available for at least one of the recipients.

Jenkins & Douglass Expires 14 October 2024 [Page 28]

Internet-Draft JMAP Calendars April 2024

5.8.1. Patching

 The JMAP "/set" method allows you to update an object by sending a
 patch, rather than having to supply the whole object. When doing so,
 care must be taken if updating a property of a CalendarEvent where
 the value is itself a PatchObject, e.g. inside "localizations" or
 "recurrenceOverrides". In particular, you cannot add a property with
 value null to the CalendarEvent using a direct patch on that
 property, as this is interpreted instead as a patch to remove the
 property.

 This is more easily understood with an example. Suppose you have a
 CalendarEvent object like so:

{
 "id": "123",
 "title": "FooBar team meeting",
 "start": "2018-01-08T09:00:00",
 "recurrenceRules": [{
 "@type": "RecurrenceRule",
 "frequency": "weekly"
 }],
 "replyTo": {
 "imip": "mailto:6489-4f14-a57f-c1@schedule.example.com"
 },
 "participants": {
 "dG9tQGZvb2Jhci5xlLmNvbQ": {
 "@type": "Participant",
 "name": "Tom",
 "email": "tom@foobar.example.com",
 "calendarAddress": "mailto:6489-4f14-a57f-c1@calendar.example.com",
 "sendTo": {
 "imip": "mailto:6489-4f14-a57f-c1@calendar.example.com"
 },
 "participationStatus": "accepted",
 "roles": {
 "attendee": true
 }
 },
 "em9lQGZvb2GFtcGxlLmNvbQ": {
 "@type": "Participant",
 "name": "Zoe",
 "email": "zoe@foobar.example.com",
 "calendarAddress": "mailto:zoe@foobar.example.com",
 "sendTo": {
 "imip": "mailto:zoe@foobar.example.com",
 "other": "https://foobar.example.com/zoe/itip"
 },

Jenkins & Douglass Expires 14 October 2024 [Page 29]

Internet-Draft JMAP Calendars April 2024

 "participationStatus": "accepted",
 "roles": {
 "owner": true,
 "attendee": true,
 "chair": true
 }
 },
 "recurrenceOverrides": {
 "2018-03-08T09:00:00": {
 "start": "2018-03-08T10:00:00",
 "participants/dG9tQGZvb2Jhci5xlLmNvbQ/participationStatus":
 "declined"
 }
 }
 }
}

 In this example, Tom is normally going to the weekly meeting but has
 declined the occurrence on 2018-03-08, which starts an hour later
 than normal. Now, if Zoe too were to decline that meeting, she could
 update the event by just sending a patch like so:

 [["CalendarEvent/set", {
 "accountId": "ue150411c",
 "update": {
 "123": {
 "recurrenceOverrides/2018-03-08T09:00:00/
 participants˜1em9lQGZvb2GFtcGxlLmNvbQ˜1participationStatus":
 "declined"
 }
 }
 }, "0"]]

 This patches the "2018-03-08T09:00:00" PatchObject in
 recurrenceOverrides so that it ends up like this:

 "recurrenceOverrides": {
 "2018-03-08T09:00:00": {
 "start": "2018-03-08T10:00:00",
 "participants/dG9tQGZvb2Jhci5xlLmNvbQ/participationStatus":
 "declined",
 "participants/em9lQGZvb2GFtcGxlLmNvbQ/participationStatus":
 "declined"
 }
 }

Jenkins & Douglass Expires 14 October 2024 [Page 30]

Internet-Draft JMAP Calendars April 2024

 Now if Tom were to change his mind and remove his declined status
 override (thus meaning he is attending, as inherited from the top-
 level event), he might remove his patch from the overrides like so:

[["CalendarEvent/set", {
 "accountId": "ue150411c",
 "update": {
 "123": {
 "recurrenceOverrides/2018-03-08T09:00:00/
 participants˜1dG9tQGZvb2Jhci5xlLmNvbQ˜1participationStatus": null
 }
 }
}, "0"]]

 However, if you instead want to remove Tom from this instance
 altogether, you could not send this patch:

 [["CalendarEvent/set", {
 "accountId": "ue150411c",
 "update": {
 "123": {
 "recurrenceOverrides/2018-03-08T09:00:00/
 participants˜1dG9tQGZvb2Jhci5xlLmNvbQ": null
 }
 }
 }, "0"]]

 This would mean remove the "participants/dG9tQGZvb2Jhci5xlLmNvbQ"
 property at path "recurrenceOverrides" -> "2018-03-08T09:00:00"
 inside the object; but this doesn’t exist. We actually want to add
 this property and make it map to null. The client must instead send
 the full object that contains the property mapping to null, like so:

 [["CalendarEvent/set", {
 "accountId": "ue150411c",
 "update": {
 "123": {
 "recurrenceOverrides/2018-03-08T09:00:00": {
 "start": "2018-03-08T10:00:00",
 "participants/em9lQGZvb2GFtcGxlLmNvbQ/participationStatus":
 "declined",
 "participants/dG9tQGZvb2Jhci5xlLmNvbQ": null
 }
 }
 }
 }, "0"]]

Jenkins & Douglass Expires 14 October 2024 [Page 31]

Internet-Draft JMAP Calendars April 2024

5.9. CalendarEvent/copy

 This is a standard "/copy" method as described in Section 5.4 of
 [RFC8620].

5.10. CalendarEvent/query

 This is a standard "/query" method as described in Section 5.5 of
 [RFC8620], with two extra arguments:

 * *expandRecurrences*: Boolean (default: false)
 If true, the server will expand any recurring event. If true, the
 filter MUST be just a FilterCondition (not a FilterOperator) and
 MUST include both a "before" and "after" property. This ensures
 the server is not asked to return an infinite number of results.
 * *timeZone*: TimeZoneId
 The time zone for before/after filter conditions (default: "Etc/
 UTC")

 If expandRecurrences is true, a separate id will be returned for each
 instance of a recurring event that matches the query. This synthetic
 id is opaque to the client, but allows the server to resolve the id +
 recurrence id for "/get" and "/set" operations. Otherwise, a single
 id will be returned for matching recurring events that represents the
 entire event.

