
QUIC R. Marx
Internet-Draft Hasselt University
Intended status: Standards Track 2 November 2020
Expires: 6 May 2021

 QUIC and HTTP/3 event definitions for qlog
 draft-marx-qlog-event-definitions-quic-h3-02

Abstract

 This document describes concrete qlog event definitions and their
 metadata for QUIC and HTTP/3-related events. These events can then
 be embedded in the higher level schema defined in [QLOG-MAIN].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 6 May 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Marx Expires 6 May 2021 [Page 1]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

Table of Contents

 1. Introduction . 5
 1.1. Notational Conventions 5
 2. Overview . 5
 2.1. Importance . 6
 2.2. Custom fields . 7
 3. Events not belonging to a single connection 7
 4. QUIC and HTTP/3 fields 8
 4.1. Raw packet and frame information 8
 5. QUIC event definitions 10
 5.1. connectivity . 10
 5.1.1. server_listening 10
 5.1.2. connection_started 10
 5.1.3. connection_closed 11
 5.1.4. connection_id_updated 12
 5.1.5. spin_bit_updated 12
 5.1.6. connection_retried 12
 5.1.7. connection_state_updated 13
 5.1.8. MIGRATION-related events 15
 5.2. security . 15
 5.2.1. key_updated . 15
 5.2.2. key_retired . 15
 5.3. transport . 16
 5.3.1. version_information 16
 5.3.2. alpn_information 17
 5.3.3. parameters_set 18
 5.3.4. parameters_restored 20
 5.3.5. packet_sent . 20
 5.3.6. packet_received 21
 5.3.7. packet_dropped 22
 5.3.8. packet_buffered 23
 5.3.9. packets_acked . 24
 5.3.10. datagrams_sent 24
 5.3.11. datagrams_received 25
 5.3.12. datagram_dropped 25
 5.3.13. stream_state_updated 26
 5.3.14. frames_processed 27
 5.3.15. data_moved . 28
 5.4. recovery . 30
 5.4.1. parameters_set 30
 5.4.2. metrics_updated 30
 5.4.3. congestion_state_updated 31
 5.4.4. loss_timer_updated 32
 5.4.5. packet_lost . 33
 5.4.6. marked_for_retransmit 34
 6. HTTP/3 event definitions 34
 6.1. http . 34

Marx Expires 6 May 2021 [Page 2]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 6.1.1. parameters_set 34
 6.1.2. parameters_restored 35
 6.1.3. stream_type_set 36
 6.1.4. frame_created . 36
 6.1.5. frame_parsed . 37
 6.1.6. push_resolved . 37
 6.2. qpack . 38
 6.2.1. state_updated . 38
 6.2.2. stream_state_updated 39
 6.2.3. dynamic_table_updated 39
 6.2.4. headers_encoded 39
 6.2.5. headers_decoded 40
 6.2.6. instruction_created 40
 6.2.7. instruction_parsed 41
 7. Generic events and Simulation indicators 41
 7.1. generic . 41
 7.1.1. error . 42
 7.1.2. warning . 42
 7.1.3. info . 42
 7.1.4. debug . 42
 7.1.5. verbose . 43
 7.2. simulation . 43
 7.2.1. scenario . 43
 7.2.2. marker . 44
 8. Security Considerations 44
 9. IANA Considerations . 44
 10. References . 44
 10.1. Normative References 44
 10.2. Informative References 45
 Appendix A. QUIC data field definitions 45
 A.1. IPAddress . 45
 A.2. PacketType . 45
 A.3. PacketNumberSpace . 45
 A.4. PacketHeader . 45
 A.5. Token . 46
 A.6. KeyType . 46
 A.7. QUIC Frames . 47
 A.7.1. PaddingFrame . 47
 A.7.2. PingFrame . 47
 A.7.3. AckFrame . 47
 A.7.4. ResetStreamFrame 48
 A.7.5. StopSendingFrame 48
 A.7.6. CryptoFrame . 49
 A.7.7. NewTokenFrame . 49
 A.7.8. StreamFrame . 49
 A.7.9. MaxDataFrame . 50
 A.7.10. MaxStreamDataFrame 50
 A.7.11. MaxStreamsFrame 50

