
QUIC M. Duke
Internet-Draft Google
Intended status: Experimental 25 April 2023
Expires: 27 October 2023

 QUIC Version Aliasing
 draft-duke-quic-version-aliasing-10

Abstract

 The QUIC transport protocol preserves its future extensibility partly
 by specifying its version number. There will be a relatively small
 number of published version numbers for the foreseeable future. This
 document provides a method for clients and servers to negotiate the
 use of other version numbers in subsequent connections and encrypts
 Initial Packets using secret keys instead of standard ones. If a
 sizeable subset of QUIC connections use this mechanism, this should
 prevent middlebox ossification around the current set of published
 version numbers and the contents of QUIC Initial packets, as well as
 improving the protocol’s privacy properties.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the mailing list
 (quic@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/quic/.

 Source for this draft and an issue tracker can be found at
 https://github.com/martinduke/quic-version-aliasing.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Duke Expires 27 October 2023 [Page 1]

Internet-Draft QUIC Version Aliasing April 2023

 This Internet-Draft will expire on 27 October 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 2. Protocol Overview . 4
 2.1. Relationship to ECH and QUIC Protected Initials 5
 3. The version_aliasing Transport Parameter 6
 3.1. Aliased Version . 8
 3.2. Standard Version . 8
 3.2.1. Criteria to Support Version Aliasing 9
 3.3. Salt . 9
 3.4. Expiration Time . 10
 3.5. Server Connection ID 10
 3.6. Bitmask . 10
 3.7. Operational Considerations for Multiple-Server
 Architectures . 12
 3.7.1. Multiple Servers for One Domain 12
 3.7.2. Multiple Entities With One Load Balancer 13
 4. Additional Client Requirements 14
 5. Fallback . 14
 5.1. Bad Salt Packets . 15
 5.2. Client Response to Bad Salt 16
 5.3. version_aliasing_fallback Transport Parameter 17
 5.4. Server Response to version_aliasing_fallback Transport
 Parameter . 18
 6. Considerations for Retry Packets 18
 7. Security and Privacy Considerations 19
 7.1. Endpoint Impersonation 19
 7.2. First-Connection Privacy 19
 7.3. Forcing Downgrade . 19
 7.4. Initial Packet Injection 20
 7.5. Retry Injection . 20

Duke Expires 27 October 2023 [Page 2]

Internet-Draft QUIC Version Aliasing April 2023

 7.6. Increased Linkability 21
 7.7. Salt Polling . 21
 7.8. Server Fingerprinting 22
 7.9. Increased Processing of Garbage UDP Packets 22
 7.10. Increased Retry Overhead 22
 7.11. Request Forgery . 22
 7.12. Forward Secrecy . 23
 8. IANA Considerations . 23
 8.1. QUIC Version Registry 23
 8.2. QUIC Transport Parameter Registry 24
 8.3. QUIC Transport Error Codes Registry 24
 9. References . 24
 9.1. Normative References 24
 9.2. Informative References 25
 Appendix A. Acknowledgments 25
 Appendix B. Change Log . 25
 B.1. since draft-duke-quic-version-aliasing-09 26
 B.2. since draft-duke-quic-version-aliasing-08 26
 B.3. since draft-duke-quic-version-aliasing-07 26
 B.4. since draft-duke-quic-version-aliasing-05 26
 B.5. since draft-duke-quic-version-aliasing-04 26
 B.6. since draft-duke-quic-version-aliasing-03 26
 B.7. since draft-duke-quic-version-aliasing-02 26
 B.8. since draft-duke-quic-version-aliasing-01 27
 B.9. since draft-duke-quic-version-aliasing-00 27
 Author’s Address . 27

1. Introduction

 The QUIC version number is critical to future extensibility of the
 protocol ([RFC9000]). Past experience with other protocols, such as
 TLS1.3 [RFC8446], shows that middleboxes might attempt to enforce
 that QUIC packets use versions known at the time the middlebox was
 implemented. This deters deployment of experimental and standard
 versions on the internet.

 Each version of QUIC has a "salt" [RFC9001] that is used to derive
 the keys used to encrypt Initial packets. As each salt is published
 in a standards document, any observer can decrypt these packets and
 inspect the contents, including a TLS Client Hello. A subsidiary
 mechanism like Encrypted Client Hello [ECHO] might protect some of
 the TLS fields inside a TLS Client Hello.

 This document proposes "QUIC Version Aliasing," a standard way for
 servers to advertise the availability of other versions inside the
 cryptographic protection of a QUIC handshake. These versions are
 syntactically identical to the QUIC version in which the
 communication takes place, but use a different salt. In subsequent

Duke Expires 27 October 2023 [Page 3]

Internet-Draft QUIC Version Aliasing April 2023

 communications, the client uses the new version number and encrypts
 its Initial packets with a key derived from the provided salt. These
 version numbers and salts are unique to the client.

 If a large subset of QUIC traffic adopts his technique, middleboxes
 will be unable to enforce particular version numbers or policy based
 on Client Hello contents without incurring unacceptable penalties on
 users. This would simultaneously protect the protocol against
 ossification and improve its privacy properties.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying significance described in RFC 2119.

 A "standard version" is a QUIC version that would be advertised in a
 QUIC version negotiation and conforms to a specification. Any
 aliased version corresponds to a standard version in all its formats
 and behaviors, except for the version number field in long headers.
 QUIC versions require certain properties to support use as a standard
 version. QUIC version 1 ([RFC9000]) and version 2
 ([I-D.draft-ietf-quic-v2]) both have the necessary properties.
 Future QUIC version specifications can specify their suitability for
 this purpose.