 There is no necessary correspondence between the ids of different
 instances of the same expanded event.

 The following additional error may be returned instead of the
 "CalendarEvent/query" response:

 cannotCalculateOccurrences: The server cannot expand a recurrence
 required to return the results for this query.

5.10.1. Filtering

 A *FilterCondition* object has the following properties:

 * *inCalendars*: Id[]|null
 A list of calendar ids. An event must be in ANY of these
 calendars to match the condition.
 * *after*: LocalDateTime|null
 The end of the event, or any recurrence of the event, in the time
 zone given as the timeZone argument, must be after this date to
 match the condition.
 * *before*: LocalDateTime|null

Jenkins & Douglass Expires 14 October 2024 [Page 32]

Internet-Draft JMAP Calendars April 2024

 The start of the event, or any recurrence of the event, in the
 time zone given as the timeZone argument, must be before this date
 to match the condition.
 * *text*: String|null
 Looks for the text in the "title", "description", "locations"
 (matching name/description), "participants" (matching name/email)
 and any other textual properties of the event or any recurrence of
 the event.
 * *title*: String|null
 Looks for the text in the "title" property of the event, or the
 overridden "title" property of a recurrence.
 * *description*: String|null
 Looks for the text in the "description" property of the event, or
 the overridden "description" property of a recurrence.
 * *location*: String|null
 Looks for the text in the "locations" property of the event
 (matching name/description of a location), or the overridden
 "locations" property of a recurrence.
 * *owner*: String|null
 Looks for the text in the name or email fields of a participant in
 the "participants" property of the event, or the overridden
 "participants" property of a recurrence, where the participant has
 a role of "owner".
 * *attendee*: String|null
 Looks for the text in the name or email fields of a participant in
 the "participants" property of the event, or the overridden
 "participants" property of a recurrence, where the participant has
 a role of "attendee".
 * *uid*: String
 The uid of the event is exactly the given string.

 If expandRecurrences is true, all conditions must match against the
 same instance of a recurring event for the instance to match. If
 expandRecurrences is false, all conditions must match, but they may
 each match any instance of the event.

 If zero properties are specified on the FilterCondition, the
 condition MUST always evaluate to true. If multiple properties are
 specified, ALL must apply for the condition to be true (it is
 equivalent to splitting the object into one-property conditions and
 making them all the child of an AND filter operator).

 The exact semantics for matching String fields is *deliberately not
 defined* to allow for flexibility in indexing implementation, subject
 to the following:

 * Text SHOULD be matched in a case-insensitive manner.

Jenkins & Douglass Expires 14 October 2024 [Page 33]

Internet-Draft JMAP Calendars April 2024

 * Text contained in either (but matched) single or double quotes
 SHOULD be treated as a *phrase search*, that is a match is
 required for that exact sequence of words, excluding the
 surrounding quotation marks. Use \", \’ and \\ to match a literal
 ", ’ and \ respectively in a phrase.
 * Outside of a phrase, white-space SHOULD be treated as dividing
 separate tokens that may be searched for separately in the event,
 but MUST all be present for the event to match the filter.
 * Tokens MAY be matched on a whole-word basis using stemming (so for
 example a text search for bus would match "buses" but not
 "business").

5.10.2. Sorting

 The following properties MUST be supported for sorting:

 * start
 * uid
 * recurrenceId

 The following properties SHOULD be supported for sorting:

 * created
 * updated

5.11. CalendarEvent/queryChanges

 This is a standard "/queryChanges" method as described in Section 5.6
 of [RFC8620].

5.12. CalendarEvent/parse

 This method allows the client to parse blobs as iCalendar files
 [RFC5545] to get CalendarEvent objects. This can be used to parse,
 display, and import information from iCalendar files without having
 to implement iCalendar parsing in the client. Server support for
 this is optional, and indicated via the
 urn:ietf:params:jmap:calendars:parse capability, as per
 Section 1.5.3.

 The following metadata properties on the CalendarEvent objects will
 be null if requested:

 * id
 * baseEventId
 * calendarIds
 * isDraft
 * isOrigin

Jenkins & Douglass Expires 14 October 2024 [Page 34]

Internet-Draft JMAP Calendars April 2024

 The "CalendarEvent/parse" method takes the following arguments:

 * *accountId*: Id
 The id of the account to use.
 * *blobIds*: Id[]
 The ids of the blobs to parse.
 * *properties*: String[]
 If supplied, only the properties listed in the array are returned
 for each CalendarEvent object. If omitted, defaults to all the
 properties.

 The response object contains the following arguments:

 * *accountId*: Id
 The id of the account used for the call.
 * *parsed*: Id[CalendarEvent[]]|null
 A map of blob ids to parsed CalendarEvent objects representations
 for each successfully parsed blob, or null if none.
 * *notFound*: Id[]|null
 A list of blob ids given that could not be found, or null if none.
 * *notParsable*: Id[]|null
 A list of blob ids given that corresponded to blobs that could not
 be parsed as CalendarEvents, or null if none.

 Parsed iCalendars are to be converted into CalendarEvent objects
 following the process defined in the JSCalendar: Converting from and
 to iCalendar (https://datatracker.ietf.org/doc/draft-ietf-calext-
 jscalendar-icalendar) document.

6. Alerts

 Alerts may be specified on events as described in Section 4.5 of
 [RFC8984].

 Alerts MUST only be triggered for events in calendars where the user
 is subscribed.

 When an alert with an "email" action is triggered, the server MUST
 send an email to the user to notify them of the event. The contents
 of the email is implementation specific. Clients MUST NOT perform an
 action for these alerts.