Marx Expires 6 May 2021 [Page 3]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 A.7.12. DataBlockedFrame 50
 A.7.13. StreamDataBlockedFrame 50
 A.7.14. StreamsBlockedFrame 50
 A.7.15. NewConnectionIDFrame 51
 A.7.16. RetireConnectionIDFrame 51
 A.7.17. PathChallengeFrame 51
 A.7.18. PathResponseFrame 51
 A.7.19. ConnectionCloseFrame 52
 A.7.20. HandshakeDoneFrame 52
 A.7.21. UnknownFrame . 52
 A.7.22. TransportError 52
 A.7.23. CryptoError . 53
 Appendix B. HTTP/3 data field definitions 53
 B.1. HTTP/3 Frames . 53
 B.1.1. DataFrame . 53
 B.1.2. HeadersFrame . 54
 B.1.3. CancelPushFrame 54
 B.1.4. SettingsFrame . 54
 B.1.5. PushPromiseFrame 54
 B.1.6. GoAwayFrame . 55
 B.1.7. MaxPushIDFrame 55
 B.1.8. DuplicatePushFrame 55
 B.1.9. ReservedFrame . 55
 B.1.10. UnknownFrame . 55
 B.2. ApplicationError . 55
 Appendix C. QPACK DATA type definitions 56
 C.1. QPACK Instructions 56
 C.1.1. SetDynamicTableCapacityInstruction 56
 C.1.2. InsertWithNameReferenceInstruction 56
 C.1.3. InsertWithoutNameReferenceInstruction 57
 C.1.4. DuplicateInstruction 57
 C.1.5. HeaderAcknowledgementInstruction 57
 C.1.6. StreamCancellationInstruction 57
 C.1.7. InsertCountIncrementInstruction 58
 C.2. QPACK Header compression 58
 C.2.1. IndexedHeaderField 58
 C.2.2. LiteralHeaderFieldWithName 58
 C.2.3. LiteralHeaderFieldWithoutName 59
 C.2.4. QPackHeaderBlockPrefix 59
 Appendix D. Change Log . 59
 D.1. Since draft-01: . 59
 D.2. Since draft-00: . 61
 Appendix E. Design Variations 61
 Appendix F. Acknowledgements 61
 Author’s Address . 61

Marx Expires 6 May 2021 [Page 4]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

1. Introduction

 This document describes the values of the qlog name ("category" +
 "event") and "data" fields and their semantics for the QUIC and
 HTTP/3 protocols. This document is based on draft-29 of the QUIC and
 HTTP/3 I-Ds QUIC-TRANSPORT [QUIC-HTTP] and draft-16 of the QPACK I-D
 [QUIC-QPACK].

 Feedback and discussion welcome at https://github.com/quiclog/
 internet-drafts (https://github.com/quiclog/internet-drafts).
 Readers are advised to refer to the "editor’s draft" at that URL for
 an up-to-date version of this document.

 Concrete examples of integrations of this schema in various
 programming languages can be found at https://github.com/quiclog/
 qlog/ (https://github.com/quiclog/qlog/).

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The examples and data definitions in ths document are expressed in a
 custom data definition language, inspired by JSON and TypeScript, and
 described in [QLOG-MAIN].

2. Overview

 This document describes the values of the qlog "name" ("category" +
 "event") and "data" fields and their semantics for the QUIC and
 HTTP/3 protocols.

 This document assumes the usage of the encompassing main qlog schema
 defined in [QLOG-MAIN]. Each subsection below defines a separate
 category (for example connectivity, transport, http) and each
 subsubsection is an event type (for example "packet_received").

 For each event type, its importance and data definition is laid out,
 often accompanied by possible values for the optional "trigger"
 field. For the definition and semantics of "trigger", see the main
 schema document.

 Most of the complex datastructures, enums and re-usable definitions
 are grouped together on the bottom of this document for clarity.