 An "aliased version" is a version with a number generated in
 accordance with this document. Except when specified below, it
 conforms entirely to the specification of the standard version.

2. Protocol Overview

 When they instantiate a connection, servers select an alternate
 32-bit version number, and optionally a server connection ID, for the
 next connection at random and securely derive parameters from those
 values using a repeatable process. Among those is a "salt" that can
 be used to encrypt Initial packets instead of the well-known salt
 provided in the specification. A bitmask parameter serves to
 "grease" parts of the QUIC public header that are currently
 unencrypted. Servers communicate these parameters using a transport
 parameter.

Duke Expires 27 October 2023 [Page 4]

Internet-Draft QUIC Version Aliasing April 2023

 If a client next connects to that server within the indicated
 expiration time, it uses the provided version number and connection
 ID, and encrypts its Initial Packets using a key derived from the
 provided salt. It uses the bitmask to grease certain public header
 fields. In all other respects, the packet is identical to an Initial
 packet from a standard version indicated in the transport parameter.

 When a server receives a long header packet with an aliased version,
 it uses the version number and destination connection ID to recover
 the parameters, which allows it to extract the header values and
 decrypt the packet.

 When generating parameters, servers can choose between doing so
 randomly and storing the mapping, or using a cryptographic process to
 transform the aliased version number and token extension into the
 salt. The two options provide a simple tradeoff between
 computational complexity and storage requirements.

 All long header packets use the aliased version and apply the
 greasing parameters. Short header packets are in every respect
 unchanged from the standard version.

2.1. Relationship to ECH and QUIC Protected Initials

 The TLS Encrypted Client Hello [ECHO] shares some goals with this
 document. It encodes an "inner" encrypted Client Hello in a TLS
 extension in an "outer" Client Hello. The encryption uses asymmetric
 keys with the server’s public key distributed via an out-of-band
 mechanism like DNS. The inner Client Hello contains any privacy-
 sensitive information and is only readable with the server’s private
 key.

 Significantly, unlike QUIC Version Aliasing, ECH can operate on the
 first connection between a client and server. However, from the
 second connection QUIC version aliasing provides additional benefits.
 It:

 * greases QUIC header fields and packet formats;

 * protects all of the TLS Client Hello and Server Hello;

 * mitigates Retry injection attacks;

 * does not require a mechanism to distribute the public key;

 * uses smaller Client Hello messages, which might allow a larger
 0RTT packet in the same datagram; and

Duke Expires 27 October 2023 [Page 5]

Internet-Draft QUIC Version Aliasing April 2023

 * relies on computationally cheap symmetric encryption.

 Note that in the event of the server losing state, the two approaches
 have a similar fallback: ECH uses information in the outer Client
 Hello, and Version Aliasing requires a connection using a standard
 version. In either case, maintaining privacy requires the outer or
 standard version Client Hello to exclude privacy-sensitive
 information. However, ECH will allow confidential transmission of
 data in 1 RTT, while Version Aliasing requires 2 RTTs to resume.
 This mechanism is also relevant to mitigation of downgrade attacks
 (see Section 7.3).

 Similarly, the QUIC Protected Initial [QUIC-PI] uses the ECH
 distribution mechanism to generate secure initial keys and Retry
 integrity tags. While still dependent on a key distribution system,
 asymmetric encryption, and relatively large Initial packets, it
 offers similar protection properties to Version Aliasing while still
 not greasing the version field. Note that since QUIC Protected
 Initials have their own scheme for protecting Initial packets, that
 version is not suitable for use as a standard version. However,
 these connections can be used to deliver the version_aliasing
 transport parameter.

 A maximally privacy-protecting client might use Protected Initials
 for any connection attempts for which it does not have an unexpired
 aliased version, and QUIC version aliasing otherwise.

 See also section 1.1 of [QUIC-PI] for further discussion of
 tradeoffs.

3. The version_aliasing Transport Parameter

 This feature is governed by the version_aliasing transport parameter,
 which has two versions. The client version is of zero length and
 indicates a willingness to accept the server version of the
 parameter. Clients MAY send this, and servers MAY restrict sending
 of their version_aliasing parameter to clients that request it.
 However, servers can send this parameter to all clients if resources
 allow.

 If they support version aliasing and resources allow, servers SHOULD
 respond to a client version_aliasing transport parameter of greater
 than zero length with a TRANSPORT_PARAMETER_ERROR.

 The server version MAY be sent in any QUIC connection that supports
 transport parameters. It has the following format.

Duke Expires 27 October 2023 [Page 6]

Internet-Draft QUIC Version Aliasing April 2023

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Aliased Version (32) |
 +-+
 | Standard Version (32) |
 +-+
 | |
 + +
 | |
 + +
 | Salt (160) |
 + +
 | |
 + +
 | |
 +-+
 | Expiration Time (i) |
 +-+
 | CID length | Connection ID (variable) |
 +-+
 | Bitmask (variable) |
 +-+

 Figure 1: version_aliasing Transport Parameter value

 These fields are described in the sections below.

 The Expiration Time field is encoded using the Variable Length
 Integer encoding from Section 16 of [RFC9000]. Expiration Time is
 measured in seconds.

 The Connection ID Length (CID Length) is in bytes.

 Note that servers that support version aliasing need not send the
 transport parameter on every connection. Therefore, a client MAY
 attempt to connect with an unexpired aliased version, even if in its
 most recent connection it did not receive the transport parameter.

 Clients remember the values in this transport parameter for a future
 connection. Servers MUST either store the contents of the transport
 parameter, or preserve the state to compute the full contents based
 on the Aliased Version and Connection ID.

 A client that receives this transport parameter not conforming to
 this format MUST close the connection with a
 TRANSPORT_PARAMETER_ERROR.