 When an alert with a "display" action is triggered, clients should
 display an alert in a platform-appropriate manner to the user to
 remind them of the event. Clients with a full offline cache of
 events may choose to calculate when alerts should trigger locally.
 Alternatively, they can subscribe to push events from the server.

Jenkins & Douglass Expires 14 October 2024 [Page 35]

Internet-Draft JMAP Calendars April 2024

6.1. Default alerts

 If the "useDefaultAlerts" property of an event is true, the alerts
 are taken from the "defaultAlertsWithTime" or
 "defaultAlertsWithoutTime" property of all Calendars (see Section 4)
 the event is in, rather than the "alerts" property of the
 CalendarEvent.

 When using default alerts, the "alerts" property of the event is
 ignored except for the following:

 * The "acknowledged" time for an alert is stored here when a default
 alert for the event is dismissed. The id of the alert MUST be the
 same as the id of the default alert in the calendar. See
 Section 6.2 on acknowledging alerts.
 * If an alert has a relatedTo property where the parent is the id of
 one of the calendar default alerts, it is processed as normal and
 not ignored. This is to support snoozing default alerts; see
 Section 6.3.

6.2. Acknowledging an alert

 To dismiss an alert, clients set the "acknowledged" property of the
 Alert object to the current date-time. If the alert was a calendar
 default, it may need to be added to the event at this point in order
 to acknowledge it. When other clients fetch the updated
 CalendarEvent they SHOULD automatically dismiss or suppress duplicate
 alerts (alerts with the same alert id that triggered on or before the
 "acknowledged" date-time) and alerts that have been removed from the
 event.

 Setting the "acknowledged" property MUST NOT create a new recurrence
 override. For a recurring calendar object, the "acknowledged"
 property of the parent object MUST be updated, unless the alert is
 already overridden in the "recurrenceOverrides" property.

6.3. Snoozing an alert

 Users may wish to dismiss an alert temporarily and have it come back
 after a specific period of time. To do this, clients MUST:

 1. Acknowledge the alert as described in Section 6.2.
 2. Add a new alert to the event with an AbsoluteTrigger for the
 date-time the alert has been snoozed until. Add a "relatedTo"
 property to the new alert, setting the "parent" relation to point
 to the original alert. This MUST NOT create a new recurrence
 override; it is added to the same "alerts" property that contains
 the alert that was acknowledged in step 1.

Jenkins & Douglass Expires 14 October 2024 [Page 36]

Internet-Draft JMAP Calendars April 2024

 When acknowledging a snoozed alert (i.e. one with a parent relatedTo
 pointing to the original alert), the client SHOULD delete the alert
 rather than setting the "acknowledged" property.

6.4. Push events

 Servers that support the urn:ietf:params:jmap:calendars capability
 MUST support registering for the pseudo-type "CalendarAlert" in push
 subscriptions and event source connections, as described in
 [RFC8620], Sections 7.2 and 7.3.

 If requested, a CalendarAlert notification will be pushed whenever an
 alert is triggered for the user. For Event Source connections, this
 notification is pushed as an event called "calendarAlert".

 A *CalendarAlert* object has the following properties:

 * *@type*: String
 This MUST be the string "CalendarAlert".
 * *accountId*: Id
 The account id for the calendar in which the alert triggered.
 * *calendarEventId*: Id
 The CalendarEvent id for the alert that triggered. Note, for a
 recurring event this is the id of the base event, never a
 synthetic id for a particular instance.
 * *uid*: String
 The uid property of the CalendarEvent for the alert that
 triggered.
 * *recurrenceId*: LocalDateTime|null
 The recurrenceId for the instance of the event for which this
 alert is being triggered, or null if the event is not recurring.
 * *alertId*: String
 The id for the alert that triggered.

7. Calendar Event Notifications

 The CalendarEventNotification data type records changes made by
 external entities to events in calendars the user is subscribed to.
 Notifications are stored in the same Account as the CalendarEvent
 that was changed.

 Notifications are only created by the server; users cannot create
 them directly. Clients may present the list of notifications to the
 user and allow them to dismiss them. To dismiss a notification you
 use a standard "/set" call to destroy it.

Jenkins & Douglass Expires 14 October 2024 [Page 37]

Internet-Draft JMAP Calendars April 2024

 The server SHOULD create a CalendarEventNotification whenever an
 event is added, updated or destroyed by another user or due to
 receiving an iTIP [RFC5546] or other scheduling message in a calendar
 this user is subscribed to. The server SHOULD NOT create
 notifications for events implicitly deleted due to the containing
 calendar being deleted.

 The CalendarEventNotification does not have any per-user data. A
 single instance may therefore be maintained on the server for all
 sharees of the notification. The server need only keep track of
 which users have yet to destroy the notification.

7.1. Auto-deletion of Notifications

 The server MAY limit the maximum number of notifications it will
 store for a user. When the limit is reached, any new notification
 will cause the previously oldest notification to be automatically
 deleted.

 The server MAY coalesce events if appropriate, or remove events that
 it deems are no longer relevant or after a certain period of time.
 The server SHOULD automatically destroy a notification about an event
 if the user updates or destroys that event (e.g. if the user sends an
 RSVP for the event).