Marx Expires 6 May 2021 [Page 5]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

2.1. Importance

 Many of the events defined in this document map directly to concepts
 seen in the QUIC and HTTP/3 documents, while others act as
 aggregating events that combine data from several possible protocol
 behaviours or code paths into one. This is done to reduce the amount
 of unique event definitions, as reflecting each possible protocol
 event as a separate qlog entity would cause an explosion of event
 types. Similarly, we prevent logging duplicate packet data as much
 as possible. As such, especially packet header value updates are
 split out into separate events (for example spin_bit_updated,
 connection_id_updated), as they are expected to change sparingly.

 Consequently, many events that can be directly inferred from data on
 the wire (for example flow control limit changes) if the
 implementation is bug-free, are currently not explicitly defined as
 stand-alone events. Exceptions can be made for common events that
 benefit from being easily identifiable or individually logged (for
 example the "packets_acked" event). This can in turn give rise to
 separate events logging similar data, where it is not always clear
 which event should be logged (for example the separate
 "connection_started" event, whereas the more general
 "connection_state_updated" event also allows indicating that a
 connection was started).

 To aid in this decision making, each event has an "importance
 indicator" with one of three values, in decreasing order of
 importance and exptected usage:

 * Core

 * Base

 * Extra

 The "Core" events are the events that SHOULD be present in all qlog
 files. These are mostly tied to basic packet and frame parsing and
 creation, as well as listing basic internal metrics. Tool
 implementers SHOULD expect and add support for these events, though
 SHOULD NOT expect all Core events to be present in each qlog trace.

Marx Expires 6 May 2021 [Page 6]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 The "Base" events add additional debugging options and CAN be present
 in qlog files. Most of these can be implicitly inferred from data in
 Core events (if those contain all their properties), but for many it
 is better to log the events explicitly as well, making it clearer how
 the implementation behaves. These events are for example tied to
 passing data around in buffers, to how internal state machines change
 and help show when decisions are actually made based on received
 data. Tool implementers SHOULD at least add support for showing the
 contents of these events, if they do not handle them explicitly.

 The "Extra" events are considered mostly useful for low-level
 debugging of the implementation, rather than the protocol. They
 allow more fine-grained tracking of internal behaviour. As such,
 they CAN be present in qlog files and tool implementers CAN add
 support for these, but they are not required to.

 Note that in some cases, implementers might not want to log for
 example frame-level details in the "Core" events due to performance
 or privacy considerations. In this case, they SHOULD use (a subset
 of) relevant "Base" events instead to ensure usability of the qlog
 output. As an example, implementations that do not log
 "packet_received" events and thus also not which (if any) ACK frames
 the packet contain, SHOULD log "packets_acked" events instead.

 Finally, for event types who’s data (partially) overlap with other
 event types’ definitions, where necessary this document includes
 guidance on which to use in specific situations.

2.2. Custom fields

 Note that implementers are free to define new category and event
 types, as well as values for the "trigger" property within the "data"
 field, or other member fields of the "data" field, as they see fit.
 They SHOULD NOT however expect non-specialized tools to recognize or
 visualize this custom data. However, tools SHOULD make an effort to
 visualize even unknown data if possible in the specific tool’s
 context.

3. Events not belonging to a single connection

 For several types of events, it is sometimes impossible to tie them
 to a specific conceptual QUIC connection (e.g., a packet_dropped
 event triggered because the packet has an unknown connection_id in
 the header). Since qlog events in a trace are typically associated
 with a single connection, it is unclear how to log these events.

Marx Expires 6 May 2021 [Page 7]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 Ideally, implementers SHOULD create a separate, individual "endpoint-
 level" trace file (or group_id value), not associated with a specific
 connection (for example a "server.qlog" or group_id = "client"), and
 log all events that do not belong to a single connection to this
 grouping trace. However, this is not always practical, depending on
 the implementation. Because the semantics of most of these events
 are well-defined in the protocols and because they are difficult to
 mis-interpret as belonging to a connection, implementers MAY choose
 to log events not belonging to a particular connection in any other
 trace, even those strongly associated with a single connection.