Duke Expires 27 October 2023 [Page 7]

Internet-Draft QUIC Version Aliasing April 2023

 Servers SHOULD provide a new version_aliasing transport parameter
 each time a client connects. However, issuing version numbers to a
 client SHOULD be rate- limited to mitigate the salt polling attack
 (Section 7.7) and MAY cease to clients that are consistently
 connecting with standard versions.

3.1. Aliased Version

 The version MUST appear to be random, although there are certain
 values that will not be sent. Specifically, it MUST NOT correspond
 to a QUIC version the server advertises in QUIC Version Negotiation
 packets or transport parameters. Servers SHOULD also exclude version
 numbers used in known specifications or experiments to avoid
 confusion at clients, whether or not they have plans to support those
 specifications.

 Servers MAY use version numbers reserved for grease in Section 15.1
 of [RFC9000], even though they might be advertised in Version
 Negotiation Packets. Some clients may use these version numbers to
 probe for Version Negotiation capability, which would likely result
 in a fallback procedure (see Section 5) instead of a Version
 Negotiation packet.

 Servers MUST NOT use client-controlled information (e.g. the client
 IP address) as in input to generate the version number, see
 Section 7.7.

 Servers MUST NOT advertise these versions in QUIC Version Negotiation
 packets.

3.2. Standard Version

 Servers also identify the Standard version that the client uses to
 specify the wire formats and behaviors of the aliased version. This
 version MUST meet the criteria to support version aliasing, and MUST
 either be included as a supported version in the client’s
 version_information transport parameter (see [QUIC-VN]) or be the
 standard version of the current connection.

 Note that servers MUST NOT accept resumption tickets or NEW_TOKEN
 tokens from a certain standard version in a connection using a
 different standard version. Therefore, the choice of standard
 version might impact the performance of the connection that uses an
 aliased version. The standard version that generated tickets and/or
 tokens is typically encoded in those tickets or tokens.

 There are several possible techniques for the server securely
 recovering the standard version in use for an aliased connection:

Duke Expires 27 October 2023 [Page 8]

Internet-Draft QUIC Version Aliasing April 2023

 * the server could store a mapping of aliased versions to standard
 version;

 * the server could encrypt the standard version in use in the
 aliased version number and/or connection ID;

 * the server only accepts one standard version for aliased versions;
 or

 * the standard version is included as an input to the parameter
 generation algorithm, and the server tries all supported standard
 versions and tests each resulting bitmask for validity.

3.2.1. Criteria to Support Version Aliasing

 Version aliasing is designed to work with QUICv1 and QUICv2 as
 standard versions, but does not preclude other standard versions.
 Note that the "standard version" is the version which provides the
 wire format and behavior for the aliased connection. A different
 connection exchanges the mandatory-to- implement transport parameters
 for version aliasing, and need not be of the same version.

 Any QUIC version that uses transport parameters with similar security
 guarantees, or provides an equivalent mechanism, can exchange the
 relevant information. An alternate mechanism will likely require
 specification of the equivalent messages.

 New QUIC versions could also serve as standard versions. However,
 version aliasing leverages several assumptions. New versions that
 deviate from these assumptions will have to specify how version
 aliasing can utilize the version.

 * Version Aliasing assumes that connections begin with a Long Header
 packet encrypted with a key derived from a salt.

 * The rules for which header fields are subject to the bitmask are
 written to be clear for QUICv1 and v2. New version-specific
 header fields might be ambiguous relative to these criteria, or be
 a special case (as the fixed bit is for v1 and v2).

3.3. Salt

 The salt is an opaque 20-octet field. It is used to generate Initial
 connection keys using the process described in [RFC9001].

 Servers MUST either generate a random salt and store a mapping of
 aliased version and connection ID to salt, or generate the salt using
 a cryptographic method that uses the version number, connection ID,

Duke Expires 27 October 2023 [Page 9]

Internet-Draft QUIC Version Aliasing April 2023

 and server state that is persistent across connections. It MUST NOT
 use client controlled information other than the version number and
 connection ID; for example, the client’s IP address and port.

3.4. Expiration Time

 Servers should select an expiration time in seconds, measured from
 the instant the transport parameter is first sent. This time SHOULD
 be less than the time until the server expects to support new QUIC
 versions, rotate the keys used to encode information in the version
 number, or rotate the keys used in salt generation. The expiration
 need not be derivable from the aliased version and connection ID; it
 is a matter of policy.

 Furthermore, the expiration time SHOULD be short enough to frustrate
 a salt polling attack (Section 7.7).

 Conversely, an extremely short expiration time will often force the
 client to use standard QUIC version numbers and salts.

 The client SHOULD NOT use an aliased version if the time since the
 receipt of the transport parameter exceeds the Expiration Time.
 Attempting to do so is likely to result in a fallback procedure (see
 Section 5). The server need not enforce this restriction; the
 Expiration Time is purely advisory.

3.5. Server Connection ID

 Servers SHOULD generate a Connection ID to provide additional entropy
 in salt generation. Two clients that receive the same version number
 but different connection IDs will not be able to decode each other’s
 Initial Packets.

 The connection ID MUST appear to be random to observers, but it might
 encode information to route the packet in the server infrastructure,
 or standard version information.

 The connection ID MUST NOT be between 1 and 7 bytes long. A zero-
 length connection ID signals that the destination connection ID will
 not be an input to the server’s process, so the client may choose any
 destination connection ID compliant with the standard version.

3.6. Bitmask

 The length of the bitmask field is inferred from the remaining length
 of the transport parameter.