7.2. Object Properties

 The *CalendarEventNotification* object has the following properties:

 * *id*: Id
 The id of the CalendarEventNotification.
 * *created*: UTCDateTime
 The time this notification was created.
 * *changedBy*: Person
 Who made the change. The Person object has the following
 properties:
 - *name*: String
 The name of the person who made the change.
 - *email*: String|null
 The email of the person who made the change, or null if no
 email is available.
 - *principalId*: Id|null
 The id of the Principal corresponding to the person who made
 the change, if any. This will be null if the change was due to
 an entity outside of this user’s organisation, e.g. an iTIP
 invitation from an external person.
 - *calendarAddress*: String|null

Jenkins & Douglass Expires 14 October 2024 [Page 38]

Internet-Draft JMAP Calendars April 2024

 The calendarAddress URI of the person who made the change, if
 any. This may be set if the change was made due to receving a
 scheduling message, such as an iTIP message, in addition to
 changes made by internal users.
 * *comment*: String|null
 Comment sent along with the change by the user that made it. (e.g.
 COMMENT property in an iTIP message), if any.
 * *type*: String
 This MUST be one of
 - created
 - updated
 - destroyed
 * *calendarEventId*: Id
 The id of the CalendarEvent that this notification is about.
 * *isDraft*: Boolean (created/updated only)
 Is this event a draft?
 * *event*: JSCalendar Event
 The data before the change (if updated or destroyed), or the data
 after creation (if created).
 * *eventPatch*: PatchObject (updated only)
 A patch encoding the change between the data in the event
 property, and the data after the update.

 If the change only affects a single instance of a recurring event,
 the server MAY set the event and eventPatch properties for just that
 instance; the calendarEventId MUST still be for the base event.

7.3. CalendarEventNotification/get

 This is a standard "/get" method as described in Section 5.1 of
 [RFC8620].

7.4. CalendarEventNotification/changes

 This is a standard "/changes" method as described in Section 5.2 of
 [RFC8620].

7.5. CalendarEventNotification/set

 This is a standard "/set" method as described in Section 5.3 of
 [RFC8620].

 Only destroy is supported; any attempt to create/update MUST be
 rejected with a forbidden SetError.

Jenkins & Douglass Expires 14 October 2024 [Page 39]

Internet-Draft JMAP Calendars April 2024

7.6. CalendarEventNotification/query

 This is a standard "/query" method as described in Section 5.5 of
 [RFC8620].

7.6.1. Filtering

 A *FilterCondition* object has the following properties:

 * *after*: UTCDateTime|null
 The creation date must be on or after this date to match the
 condition.
 * *before*: UTCDateTime|null
 The creation date must be before this date to match the condition.
 * *type*: String
 The type property must be the same to match the condition.
 * *calendarEventIds*: Id[]|null
 A list of event ids. The calendarEventId property of the
 notification must be in this list to match the condition.

7.6.2. Sorting

 The "created" property MUST be supported for sorting.

7.7. CalendarEventNotification/queryChanges

 This is a standard "/queryChanges" method as described in Section 5.6
 of [RFC8620].

8. Examples

 For brevity, in the following examples only the "methodCalls"
 property of the Request object, and the "methodResponses" property of
 the Response object is shown.

8.1. Fetching initial data

 A user has authenticated and the client has fetched the JMAP Session
 object. It finds a single Account with the
 urn:ietf:params:jmap:calendars capability, with id "a0x9", and wants
 to display all the calendar information for January 2023 in the
 Australia/Melbourne time zone. It might make the following request:

Jenkins & Douglass Expires 14 October 2024 [Page 40]

Internet-Draft JMAP Calendars April 2024

 [
 ["Calendar/get", {
 "accountId": "a0x9"
 }, "0"],
 ["ParticipantIdentity/get", {
 "accountId": "a0x9"
 }, "1"],
 ["CalendarEvent/query", {
 "accountId": "a0x9",
 "timeZone": "Australia/Melbourne",
 "filter": {
 "after": "2023-01-01T00:00:00",
 "before": "2023-02-01T00:00:00"
 }
 }, "2"],
 ["CalendarEvent/get", {
 "accountId": "a0x9",
 "#ids":{
 "resultOf":"3",
 "name":"CalendarEvent/query",
 "path":"/ids"
 }
 }, "3"]
]

 The server might respond with something like:

 [
 ["Calendar/get", {
 "accountId": "a0x9",
 "list": [{
 "id": "062adcfa-105d-455c-bc60-6db68b69c3f3",
 "name": "Private",
 "sortOrder": 12,
 "isDefault": false,
 "defaultAlertsWithTime": null,
 ...
 }, {
 "id": "3ddf2ad7-0e0c-4fb5-852d-f0ff56f3c662",
 "name": "Work",
 "sortOrder": 4,
 "isDefault": true,
 "defaultAlertsWithTime": {
 "631BE24C-A3B6-11EC-BF4C-B027680D752E": {
 "@type": "Alert",
 "action": "display",
 "trigger": {
 "@type": "OffsetTrigger",

Jenkins & Douglass Expires 14 October 2024 [Page 41]

Internet-Draft JMAP Calendars April 2024

 "offset": "-PT1H",
 "relativeTo": "start"
 }
 }
 },
 ...
 }],
 "notFound": [],
 "state": "˜506"
 }, "0"],
 ["ParticipantIdentity/get", {
 "accountId": "a0x9",
 "list": [{
 "id": "3",
 "name": "Jane Doe",
 "calendarAddress": "mailto:jane@example.com",
 "sendTo": {
 "imip": "mailto:jane@example.com",
 "other":
 "https://example.com/uri/for/internal/scheduling"
 },
 "isDefault": true
 }],
 "notFound": [],
 "state": "lgkf:98144:aae"
 }, "1"],
 ["CalendarEvent/query", {
 "accountId": "a0x9",
 "canCalculateChanges": false,
 "position": 0,
 "queryState": "˜206",
 "ids": [
 "E-01c9626e-1490-43df-a34f-457021256281",
 "E-07a2b89d-96b6-4920-982a-54fdf0a386ce",
 ...
]
 }, "2"],
 ["CalendarEvent/get", {
 "accountId": "a0x9",
 "list": [{
 "id": "E-01c9626e-1490-43df-a34f-457021256281",
 "calendarIds": {
 "3ddf2ad7-0e0c-4fb5-852d-f0ff56f3c662": true
 },
 "title": "Q1 All hands",
 "start": "20230109T10:00:00",
 "duration": "PT1H",
 "timeZone": "Australia/Sydney",

Jenkins & Douglass Expires 14 October 2024 [Page 42]

Internet-Draft JMAP Calendars April 2024

 ...
 }, ...],
 "notFound": [],
 "state": "$$/413/206"
 }, "3"]
]

 The client now has everything it needs to display that month in full.