 Note that this can make it difficult to match logs from different
 vantage points with each other. For example, from the client side,
 it is easy to log connections with version negotiation or retry in
 the same trace, while on the server they would most likely be logged
 in separate traces. Servers can take extra efforts (and keep
 additional state) to keep these events combined in a single trace
 however (for example by also matching connections on their four-tuple
 instead of just the connection ID).

4. QUIC and HTTP/3 fields

 This document re-uses all the fields defined in the main qlog schema
 (e.g., name, category, type, data, group_id, protocol_type, the time-
 related fields, etc.).

 The value of the "protocol_type" qlog field MUST be "QUIC_HTTP3".

 When the qlog "group_id" field is used, it is recommended to use
 QUIC’s Original Destination Connection ID (ODCID, the CID chosen by
 the client when first contacting the server), as this is the only
 value that does not change over the course of the connection and can
 be used to link more advanced QUIC packets (e.g., Retry, Version
 Negotiation) to a given connection. Similarly, the ODCID should be
 used as the qlog filename or file identifier, potentially suffixed by
 the vantagepoint type (For example, abcd1234_server.qlog would
 contain the server-side trace of the connection with ODCID abcd1234).

4.1. Raw packet and frame information

 While qlog is a more high-level logging format, it also allows the
 inclusion of most raw wire image information, such as byte lengths
 and even raw byte values. This can be useful when for example
 investigating or tuning packetization behaviour or determining
 encoding/framing overheads. However, these fields are not always
 necessary and can take up considerable space if logged for each
 packet or frame. As such, they are grouped in a separate optional
 field called "raw" of type RawInfo (where applicable).

Marx Expires 6 May 2021 [Page 8]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

class RawInfo {
 length?:uint64; // full packet/frame length, including header and AEAD authen
tication tag lengths (where applicable)
 payload_length?:uint64; // length of the packet/frame payload, excluding AEAD
 tag. For many control frames, this will have a value of zero

 data?:bytes; // full packet/frame contents, including header and AEAD authent
ication tag (where applicable)
}

 Note: QUIC packets always include an AEAD authentication tag at the
 end. As this tag is always the same size for a given connection
 (it depends on the used TLS cipher), we do not have a separate
 "aead_tag_length" field here. Instead, this field is reflected in
 "transport:parameters_set" and can be logged only once.

 Note: There is intentionally no explicit header_length field in
 RawInfo. QUIC and HTTP/3 use many Variable-Length Integer Encoded
 (VLIE) values in their packet and frame headers, which are of a
 dynamic length. Note too that because of this, we cannot
 deterministally reconstruct the header encoding/length from qlog
 data, as implementations might not necessarily employ the most
 efficient VLIE scheme for all values. As such, it is typically
 easier to log just the total packet/frame length and the payload
 length. The header length can be calculated by tools as:

 For QUIC packets: header_length = length - payload_length -
 aead_tag_length

 For QUIC and HTTP/3 frames: header_length = length -
 payload_length

 For UDP datagrams: header_length = length - payload_length

 Note: In some cases, the length fields are also explicitly reflected
 inside of frame/packet headers. For example, the QUIC STREAM
 frame has a "length" field indicating its payload size.
 Similarly, all HTTP/3 frames include their explicit payload
 lengths in the frame header. Finally, the QUIC Long Header has a
 "length" field which is equal to the payload length plus the
 packet number length. In these cases, those fields are
 intentionally preserved in the event definitions. Even though
 this can lead to duplicate data when the full RawInfo is logged,
 it allows a more direct mapping of the QUIC and HTTP/3
 specifications to qlog, making it easier for users to interpret.

 Note: as described in [QLOG-MAIN], the RawInfo:data field can be
 truncated for privacy or security purposes (for example excluding
 payload data). In this case, the length properties should still
 indicate the non-truncated lengths.

Marx Expires 6 May 2021 [Page 9]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

5. QUIC event definitions

 Each subheading in this section is a qlog event category, while each
 sub-subheading is a qlog event type. Concretely, for the following
 two items, we have the category "connectivity" and event type
 "server_listening", resulting in a concatenated qlog "name" field
 value of "connectivity:server_listening".