Duke Expires 27 October 2023 [Page 10]

Internet-Draft QUIC Version Aliasing April 2023

 For all initial packets, the bitmask is applied to all parts of the
 packet header that do not meet any of the following criteria:

 * They are encrypted via header encryption (in QUIC version 1, the
 packet number, packet number length, and reserved bits in the
 first byte).

 * They are part of the [RFC8999] invariants in the long header
 (i.e., the long header bit, version, connection IDs, and
 connection ID lengths).

 * They are encrypted using a server-specific scheme (such as the
 Initial token).

 Therefore, in QUIC version 1 or 2 [I-D.draft-ietf-quic-v2], the
 bitmask is applied to the packet type, fixed bit, initial token
 length, and length fields. Senders apply the bitmask after header
 protection. Receivers apply it before removing header protection.

 Each octet of the bitmask is XORed with an octet of the header than
 contains bits that are masked. Bits of those octets that are not
 masked MUST be zero in the bitmask. If the standard version is
 QUICv1 or v2, therefore, the first, fifth, sixth, seventh, and eighth
 bits must all be zero.

 For example, an outgoint aliased Initial header, with a Standard
 Version of QUICv1, might have these values prior to applying the
 bitmask:

First Byte: 0xcd (Long Header, Fixed Bit, Initial Packet, encrypted bits)
Aliased version: 0x4d8723a1
Destination Connection ID Length: 0x08
Destination Connection ID: 0xf4ad00431f2901ff
Source Connection ID Length: 0x00
Token Length: 0x10
Token: 0x467daa15 270a6718 7cd84310 b62c119b
Length: 0x44b0 (1200 B)
Packet Number: 0x349ae204 (encrypted)

 There are a total of four octets that require masking: the first
 type, token length, and length field. The provided bitmask field is

 0x2051efa4

 Therefore, the final form of the packet header on egress is

Duke Expires 27 October 2023 [Page 11]

Internet-Draft QUIC Version Aliasing April 2023

 First Byte: 0xed (0b11001101 ^ 0b0010000)
 Aliased version: 0x4d8723a1 (no change)
 Destination Connection ID Length: 0x08 (no change)
 Destination Connection ID: 0xf4ad00431f2901ff (no change)
 Source Connection ID Length: 0x00 (no change)
 Token Length: 0x41 (0x10 ^ 0x51)
 Token: 0x467daa15 270a6718 7cd84310 b62c119b (no change)
 Length: 0xab14 (0x44b0 ^ 0xefa4))
 Packet Number: 0x349ae204 (no change)

 The "Fixed bit" (second-most-significant bit of the first octet) is
 sometimes used to differentiate QUIC packets from other UDP traffic
 at the server. The server MAY choose to always set this bit to zero
 in the bitmask to maintain this property. For packets sent from
 server to client, this bit in the bitmask MUST always be treated as
 zero. Clients and servers interested in greasing the fixed bit in
 the server-to-client direction can use [RFC9287] to do so.

 Aside from greasing the remaining non-invariant header fields , this
 parameter provides a low-cost means for the server to determine if
 the client and server share a valid version aliasing context. For
 example, if the server loses state after sending a version_aliasing
 transport parameter, the bitmask will not match. This will cause the
 token length and packet length fields to be essentially random. If
 the token length does not match tokens generated by the server, or
 the packet length field implies a packet larger than the UDP
 datagram, the packet was not masked with the correct version aliasing
 context, and the server initiates the procedure in Section 5.

 In the typical case where the token length field is one octet and the
 packet length field is two octets, about 127/128 of incoming packets
 with an invalid version aliasing context can be identified as such
 based on the token length (i.e. it is neither zero nor the correct
 token length). Of those that are not identified, approximately 50%
 will resolve to a plausible packet length (equal to or smaller than
 the size of the datagram). Thus, approximately 1 out of every 256
 packets with an incorrect version aliasing context will require trial
 decryption at the server to detect the problem. If a server has
 multiple token lengths, the odds of requiring trial decryption
 increase.

3.7. Operational Considerations for Multiple-Server Architectures

3.7.1. Multiple Servers for One Domain

 If multiple servers serve the same entity behind a load balancer,
 they MUST NOT generate version numbers that any of them would
 advertise in a Version Negotiation Packet or Transport Parameter.

Duke Expires 27 October 2023 [Page 12]

Internet-Draft QUIC Version Aliasing April 2023

 Such servers will either need a common configuration for generating
 parameters from the version number and connection ID, maintain a
 commmon database of mappings, or the connection ID itself can be used
 to route the Initial packet to the server that generated the
 transport parameter. See [QUIC-LB] for an example of the last
 approach.

3.7.2. Multiple Entities With One Load Balancer

 If mutually mistrustful entities share the same IP address and port,
 incoming packets are usually routed by examining the SNI at a load
 balancer that routes the traffic. This use case makes concealing the
 contents of the client Initial especially attractive, as the IP
 address reveals less information, but there is no obvious means for
 the load balancer to inspect a version aliased packet. There are
 several solutions to solve this problem.

 * The RECOMMENDED solution is to use routable connection IDs, so
 that the load balancer can correctly direct the packet without any
 knowledge of its version- dependent syntax. See [QUIC-LB] for an
 example design.

 * Each entity has its own cryptographic context, shared with the
 load balancer. This requires the load balancer to compute a
 bitmask for each context, and choose the one with a valid result.
 If multiple contexts are possible, it will require trial
 decryption. As there is no standard algorithm for deriving
 parameters from the version and connection ID, this involves
 synchronizing the method, not just the key material.

 * Each entity reports its Version Aliasing Transport Parameters to
 the load balancer out-of-band.