8.2. Creating an event

 Suppose the user asks the client to create a new event. The client
 should default to adding it to the "Work" calendar, as this is the
 default calendar for the user, unless it has information to make a
 more informed decision. (e.g. The client may have a feature to
 automatically choose the calendar based on the time of day, and the
 user indicates the event is at 7pm, so it knows to default to
 "Private".)

 [
 ["CalendarEvent/set", {
 "accountId":"a0x9",
 "create":{
 "k559":{
 "uid":"5d5776f6-ff8e-4bfd-ab3e-fe2fe5d4fa91",
 "calendarIds":{
 "3ddf2ad7-0e0c-4fb5-852d-f0ff56f3c662":true
 },
 "title":"Party at Petes",
 "start":"2023-02-03T19:00:00",
 "duration":"PT3H0M0S",
 "timeZone":"Australia/Melbourne",
 "showWithoutTime":false,
 "participants":{
 "1":{
 "@type":"Participant",
 "name": "Jane Doe",
 "calendarAddress": "mailto:jane@example.com",
 "sendTo": {
 "imip": "mailto:jane@example.com",
 "other":
 "https://example.com/uri/for/internal/scheduling"
 },
 "kind":"individual",
 "roles":{
 "attendee":true,
 "owner":true
 },

Jenkins & Douglass Expires 14 October 2024 [Page 43]

Internet-Draft JMAP Calendars April 2024

 "participationStatus":"accepted",
 "expectReply":false
 },
 "2":{
 "@type":"Participant",
 "name":"Joe Bloggs",
 "calendarAddress": "mailto:joe@example.com",
 "sendTo":{
 "imip":"mailto:joe@example.com"
 },
 "kind":"individual",
 "roles":{
 "attendee":true
 },
 "participationStatus":"needs-action",
 "expectReply":true
 }
 },
 "mayInviteSelf":false,
 "mayInviteOthers":false,
 "useDefaultAlerts":false,
 "alerts":null
 }
 },
 "sendSchedulingMessages":true
 }, "0"]
]

 As the event has participants, the server sets a "replyTo" property.
 This server uses a special email address for receiving iMIP RSVPs
 ([RFC5546]) rather than just receiving them at the owner’s regular
 email address, and also provides a web page for people that don’t
 have calendar clients supporting iMIP. The response may look
 something like this:

Jenkins & Douglass Expires 14 October 2024 [Page 44]

Internet-Draft JMAP Calendars April 2024

 NOTE: ’\’ line wrapping per RFC 8792

 [
 ["CalendarEvent/set", {
 "accountId":"a0x9",
 "created":{
 "k559":{
 "id":"E-5d5776f6-ff8e-4bfd-ab3e-fe2fe5d4fa91",
 "isOrigin": true,
 "@type": "Event",
 "created": "20221005T20:42:13Z",
 "updated": "20221005T20:42:13Z",
 "sequence": 1,
 "replyTo": {
 "imip": "3e87-1b18bb5e6b4@itip.example.com",
 "web": "https://cal.example.com/\
 5d5776f6-ff8e-4bfd-ab3e-fe2fe5d4fa91/?\
 auth=bfc0-4ba3-9e44"
 }
 }
 },
 ...
 }, "0"]
]

8.3. Snoozing an alert

 The client is connected to the event source and receives a push:

 {
 "@type": "CalendarAlert",
 "accountId": "a0x9",
 "calendarEventId": "E-7e93e3ee-4e6e-408a-9adc-cbaf1dbd0a3f",
 "uid": "b6f7e27b-5872-4b52-b457-0242541bb01c",
 "recurrenceId": null,
 "alertId": "7519a951-1e6f-4a6c-b08b-20dd2e5a89cd"
 }

 Not finding this event in its local cache, the client fetches the
 information for this event that it needs to show the alert by making
 the following request:

Jenkins & Douglass Expires 14 October 2024 [Page 45]

Internet-Draft JMAP Calendars April 2024

 [
 ["CalendarEvent/get", {
 "accountId": "a0x9",
 "ids":["E-7e93e3ee-4e6e-408a-9adc-cbaf1dbd0a3f"],
 "properties": ["calendarIds", "title", "start",
 "timeZone", "useDefaultAlerts", "alerts"]
 }, "0"]
]

 In response it receives:

 [
 ["CalendarEvent/get", {
 "accountId": "a0x9",
 "list": [{
 "id": "E-01c9626e-1490-43df-a34f-457021256281",
 "calendarIds": {
 "3ddf2ad7-0e0c-4fb5-852d-f0ff56f3c662": true
 },
 "title": "Team catchup",
 "start": "20230210T17:00:00",
 "timeZone": "America/New_York",
 "useDefaultAlerts": false,
 "alerts": {
 "7519a951-1e6f-4a6c-b08b-20dd2e5a89cd": {
 "@type": "Alert",
 "action": "display",
 "trigger": {
 "@type": "OffsetTrigger",
 "relativeTo": "start",
 "offset": "-PT1H"
 }
 }
 }
 }],
 "notFound": [],
 "state": "$$/414/208"
 }, "0"]
]

 The client displays an alert in a platform-appropriate manner.
 Presuming the user here is in the Australia/Melbourne time zone, this
 might look something like:

Jenkins & Douglass Expires 14 October 2024 [Page 46]

Internet-Draft JMAP Calendars April 2024

 +--+
 | |
 | Reminder: Team catchup |
 | Today at 10am (in 1 hour) |
 | [Snooze\/] |
 +--+

 The user snoozes the notification for 30 minutes. The client
 dismisses the current notification and sends an update to the event
 to the server:

 NOTE: ’\’ line wrapping per RFC 8792

 [
 ["CalendarEvent/set", {
 "accountId": "a0x9",
 "update": {
 "E-01c9626e-1490-43df-a34f-457021256281": {
 "alerts/7519a951-1e6f-4a6c-b08b-20dd2e5a89cd\
 /acknowledged": "20230110T23:00:31Z",
 "alerts/86b0-318b8291045f": {
 "@type": "Alert",
 "action": "display",
 "trigger": {
 "@type": "AbsoluteTrigger",
 "when": "20230210T23:30:00Z",
 "relatedTo": {
 "7519a951-1e6f-4a6c-b08b-20dd2e5a89cd": {
 "@type": "Relation",
 "relation": {
 "parent": true
 }
 }
 }
 }
 }
 }
 }
 }, "0"]
]

 Any other connected client will receive a push, sync the change and
 dismiss any duplicate alert. After the snooze time has elapsed, the
 new alert will trigger.

Jenkins & Douglass Expires 14 October 2024 [Page 47]

Internet-Draft JMAP Calendars April 2024

8.4. Changing the default calendar

 The client tries to change the default calendar from "Work" to
 "Private" (and makes no other change):

 [
 ["Calendar/set", {
 "accountId": "a0x9",
 "onSuccessSetIsDefault": "062adcfa-105d-455c-bc60-6db68b69c3f3"
 }, "0"]
]

 The server allows the change, returning the following response:

 [
 ["Calendar/set", {
 "accountId": "a0x9",
 "updated": {
 "062adcfa-105d-455c-bc60-6db68b69c3f3": {
 "isDefault": true
 },
 "3ddf2ad7-0e0c-4fb5-852d-f0ff56f3c662": {
 "isDefault": false
 }
 }
 }, "0"]
]

8.5. Parsing an iCalendar file

 The client makes a request to parse the calendar event from a blob id
 representing an icalendar file:

 [
 ["CalendarEvent/parse", {
 "accountId": "a0x9",
 "blobIds": ["Ge682d5d7aad50b3a4f7180a7ed9276476485ea52"]
 }, "c1"]
]

 The server responds:

Jenkins & Douglass Expires 14 October 2024 [Page 48]

Internet-Draft JMAP Calendars April 2024

 [["CalendarEvent/parse", {
 "accountId": "ue150411c",
 "parsed": {
 "Ge682d5d7aad50b3a4f7180a7ed9276476485ea52": [{
 "@type": "Event",
 "method": "publish",
 "prodId": "-//IETF//datatracker.ietf.org ical agenda//EN",
 "uid": "ietf-119-16811-jmap",
 "sequence": 2,
 "updated": "2024-02-09T22:49:26Z",
 "start": "2024-03-19T13:00:00",
 "duration": "PT2H",
 "timeZone": "Australia/Brisbane",
 "showWithoutTime": false,
 "title": "jmap - JSON Mail Access Protocol",
 "freeBusyStatus": "busy",
 "descriptionContentType": "text/plain",
 "description": "Session II\n\nRemember to sign the blue sheets!",
 "locations": {
 "eec47e7589ce131d6331b10383f89f91f8d4a4ef": {
 "@type": "Location",
 "name": "P3, Brisbane Convention Centre"
 }
 },
 "status": "confirmed"
 }]
 },
 "notFound": null,
 "notParsable": null
 }, "c1"]]

 If the blob id had not been found, the server would have responded:

 [["CalendarEvent/parse", {
 "accountId": "a0x9",
 "notFound": ["Ge682d5d7aad50b3a4f7180a7ed9276476485ea52"]
 }, "c1"]]

 If the blob id had been found but was not parsable, the server would
 have responded:

 [["CalendarEvent/parse", {
 "accountId": "a0x9",
 "notParsable": ["Ge682d5d7aad50b3a4f7180a7ed9276476485ea52"]
 }, "c1"]]

Jenkins & Douglass Expires 14 October 2024 [Page 49]

Internet-Draft JMAP Calendars April 2024

9. Security Considerations

 All security considerations of JMAP [RFC8620] and JSCalendar
 [RFC8984] apply to this specification. Additional considerations
 specific to the data types and functionality introduced by this
 document are described in the following subsections.

9.1. Privacy

 Calendars often contain the precise movements, activities, and
 contacts of people; all intensely private data. Privacy leaks can
 have real world consequences, and calendar servers and clients MUST
 be mindful of the need to keep all data secure.

 Servers MUST enforce the ACLs set on calendars to ensure only
 authorised data is shared. The additional restrictions specified by
 the "privacy" property of a JSCalendar Event object (see
 Section 4.4.3 of [RFC8984]) MUST also be enforced.

 Users may have multiple Participant Identities that they use for
 areas of their life kept private from one another. Using one
 identity with an event MUST NOT leak the existence of any other
 identity. For example, sending an RSVP from identity
 worklife@example.com MUST NOT reveal anything about another identity
 present in the account such as privatelife@example.org.

 Severs SHOULD enforce that invitations sent to external systems are
 only transmitted via secure encrypted and signed connections to
 protect against eavesdropping and modification of data.

9.2. Spoofing

 When receiving events and updates from external systems, it can be
 hard to verify that the identity of the author is who they claim to
 be. When receiving events via email, DKIM [RFC6376] and S/MIME
 [RFC8551] are two mechanisms that may be used to verify certain
 properties about the email data, which can be correlated with the
 event information.

9.3. Denial-of-service

 There are many ways in which a calendar user can make a request
 liable to cause a calendar server to spend an inordinate amount of
 processing time. Care must be taken to limit resources allocated to
 any one user to ensure the system does not become unresponsive. The
 following subsections list particularly hazardous areas.