5.1. connectivity

5.1.1. server_listening

 Importance: Extra

 Emitted when the server starts accepting connections.

 Data:

{
 ip_v4?: IPAddress,
 ip_v6?: IPAddress,
 port_v4?: uint32,
 port_v6?: uint32,

 retry_required?:boolean // the server will always answer client initials with
 a retry (no 1-RTT connection setups by choice)
}

 Note: some QUIC stacks do not handle sockets directly and are thus
 unable to log IP and/or port information.

5.1.2. connection_started

 Importance: Base

 Used for both attempting (client-perspective) and accepting (server-
 perspective) new connections. Note that this event has overlap with
 connection_state_updated and this is a separate event mainly because
 of all the additional data that should be logged.

 Data:

Marx Expires 6 May 2021 [Page 10]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 {
 ip_version?: "v4" | "v6",
 src_ip?: IPAddress,
 dst_ip?: IPAddress,

 protocol?: string, // transport layer protocol (default "QUIC")
 src_port?: uint32,
 dst_port?: uint32,

 src_cid?: bytes,
 dst_cid?: bytes,

 }

 Note: some QUIC stacks do not handle sockets directly and are thus
 unable to log IP and/or port information.

5.1.3. connection_closed

 Importance: Base

 Used for logging when a connection was closed, typically when an
 error or timeout occurred. Note that this event has overlap with
 connectivity:connection_state_updated, as well as the
 CONNECTION_CLOSE frame. However, in practice, when analyzing large
 deployments, it can be useful to have a single event representing a
 connection_closed event, which also includes an additional reason
 field to provide additional information. Additionally, it is useful
 to log closures due to timeouts, which are difficult to reflect using
 the other options.

 In QUIC there are two main connection-closing error categories:
 connection and application errors. They have well-defined error
 codes and semantics. Next to these however, there can be internal
 errors that occur that may or may not get mapped to the official
 error codes in implementation-specific ways. As such, multiple error
 codes can be set on the same event to reflect this.

 {
 owner?:"local"|"remote", // which side closed the connection

 connection_code?:TransportError | CryptoError | uint32,
 application_code?:ApplicationError | uint32,
 internal_code?:uint32,

 reason?:string
 }

Marx Expires 6 May 2021 [Page 11]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 Triggers: * clean * handshake_timeout * idle_timeout * error // this
 is called the "immediate close" in the QUIC specification *
 stateless_reset * version_mismatch * application // for example
 HTTP/3’s GOAWAY frame

5.1.4. connection_id_updated

 Importance: Base

 This event is emitted when either party updates their current
 Connection ID. As this typically happens only sparingly over the
 course of a connection, this event allows loggers to be more
 efficient than logging the observed CID with each packet in the
 .header field of the "packet_sent" or "packet_received" events.

 This is viewed from the perspective of the one applying the new id.
 As such, if we receive a new connection id from our peer, we will see
 the dst_ fields are set. If we update our own connection id (e.g.,
 NEW_CONNECTION_ID frame), we log the src_ fields.

 Data:

 {
 owner: "local" | "remote",

 old?:bytes,
 new?:bytes,
 }

5.1.5. spin_bit_updated

 Importance: Base

 To be emitted when the spin bit changes value. It SHOULD NOT be
 emitted if the spin bit is set without changing its value.

 Data:

 {
 state: boolean
 }

5.1.6. connection_retried

 TODO

Marx Expires 6 May 2021 [Page 12]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

5.1.7. connection_state_updated

 Importance: Base

 This event is used to track progress through QUIC’s complex handshake
 and connection close procedures. It is intended to provide
 exhaustive options to log each state individually, but also provides
 a more basic, simpler set for implementations less interested in
 tracking each smaller state transition. As such, users should not
 expect to see -all- these states reflected in all qlogs and
 implementers should focus on support for the SimpleConnectionState
 set.