 * Each entity is assigned certain version numbers for use. This
 assignment SHOULD NOT follow observable patterns (e.g., assigning
 ranges to each entity), as this would allow observers to obtain
 the target server based on the version. The scheme SHOULD assign
 all available version numbers to maximize the entropy of the
 encoding.

 * All entities have a common crytographic context for deriving salts
 and bitmasks from the version number and connection ID. This is
 straightforward but also increases the risk that the keys will
 leak to an attacker which could then decode Initial packets from a
 point where the packets are observable. This is therefore NOT
 RECOMMENDED.

Duke Expires 27 October 2023 [Page 13]

Internet-Draft QUIC Version Aliasing April 2023

 Note that [ECHO] and [QUIC-PI] solve this problem elegantly by only
 holding the private key at the load balancer, which decodes the
 sensitive information on behalf of the back-end server.

4. Additional Client Requirements

 The Client MUST NOT use the contents of a Version Alias transport
 parameter if the handshake does not (1) later authenticate the server
 name or (2) result in both endpoints computing the same 1-RTT keys.
 See Section 7.1. The authenticated server name MAY be a "public
 name" distributed as described in [ECHO] rather than the true target
 domain.

 Clients MUST advertise aliased versions in the chosen version field
 of the version_information Transport Parameter (see [QUIC-VN]).

 Clients SHOULD NOT use the provided version number and connection ID
 in more than one connection. Using the same connection ID in two
 connections could confuse the server demultiplexer. If the client IP
 has changed, reuse of these parameters can link the client across
 connection attempts.

 If a client receives an aliased version number that matches a
 standard version that the client supports, it SHOULD assume the
 server does not support the standard version and MUST use aliased
 version behaviors in any connection with the server using that
 version number.

 If the response to an Initial packet using the provided version is a
 Version Negotiation Packet, the client SHOULD assume that the server
 no longer supports version aliasing and attempt to connect with one
 of the advertised versions (while observing the considerations in
 Section 7.3).

 If the response to an Initial packet is a Bad Salt packet, the client
 follows the procedures in Section 5.

5. Fallback

 If the server has lost its encryption state, it may not be able to
 generate the correct salts from previously provided versions and
 connection IDs. The fallback mechanism provides a means of
 recovering from this state while protecting against injection of
 messages by attackers.

 When a server receives a packet with an unsupported version number,
 it SHOULD send a Version Negotiation Packet if it is configured not
 to generate that version number at random.

Duke Expires 27 October 2023 [Page 14]

Internet-Draft QUIC Version Aliasing April 2023

 If the unmasked Token Length or packet length fields are inconsistent
 with possible server-generated token lengths or the size of the UDP
 datagram, the packet was not generated with the proper version
 aliasing context.

 The server MAY apply further checks (e.g. against the minimum QUIC
 packet length) to further reduce the small probability of a false
 positive.

 In the unlikely event that the length fields produce a plausible
 result but the salt is incorrect, the packet will fail
 authentication. Servers MAY also interpret this as a loss of version
 aliasing state.

 When any of these indicators suggest an invalid version aliasing
 context, the server sends a Bad Salt packet. The server ignores
 failures in subsequent packets for that connection.

5.1. Bad Salt Packets

 The Bad Salt packet has a long header and a reserved version number,
 because it must not be confused with a legitimate packet in any
 standard version. They are not encrypted, not authenticated, and
 have the following format:

 Bad Salt Packet {
 Header Form (1) = 1,
 Unused (7),
 Version (32) = TBD (provisional value = 0x56415641),
 Destination Connection ID Length (8),
 Destination Connection ID (0..2040),
 Source Connection ID Length (8),
 Source Connection ID (0..2040),
 Supported Version (32) ...,
 Integrity Tag (128),
 }

 Unused: The unused field is filled randomly by the sender and ignored
 on receipt.

 Version: The version field is reserved for use by the Bad Salt
 packet.

 Destination and Source Connection IDs and Lengths: These fields are
 copied from the client packet, with the source fields from the client
 packet written into the destination fields of the Bad Salt, and vice
 versa.

Duke Expires 27 October 2023 [Page 15]

Internet-Draft QUIC Version Aliasing April 2023

 Supported Version: A list of standard QUIC version numbers which the
 server supports. The number of versions is inferred from the length
 of the datagram.

 Integrity Tag: To compute the integrity tag, the server creates a
 pseudo-packet by contents of the entire client Initial UDP payload,
 including any coalesced packets, with the Bad Salt packet:

 Bad Salt Pseudo-Packet {
 Client UDP Payload (9600..),
 Header Form (1) = 1,
 Unused (7),
 Version (32) = TBD (provisional value = 0x56415641),
 Destination Connection ID Length (8),
 Destination Connection ID (0..2040),
 Source Connection ID Length (8),
 Source Connection ID (0..2040),
 Supported Version (32) ...,
 }

 In a process similar to the Retry Integrity Tag, the Bad Salt
 Integrity Tag is computed as the output of AEAD_AES_128_GCM with the
 following inputs:

 * The secret key, K, is 0xbe0c690b9f66575a1d766b54e368c84e.

 * The nonce, N, is 0x461599d35d632bf2239825bb.

 * The plaintext, P, is empty.

 * The associated data, A, is the Bad Salt pseudo-packet.

 These values are derived using HKDF-Expand-Label from the secret
 0x767fedaff519a2aad117d8fd3ce0a04178ed205ab0d43425723e436853c4b3e2
 and labels "quicva key" and "quicva iv".

 The integrity tag serves to validate the integrity of both the Bad
 Salt packet itself and the Initial packet that triggered it.

5.2. Client Response to Bad Salt

 Upon receipt of a Bad Salt packet, the client SHOULD wait for a Probe
 Timeout (PTO) to check if the Bad Salt packet was injected by an
 attacker, and a valid response arrives from the actual server.