Jenkins & Douglass Expires 14 October 2024 [Page 50]

Internet-Draft JMAP Calendars April 2024

9.3.1. Expanding Recurrences

 Recurrence rules can be crafted to occur as frequently as every
 second. Servers MUST be careful to not allow resources to be
 exhausted when expanding, and limit the number of expansions they
 will create. Equally, rules can be generated that never create any
 occurrences at all. Servers MUST be careful to limit the work spent
 iterating in search of the next occurrence.

9.3.2. Firing alerts

 An alert firing for an event can cause a notification to be pused to
 the user’s devices, or to send them an email. Servers MUST rate
 limit the number of alerts sent for any one user. The combination of
 recurring events with multiple alerts can in particular define
 unreasonably frequent alerts, leading to denial of service for either
 the server processing them or the user’s devices receiving them.

 Similarly, clients generating alerts from the data on device must
 take the same precautions.

 The "email" alert type (see Section 4.5.2 of [RFC8984]) causes an
 email to be sent when triggered. Clients MUST ignore this alert
 type; the email is sent only be the calendar server. There is no
 mechanism in JSCalendar to specify a particular email address: the
 server MUST only allow alerts to be sent to an address it has
 verified as belonging to the user to avoid this being used as a
 spamming vector.

9.3.3. Load spikes

 Since most events are likely to start on the hour mark, a large spike
 of activity is often seen at these times, with particularly large
 spikes at certain common times in the time zone of the server’s user
 base. In particular, a large number of alerts (across different
 users and events) will be triggered at the same time. Servers may
 mitigate this somewhat by adding jitter to the triggering of the
 alerts; it is RECOMMENDED to fire them slightly early rather than
 slightly late if needed to spread load.

9.4. Spam

 Invitations received from an untrusted source may be spam. If this
 is added to the user’s calendar automatically it can be very
 obtrusive, especially if it is a recurring event that now appears
 every day. Incoming invitations to events should be subject to spam
 scanning, and suspicious events should not be added to the calendar
 automatically.

Jenkins & Douglass Expires 14 October 2024 [Page 51]

Internet-Draft JMAP Calendars April 2024

 Servers should strip any alerts on invitations when adding to the
 user’s calendar; the useDefaultAlerts property should be set instead
 to apply the user’s preferences.

 Similarly, a malicious user may use a calendar system to send spam by
 inviting people to an event. Outbound scheduling messages should be
 subject to all the same controls used on outbound email systems, and
 rate limited as appropriate. A rate limit on the number of distinct
 recipients as well as overall messages is recommended.

10. IANA Considerations

10.1. JMAP Capability Registration for "calendars"

 IANA will register the "calendars" JMAP Capability as follows:

 Capability Name: urn:ietf:params:jmap:calendars

 Specification document: this document

 Intended use: common

 Change Controller: IETF

 Security and privacy considerations: this document, Section 1.5.1

10.2. JMAP Capability Registration for "principals:availability"

 IANA will register the "principals:availability" JMAP Capability as
 follows:

 Capability Name: urn:ietf:params:jmap:principals:availability

 Specification document: this document

 Intended use: common

 Change Controller: IETF

 Security and privacy considerations: this document, Section 1.5.2

10.3. JMAP Data Type Registration for "Calendar"

 IANA will register the "Calendar" JMAP Data Type as follows:

 Type Name: Calendar

 Can reference blobs: no

Jenkins & Douglass Expires 14 October 2024 [Page 52]

Internet-Draft JMAP Calendars April 2024

 Can Use for State Change: yes

 Capability: urn:ietf:params:jmap:calendars

 Specification document: this document

10.4. JMAP Data Type Registration for "CalendarEvent"

 IANA will register the "CalendarEvent" JMAP Data Type as follows:

 Type Name: CalendarEvent

 Can reference blobs: yes

 Can Use for State Change: yes

 Capability: urn:ietf:params:jmap:calendars

 Specification document: this document

10.5. JMAP Data Type Registration for "CalendarEventNotification"

 IANA will register the "CalendarEventNotification" JMAP Data Type as
 follows:

 Type Name: CalendarEventNotification

 Can reference blobs: no

 Can Use for State Change: yes

 Capability: urn:ietf:params:jmap:calendars

 Specification document: this document

10.6. JMAP Data Type Registration for "ParticipantIdentity"

 IANA will register the "ParticipantIdentity" JMAP Data Type as
 follows:

 Type Name: ParticipantIdentity

 Can reference blobs: no

 Can Use for State Change: yes

 Capability: urn:ietf:params:jmap:calendars

Jenkins & Douglass Expires 14 October 2024 [Page 53]

Internet-Draft JMAP Calendars April 2024

 Specification document: this document

10.7. JMAP Error Codes Registry

 The following subsections register some new error codes in the "JMAP
 Error Codes" registry, as defined in [RFC8620].

10.7.1. calendarHasEvent

 JMAP Error Code: calendarHasEvent

 Intended use: common

 Change controller: IETF

 Reference: This document, Section 4.3

 Description: The Calendar has at least one CalendarEvent assigned to
 it, and the "onDestroyRemoveEvents" argument was false.

10.7.2. noSupportedScheduleMethods

 JMAP Error Code: noSupportedScheduleMethods

 Intended use: common

 Change controller: IETF

 Reference: This document, Section 5.8

 Description: The server was requested to send scheduling messages,
 but does not support any of the methods available for at least one of
 the recipients.

10.7.3. cannotCalculateOccurrences

 JMAP Error Code: cannotCalculateOccurrences

 Intended use: common

 Change controller: IETF

 Reference: This document, Section 5.10

 Description: The server cannot expand a recurrence required to return
 the results for the requested query.

Jenkins & Douglass Expires 14 October 2024 [Page 54]

Internet-Draft JMAP Calendars April 2024

10.8. Update to the JSCalendar Properties Registry

 IANA will update the "JSCalendar Properties" registry to add a new
 column called "Is Per-User". The value in this column for each entry
 MUST be either "yes" or "no", indicating whether each sharee of the
 object should be able to set their own value for this property
 without affecting the value for other sharees.