 Data: ˜˜˜ { old?: ConnectionState | SimpleConnectionState, new:
 ConnectionState | SimpleConnectionState }

 enum ConnectionState { attempted, // initial sent/received
 peer_validated, // peer address validated by: client sent Handshake
 packet OR client used CONNID chosen by the server. transport-draft-
 32, section-8.1 handshake_started, early_write, // 1 RTT can be sent,
 but handshake isn’t done yet handshake_complete, // TLS handshake
 complete: Finished received and sent. tls-draft-32, section-4.1.1
 handshake_confirmed, // HANDSHAKE_DONE sent/received (connection is
 now "active", 1RTT can be sent). tls-draft-32, section-4.1.2 closing,
 draining, // connection_close sent/received closed // draining period
 done, connection state discarded }

 enum SimpleConnectionState { attempted, handshake_started,
 handshake_confirmed, closed } ˜˜˜

 These states correspond to the following transitions for both client
 and server:

 Client:

 * send initial

 - state = attempted

 * get initial

 - state = validated _(not really "needed" at the client, but
 somewhat useful to indicate progress nonetheless)_

 * get first Handshake packet

 - state = handshake_started

Marx Expires 6 May 2021 [Page 13]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 * get Handshake packet containing ServerFinished

 - state = handshake_complete

 * send ClientFinished

 - state = early_write (1RTT can now be sent)

 * get HANDSHAKE_DONE

 - state = handshake_confirmed

 Server:

 * get initial

 - state = attempted

 * send initial _(don’t think this needs a separate state, since some
 handshake will always be sent in the same flight as this?)_

 * send handshake EE, CERT, CV, ...

 - state = handshake_started

 * send ServerFinished

 - state = early_write (1RTT can now be sent)

 * get first handshake packet / something using a server-issued CID
 of min length

 - state = validated

 * get handshake packet containing ClientFinished

 - state = handshake_complete

 * send HANDSHAKE_DONE

 - state = handshake_confirmed

 Note: connection_state_changed with a new state of "attempted" is
 the same conceptual event as the connection_started event above
 from the client’s perspective. Similarly, a state of "closing" or
 "draining" corresponds to the connection_closed event.

Marx Expires 6 May 2021 [Page 14]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

5.1.8. MIGRATION-related events

 e.g., path_updated

 TODO: read up on the draft how migration works and whether to best
 fit this here or in TRANSPORT TODO: integrate
 https://tools.ietf.org/html/draft-deconinck-quic-multipath-02

 For now, infer from other connectivity events and path_challenge/
 path_response frames

5.2. security

5.2.1. key_updated

 Importance: Base

 Note: secret_updated would be more correct, but in the draft it’s
 called KEY_UPDATE, so stick with that for consistency

 Data:

 {
 key_type:KeyType,
 old?:bytes,
 new:bytes,
 generation?:uint32 // needed for 1RTT key updates
 }

 Triggers:

 * "tls" // (e.g., initial, handshake and 0-RTT keys are generated by
 TLS)

 * "remote_update"

 * "local_update"

5.2.2. key_retired

 Importance: Base

 Data:

Marx Expires 6 May 2021 [Page 15]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 {
 key_type:KeyType,
 key?:bytes,
 generation?:uint32 // needed for 1RTT key updates
 }

 Triggers:

 * "tls" // (e.g., initial, handshake and 0-RTT keys are dropped
 implicitly)

 * "remote_update"

 * "local_update"

5.3. transport

5.3.1. version_information

 Importance: Core

 QUIC endpoints each have their own list of of QUIC versions they
 support. The client uses the most likely version in their first
 initial. If the server does support that version, it replies with a
 version_negotiation packet, containing supported versions. From
 this, the client selects a version. This event aggregates all this
 information in a single event type. It also allows logging of
 supported versions at an endpoint without actual version negotiation
 needing to happen.