 After waiting, the client checks the Integrity Tag using its record
 of the Initial it sent. If this fails, the client SHOULD assume
 packet corruption and resend the Initial packet.

Duke Expires 27 October 2023 [Page 16]

Internet-Draft QUIC Version Aliasing April 2023

 If the verification succeeds, the client SHOULD attempt to connect
 with one of the listed standard versions. It SHOULD observe the
 privacy considerations in Section 7.2. It MUST include a
 version_aliasing_fallback Transport Parameter in the Client Hello.

 Once it sends this transport parameter, the client MUST NOT attempt
 to connect with that aliased version again.

 The original Client Initial is not part of the new connection.
 Therefore, the Connection IDs can change, and the original client
 hello is not part of the transcript for TLS key derivation.

5.3. version_aliasing_fallback Transport Parameter

 The client sends this transport parameter in a TLS Client Hello
 generated in response to a Bad Salt packet:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Aliased Version (32) |
 +-+
 | CID length | Connection ID (variable) |
 +-+
 | |
 + +
 | |
 + +
 | Salt (160) |
 + +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Bad Salt Integrity Tag (128) +
 | |
 + +
 | |
 +-+

 The Aliased Version, Connection ID, and Salt fields are taken from
 the connection attempt that triggered this fallback.

Duke Expires 27 October 2023 [Page 17]

Internet-Draft QUIC Version Aliasing April 2023

 The Bad Salt Integrity Tag is taken from the Bad Salt packet that
 triggered this fallback. Its purpose is to include the Bad Salt
 packet contents in the TLS handshake hash.

5.4. Server Response to version_aliasing_fallback Transport Parameter

 A client version_aliasing_fallback transport parameter tells the
 server that the client received a Bad Salt packet. The server checks
 if using the version and connection ID as inputs results in the same
 salt.

 If the salt does not match, the server SHOULD continue with the
 connection and SHOULD issue a new version_aliasing transport
 parameter.

 If the salt and Packet Length Offset are valid, the server MUST
 terminate the connection with the error code INVALID_BAD_SALT.

 Note that the client never sends this transport parameter in a
 connection that uses an aliased version. A server that receives such
 a packet MUST terminate the connection with a
 TRANSPORT_PARAMETER_ERROR.

6. Considerations for Retry Packets

 QUIC Retry packets reduce the load on servers during periods of
 stress by forcing the client to prove it possesses the IP address
 before the server decrypts any Initial Packets or establishes any
 connection state. Version aliasing substantially complicates the
 process.

 If a server has to send a Retry packet, the required format is
 ambiguous without understanding which standard version to use. If
 all supported standard versions use the same Retry format, it simply
 uses that format with the client-provided version number.

 If the supported standard versions use different Retry formats, the
 server obtains the standard version via lookup or decoding and
 formats a Retry containing the aliased version number accordingly.

 Servers generate the Retry Integrity Tag of a Retry Packet using the
 procedure in Section 5.8 of [RFC9001]. However, for aliased
 versions, the secret key K uses the first 16 octets of the aliased
 salt instead of the key provided in the specification.

 Clients MUST ignore Retry packets that contain a QUIC version other
 than the version it used in its Initial Packet.

Duke Expires 27 October 2023 [Page 18]

Internet-Draft QUIC Version Aliasing April 2023

 Servers MUST NOT reply to a packet with incorrect token lengt or
 packet length fields in its long header with a Retry packet; it
 SHOULD reply with Bad Salt as described above.

7. Security and Privacy Considerations

 This document intends to improve the existing security and privacy
 properties of QUIC by dramatically improving the secrecy of QUIC
 Initial Packets. However, there are new attacks against this
 mechanism.

7.1. Endpoint Impersonation

 An on-path attacker might respond to a standard version Initial
 packet with a Version Aliasing Transport Parameter that then caused
 the client to reveal sensitive information in a subsequent Initial.

 As described in Section 4, clients cannot use the contents of a
 Version Aliasing transport parameter until they have authenticated
 the source as a trusted domain, and have verified that the 1RTT key
 derivation is identical at both endpoints.

7.2. First-Connection Privacy

 As version aliasing requires one connection over a standard QUIC
 version to acquire initial state, this initial connection leaks some
 information about the true target.

 The client MAY alter its Initial Packet to sanitize sensitive
 information and obtain another aliased version before proceeding with
 its true request. However, the client Initial must lead to the
 authentication of a domain name the client trusts to provide accurate
 Version Aliasing information (possibly the public_name from an
 Encrypted Client Hello configuration from [ECHO]). Advice for the
 Outer ClientHello in Section 10.5 of [ECHO] applies here.

 Endpoints are encouraged to instead use [ECHO] or [QUIC-PI] to
 increase privacy on the first connection between a client and server.

7.3. Forcing Downgrade

 An attacker can attempt to force a client to send an Initial that
 uses a standard version by injecting a Version Negotiation packet
 (which implies the server no longer supports aliasing) or a Bad Salt
 packet (which implies the server has a new cryptographic context).

Duke Expires 27 October 2023 [Page 19]

Internet-Draft QUIC Version Aliasing April 2023

 The weak form of this attack observes the Initial and injects the
 Version Negotiation or Bad Salt packet, but cannot drop the Initial.
 To counteract this, a client SHOULD NOT respond to these packets
 until they have waited for Probe Timeout (PTO) for a valid server
 Initial to arrive.

 The strong form features an attacker that can drop Initial packets.
 In this case, the client can either abandon the connection attempt or
 connect with an standard version.

 If it connects with a standard version, it should consider the
 privacy advice in Section 7.2.