10.8.1. Update to "JSCalendar Properties" Registry Template

 An additional field is added to the template:

 Is Per-User

10.8.2. Initial values for existing registrations

 IANA will set "Is per-user: yes" on the following property
 registrations:

 * keywords
 * color
 * freeBusyStatus
 * useDefaultAlerts
 * alerts

 All other existing registrations will have "Is per-user: no".

10.9. JSCalendar Property Registrations

 IANA will register the following additional properties in the
 JSCalendar Properties Registry.

10.9.1. id

 Property Name: id

 Property Type: Not applicable

 Property Context: Event, Task

 Intended Use: Reserved

 Is per-user: no

10.9.2. baseEventId

 Property Name: baseEventId

Jenkins & Douglass Expires 14 October 2024 [Page 55]

Internet-Draft JMAP Calendars April 2024

 Property Type: Not applicable

 Property Context: Event, Task

 Intended Use: Reserved

 Is per-user: no

10.9.3. calendarIds

 Property Name: calendarIds

 Property Type: Not applicable

 Property Context: Event, Task

 Intended Use: Reserved

 Is per-user: no

10.9.4. isDraft

 Property Name: isDraft

 Property Type: Not applicable

 Property Context: Event, Task

 Intended Use: Reserved

 Is per-user: no

10.9.5. isOrigin

 Property Name: isOrigin

 Property Type: Not applicable

 Property Context: Event, Task

 Intended Use: Reserved

 Is per-user: no

10.9.6. utcStart

 Property Name: utcStart

Jenkins & Douglass Expires 14 October 2024 [Page 56]

Internet-Draft JMAP Calendars April 2024

 Property Type: Not applicable

 Property Context: Event, Task

 Intended Use: Reserved

 Is per-user: no

10.9.7. utcEnd

 Property Name: utcEnd

 Property Type: Not applicable

 Property Context: Event, Task

 Intended Use: Reserved

 Is per-user: no

10.9.8. calendarAddress

 Property Name: calendarAddress

 Property Type: String

 Property Context: Participant

 Reference: This document, Section 5.1.1.

 Intended Use: Common

 Is per-user: no

10.9.9. mayInviteSelf

 Property Name: mayInviteSelf

 Property Type: Boolean (default: false)

 Property Context: Event, Task

 Reference: This document, Section 5.1.2.

 Intended Use: Common

 Is per-user: no

Jenkins & Douglass Expires 14 October 2024 [Page 57]

Internet-Draft JMAP Calendars April 2024

10.9.10. mayInviteOthers

 Property Name: mayInviteOthers

 Property Type: Boolean (default: false)

 Property Context: Event, Task

 Reference: This document, Section 5.1.3.

 Intended Use: Common

 Is per-user: no

10.9.11. hideAttendees

 Property Name: hideAttendees

 Property Type: Boolean (default: false)

 Property Context: Event, Task

 Reference: This document, Section 5.1.4.

 Intended Use: Common

 Is per-user: no

11. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2397] Masinter, L., "The "data" URL scheme", RFC 2397,
 DOI 10.17487/RFC2397, August 1998,
 <https://www.rfc-editor.org/info/rfc2397>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5545] Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <https://www.rfc-editor.org/info/rfc5545>.

Jenkins & Douglass Expires 14 October 2024 [Page 58]

Internet-Draft JMAP Calendars April 2024

 [RFC6376] Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
 "DomainKeys Identified Mail (DKIM) Signatures", STD 76,
 RFC 6376, DOI 10.17487/RFC6376, September 2011,
 <https://www.rfc-editor.org/info/rfc6376>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8551] Schaad, J., Ramsdell, B., and S. Turner, "Secure/
 Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
 Message Specification", RFC 8551, DOI 10.17487/RFC8551,
 April 2019, <https://www.rfc-editor.org/info/rfc8551>.

 [RFC8620] Jenkins, N. and C. Newman, "The JSON Meta Application
 Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July
 2019, <https://www.rfc-editor.org/info/rfc8620>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

 [RFC8984] Jenkins, N. and R. Stepanek, "JSCalendar: A JSON
 Representation of Calendar Data", RFC 8984,
 DOI 10.17487/RFC8984, July 2021,
 <https://www.rfc-editor.org/info/rfc8984>.

 [I-D.ietf-jmap-sharing]
 Jenkins, N., "JMAP Sharing", Work in Progress, Internet-
 Draft, draft-ietf-jmap-sharing-08, 6 February 2024,
 <https://datatracker.ietf.org/api/v1/doc/document/draft-
 ietf-jmap-sharing/>.

12. Informative References

 [RFC4791] Daboo, C., Desruisseaux, B., and L. Dusseault,
 "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
 DOI 10.17487/RFC4791, March 2007,
 <https://www.rfc-editor.org/info/rfc4791>.

 [RFC5546] Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <https://www.rfc-editor.org/info/rfc5546>.

Jenkins & Douglass Expires 14 October 2024 [Page 59]

Internet-Draft JMAP Calendars April 2024

 [RFC6047] Melnikov, A., Ed., "iCalendar Message-Based
 Interoperability Protocol (iMIP)", RFC 6047,
 DOI 10.17487/RFC6047, December 2010,
 <https://www.rfc-editor.org/info/rfc6047>.

Authors’ Addresses

 Neil Jenkins (editor)
 Fastmail
 PO Box 234, Collins St West
 Melbourne VIC 8007
 Australia
 Email: neilj@fastmailteam.com
 URI: https://www.fastmail.com

 Michael Douglass (editor)
 Spherical Cow Group
 226 3rd Street
 Troy, NY 12180
 United States of America
 Email: mdouglass@sphericalcowgroup.com
 URI: http://sphericalcowgroup.com

Jenkins & Douglass Expires 14 October 2024 [Page 60]