 Data:

 {
 server_versions?:Array<bytes>,
 client_versions?:Array<bytes>,
 chosen_version?:bytes
 }

 Intended use:

 * When sending an initial, the client logs this event with
 client_versions and chosen_version set

 * Upon receiving a client initial with a supported version, the
 server logs this event with server_versions and chosen_version set

Marx Expires 6 May 2021 [Page 16]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 * Upon receiving a client initial with an unsupported version, the
 server logs this event with server_versions set and
 client_versions to the single-element array containing the
 client’s attempted version. The absence of chosen_version implies
 no overlap was found.

 * Upon receiving a version negotiation packet from the server, the
 client logs this event with client_versions set and
 server_versions to the versions in the version negotiation packet
 and chosen_version to the version it will use for the next initial
 packet

5.3.2. alpn_information

 Importance: Core

 QUIC implementations each have their own list of application level
 protocols and versions thereof they support. The client includes a
 list of their supported options in its first initial as part of the
 TLS Application Layer Protocol Negotiation (alpn) extension. If
 there are common option(s), the server chooses the most optimal one
 and communicates this back to the client. If not, the connection is
 closed.

 Data:

 {
 server_alpns?:Array<string>,
 client_alpns?:Array<string>,
 chosen_alpn?:string
 }

 Intended use:

 * When sending an initial, the client logs this event with
 client_alpns set

 * When receiving an initial with a supported alpn, the server logs
 this event with server_alpns set, client_alpns equalling the
 client-provided list, and chosen_alpn to the value it will send
 back to the client.

 * When receiving an initial with an alpn, the client logs this event
 with chosen_alpn to the received value.

 * Alternatively, a client can choose to not log the first event, but
 wait for the receipt of the server initial to log this event with
 both client_alpns and chosen_alpn set.

Marx Expires 6 May 2021 [Page 17]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

5.3.3. parameters_set

 Importance: Core

 This event groups settings from several different sources (transport
 parameters, TLS ciphers, etc.) into a single event. This is done to
 minimize the amount of events and to decouple conceptual setting
 impacts from their underlying mechanism for easier high-level
 reasoning.

 All these settings are typically set once and never change. However,
 they are typically set at different times during the connection, so
 there will typically be several instances of this event with
 different fields set.

 Note that some settings have two variations (one set locally, one
 requested by the remote peer). This is reflected in the "owner"
 field. As such, this field MUST be correct for all settings included
 a single event instance. If you need to log settings from two sides,
 you MUST emit two separate event instances.

 In the case of connection resumption and 0-RTT, some of the server’s
 parameters are stored up-front at the client and used for the initial
 connection startup. They are later updated with the server’s reply.
 In these cases, utilize the separate "parameters_restored" event to
 indicate the initial values, and this event to indicate the updated
 values, as normal.

 Data:

Marx Expires 6 May 2021 [Page 18]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

{
 owner?:"local" | "remote",

 resumption_allowed?:boolean, // valid session ticket was received
 early_data_enabled?:boolean, // early data extension was enabled on the TLS l
ayer
 tls_cipher?:string, // (e.g., "AES_128_GCM_SHA256")
 aead_tag_length?:uint8, // depends on the TLS cipher, but it’s easier to be e
xplicit. Default value is 16

 // transport parameters from the TLS layer:
 original_destination_connection_id?:bytes,
 initial_source_connection_id?:bytes,
 retry_source_connection_id?:bytes,
 stateless_reset_token?:Token,
 disable_active_migration?:boolean,

 max_idle_timeout?:uint64,
 max_udp_payload_size?:uint32,
 ack_delay_exponent?:uint16,
 max_ack_delay?:uint16,
 active_connection_id_limit?:uint32,

 initial_max_data?:uint64,
 initial_max_stream_data_bidi_local?:uint64,
 initial_max_stream_data_bidi_remote?:uint64,
 initial_max_stream_data_uni?:uint64,
 initial_max_streams_bidi?:uint64,
 initial_max_streams_uni?:uint64,

 preferred_address?:PreferredAddress
}

interface PreferredAddress {
 ip_v4:IPAddress,
 ip_v6:IPAddress,

 port_v4:uint16,
 port_v6:uint16,

 connection_id:bytes,
 stateless_reset_token:Token
}

 Additionally, this event can contain any number of unspecified
 fields. This is to reflect setting of for example unknown (greased)
 transport parameters or employed (proprietary) extensions.