 Furthermore, if it received a Bad Salt packet, the client sends a
 Version Aliasing transport parameter to detect the downgrade attack,
 and the server will terminate the connection if the Bad Salt packet
 was an attack.

 If the client received a Version Negotiation packet, it MUST
 implement a downgrade detection mechanism such as [QUIC-VN] or
 abandon the connection attempt. If it subsequently detects a
 downgrade detection, or discovers that the server does not support
 the same mechanism, it terminates the connection attempt.

7.4. Initial Packet Injection

 QUIC version 1 handshakes are vulnerable to DoS from observers for
 the short interval that endpoints keep Initial keys (usually ˜1.5
 RTTS), since Initial Packets are not authenticated. With version
 aliasing, attackers do not have the necessary keys to launch such an
 attack.

7.5. Retry Injection

 QUIC Version 1 Retry packets are spoofable, as they follow a fixed
 format, are sent in plaintext, and the integrity protection uses a
 widely known key. As a result, QUIC Version 1 has verification
 mechanisms in subsequent packets of the connection to validate the
 origin of the Retry.

 Version aliasing largely frustrates this attack. As the integrity
 check key is derived from the secret salt, packets from attackers
 will fail their integrity check and the client will ignore them.

 The Packet Length Offset is important in this framework. Without
 this mechanism, servers would have to perform trial decryption to
 verify the client was using the correct salt. As this does not occur
 before sending Retry Packets, servers would not detect disagreement

Duke Expires 27 October 2023 [Page 20]

Internet-Draft QUIC Version Aliasing April 2023

 on the salt beforehand and would send a Retry packet signed with a
 different salt than the client expects. Therefore, a client that
 received a Retry packet with an invalid integrity check would not be
 able to distinguish between the following possibilities:

 * a Retry packet corrupted in the network, which should be ignored;

 * a Retry packet generated by an attacker, which should be ignored;
 or

 * a Retry packet from a server that lost its cryptographic state,
 meaning that further communication with aliased versions is
 impossible and the client should revert to using a standard
 version.

 The Packet Length Offset introduces sufficient entropy to make the
 third possibility exceedingly unlikely.

7.6. Increased Linkability

 As each version number and connection ID is unique to each client, if
 a client uses one twice, those two connections are extremely likely
 to be from the same host. If the client has changed IP address, this
 is a significant increase in linkability relative to QUIC with a
 standard version numbers.

7.7. Salt Polling

 Observers that wish to decode Initial Packets might open a large
 number of connections to the server in an effort to obtain part of
 the mapping of version numbers and connection IDs to salts for a
 server. While storage-intensive, this attack could increase the
 probability that at least some version-aliased connections are
 observable. There are three mitigations servers can execute against
 this attack:

 * use a longer connection ID to increase the entropy of the salt,

 * rate-limit transport parameters sent to a particular client, and/
 or

 * set a low expiration time to reduce the lifetime of the attacker’s
 database.

 Segmenting the version number space based on client information, i.e.
 using only a subset of version numbers for a certain IP address
 range, would significantly amplify an attack. Observers will
 generally be on the path to the client and be able to mimic having an

Duke Expires 27 October 2023 [Page 21]

Internet-Draft QUIC Version Aliasing April 2023

 identical IP address. Segmentation in this way would dramatically
 reduce the search space for attackers. Thus, servers are prohibited
 from using this mechanism.

7.8. Server Fingerprinting

 The server chooses its own connection ID length. Therefore, the
 destination server of a version-aliased packet might become clear
 based on the chosen length.

7.9. Increased Processing of Garbage UDP Packets

 As QUIC shares the UDP protocol number with other UDP applications,
 in some deployments it may be possible for traffic intended for other
 UDP applications to arrive at a QUIC server endpoint. When servers
 support a finite set of version numbers, a valid version number field
 is a strong indicator the packet is, in fact, QUIC. If the version
 number is invalid, a QUIC Version Negotiation is a low-cost response
 that triggers very early in packet processing.

 However, a server that provides version aliasing is prepared to
 accept almost any version number. As a result, many more
 sufficiently sized UDP payloads with the first bit set to ’1’ are
 potential QUIC Initial Packets that require computation of a salt and
 bitmask.

 Note that the bitmask will allow the server to drop all but
 approximately 1 in every 256 packets, so trial decryption is
 unnecessary.

 While not a more potent attack then simply sending valid Initial
 Packets, servers may have to provision additional resources to
 address this possibility.

7.10. Increased Retry Overhead

 This document requires two small cryptographic operations to build a
 Retry packet instead of one, placing more load on servers when
 already under load.

7.11. Request Forgery

 Section 21.4 of [RFC9000] describes the request forgery attack, where
 a QUIC endpoint can cause its peer to deliver packets to a victim
 with specific content.

Duke Expires 27 October 2023 [Page 22]

Internet-Draft QUIC Version Aliasing April 2023

 Version aliasing allows the server to specify the contents of the
 version field and part of the token field in Initial packets sent by
 the client, potentially increasing the potency of this attack.

7.12. Forward Secrecy

 There are two relevant keys to the forward secrecy of Initial packets
 that use version aliasing. First, the Handshake key of the first
 connection protects the transport parameter that delivers the salt.
 Second, if the server uses a cryptographic process instead of a
 lookup table to derive the salt from the incoming Connection ID and
 version, the key associated with that process prevents observers from
 determining the salt.

 As the keys that protect Handshake packets are not forward-secure, a
 compromise of the server’s private key would also compromise any
 version aliasing salts distributed with Handshake keys derived from
 that private key.

 Furthermore, if the server derives it salts from the incoming
 Connection ID and version via a cryptographic method, compromise of
 that method and the key in use allows attackers to compute the salts
 (and Initial Keys) of packets using aliased versions.

 Note that, if the provided server connection ID causes subsequent
 connection attempts to route to the same server, then each server
 instance behind a load balancer can have a unique key for deriving
 salts from version and connection ID, rather than sharing one among
 the entire server pool. This substantially reduces the effect of
 compromise of this key.

8. IANA Considerations

8.1. QUIC Version Registry

 This document request that IANA add the following entry to the QUIC
 version registry:

 Value: TBD

 Status: permanent

 Specification: This document

 Change Controller: IETF

 Contact: QUIC WG

Duke Expires 27 October 2023 [Page 23]

Internet-Draft QUIC Version Aliasing April 2023

8.2. QUIC Transport Parameter Registry

 This document requests that IANA add the following entries to the
 QUIC Transport Parameters Registry:

 +=======+===========================+===============+
 | Value | Parameter Name | Specification |
 +=======+===========================+===============+
 | TBD | version_aliasing | This Document |
 +-------+---------------------------+---------------+
 | TBD | version_aliasing_fallback | This Document |
 +-------+---------------------------+---------------+

 Table 1

8.3. QUIC Transport Error Codes Registry

 This document requests that IANA add the following entry to the QUIC
 Transport Error Codes registry:

 Value: TBD (provisional: 0x4942)

 Code: INVALID_BAD_SALT

9. References

9.1. Normative References

 [I-D.draft-ietf-quic-v2]
 Duke, M., "QUIC Version 2", Work in Progress, Internet-
 Draft, draft-ietf-quic-v2-10, 15 December 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 v2-10>.

 [QUIC-VN] Schinazi, D. and E. Rescorla, "Compatible Version
 Negotiation for QUIC", Work in Progress, Internet-Draft,
 draft-ietf-quic-version-negotiation-14, 19 December 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 version-negotiation-14>.

 [RFC8999] Thomson, M., "Version-Independent Properties of QUIC",
 RFC 8999, DOI 10.17487/RFC8999, May 2021,
 <https://www.rfc-editor.org/rfc/rfc8999>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9000>.

Duke Expires 27 October 2023 [Page 24]

Internet-Draft QUIC Version Aliasing April 2023

 [RFC9001] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
 QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9001>.

9.2. Informative References

 [ECHO] Rescorla, E., Oku, K., Sullivan, N., and C. A. Wood, "TLS
 Encrypted Client Hello", Work in Progress, Internet-Draft,
 draft-ietf-tls-esni-16, 6 April 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-tls-
 esni-16>.

 [QUIC-LB] Duke, M., Banks, N., and C. Huitema, "QUIC-LB: Generating
 Routable QUIC Connection IDs", Work in Progress, Internet-
 Draft, draft-ietf-quic-load-balancers-16, 21 April 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 load-balancers-16>.

 [QUIC-PI] Duke, M. and D. Schinazi, "Protected QUIC Initial
 Packets", Work in Progress, Internet-Draft, draft-duke-
 quic-protected-initial-04, 27 April 2022,
 <https://datatracker.ietf.org/doc/html/draft-duke-quic-
 protected-initial-04>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC9287] Thomson, M., "Greasing the QUIC Bit", RFC 9287,
 DOI 10.17487/RFC9287, August 2022,
 <https://www.rfc-editor.org/rfc/rfc9287>.

Appendix A. Acknowledgments

 Marten Seemann was the original creator of the version aliasing
 approach.

Appendix B. Change Log

 RFC Editor’s Note: Please remove this section prior to
 publication of a final version of this document.

Duke Expires 27 October 2023 [Page 25]

Internet-Draft QUIC Version Aliasing April 2023

B.1. since draft-duke-quic-version-aliasing-09

 * Allowed client to send zero-length TP as a hint

 * Discuss forward secrecy of version aliasing

 * Replace "packet length offset" with a generic bitmask

 * Added what it takes to be a standard version

B.2. since draft-duke-quic-version-aliasing-08

 * Replaced Initial Token Extension with Server connection ID

B.3. since draft-duke-quic-version-aliasing-07

 * Added the Bad Salt Integrity Tag to the transport parameter

 * Greased packet types

 * Allowed the server to specify the standard version to connect with

B.4. since draft-duke-quic-version-aliasing-05

 * Revised security considerations

 * Discussed multiple SNIs behind one load balancer

 * Removed VN from the fallback mechanism

B.5. since draft-duke-quic-version-aliasing-04

 * Relationship with Encrypted Client Hello (ECH) and QUIC Protected
 Initials

 * Corrected statement about version negotiation

B.6. since draft-duke-quic-version-aliasing-03

 * Discussed request forgery attacks

B.7. since draft-duke-quic-version-aliasing-02

 * Specified 0RTT status of the transport parameter

Duke Expires 27 October 2023 [Page 26]

Internet-Draft QUIC Version Aliasing April 2023

B.8. since draft-duke-quic-version-aliasing-01

 * Fixed all references to "seed" where I meant "salt."

 * Added the Packet Length Offset, which eliminates Retry Injection
 Attacks

B.9. since draft-duke-quic-version-aliasing-00

 * Added "Initial Token Extensions" to increase salt entropy and make
 salt polling attacks impractical.

 * Allowed servers to store a mapping of version number and ITE to
 salt instead.

 * Made standard version encoding mandatory. This dramatically
 simplifies the new Retry logic and changes the security model.

 * Added references to Version Negotiation Transport Parameters.

 * Extensive readability edit.

Author’s Address

 Martin Duke
 Google
 Email: martin.h.duke@gmail.com

Duke Expires 27 October 2023 [Page 27]