Marx Expires 6 May 2021 [Page 19]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

5.3.4. parameters_restored

 Importance: Base

 When using QUIC 0-RTT, clients are expected to remember and restore
 the server’s transport parameters from the previous connection. This
 event is used to indicate which parameters were restored and to which
 values when utilizing 0-RTT. Note that not all transport parameters
 should be restored (many are even prohibited from being re-utilized).
 The ones listed here are the ones expected to be useful for correct
 0-RTT usage.

 Data:

 {
 disable_active_migration?:boolean,

 max_idle_timeout?:uint64,
 max_udp_payload_size?:uint32,
 active_connection_id_limit?:uint32,

 initial_max_data?:uint64,
 initial_max_stream_data_bidi_local?:uint64,
 initial_max_stream_data_bidi_remote?:uint64,
 initial_max_stream_data_uni?:uint64,
 initial_max_streams_bidi?:uint64,
 initial_max_streams_uni?:uint64,
 }

 Note that, like parameters_set above, this event can contain any
 number of unspecified fields to allow for additional/custom
 parameters.

5.3.5. packet_sent

 Importance: Core

 Data:

Marx Expires 6 May 2021 [Page 20]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

{
 header:PacketHeader,

 frames?:Array<QuicFrame>, // see appendix for the definitions

 is_coalesced?:boolean, // default value is false

 retry_token?:Token, // only if header.packet_type === retry

 stateless_reset_token?:bytes, // only if header.packet_type === stateless_res
et. Is always 128 bits in length.

 supported_versions:Array<bytes>, // only if header.packet_type === version_ne
gotiation

 raw?:RawInfo,
 datagram_id?:uint32
}

 Note: We do not explicitly log the encryption_level or
 packet_number_space: the header.packet_type specifies this by
 inference (assuming correct implementation)

 Triggers:

 * "retransmit_reordered" // draft-23 5.1.1

 * "retransmit_timeout" // draft-23 5.1.2

 * "pto_probe" // draft-23 5.3.1

 * "retransmit_crypto" // draft-19 6.2

 * "cc_bandwidth_probe" // needed for some CCs to figure out
 bandwidth allocations when there are no normal sends

 Note: for more details on "datagram_id", see Section 5.3.10. It is
 only needed when keeping track of packet coalescing.

5.3.6. packet_received

 Importance: Core

 Data:

Marx Expires 6 May 2021 [Page 21]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

{
 header:PacketHeader,

 frames?:Array<QuicFrame>, // see appendix for the definitions

 is_coalesced?:boolean,

 retry_token?:Token, // only if header.packet_type === retry

 stateless_reset_token?:bytes, // only if header.packet_type === stateless_res
et. Is always 128 bits in length.

 supported_versions:Array<bytes>, // only if header.packet_type === version_ne
gotiation

 raw?:RawInfo,
 datagram_id?:uint32
}

 Note: We do not explicitly log the encryption_level or
 packet_number_space: the header.packet_type specifies this by
 inference (assuming correct implementation)

 Triggers:

 * "keys_available" // if packet was buffered because it couldn’t be
 decrypted before

 Note: for more details on "datagram_id", see Section 5.3.10. It is
 only needed when keeping track of packet coalescing.

5.3.7. packet_dropped

 Importance: Base

 This event indicates a QUIC-level packet was dropped after partial or
 no parsing.

 Data:

{
 header?:PacketHeader, // primarily packet_type should be filled here, as othe
r fields might not be parseable

 raw?:RawInfo,
 datagram_id?:uint32
}

 For this event, the "trigger" field SHOULD be set (for example to one
 of the values below), as this helps tremendously in debugging.

Marx Expires 6 May 2021 [Page 22]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 Triggers:

 * "key_unavailable"

 * "unknown_connection_id"

 * "header_parse_error"

 * "payload_decrypt_error"

 * "protocol_violation"

 * "dos_prevention"

 * "unsupported_version"

 * "unexpected_packet"

 * "unexpected_source_connection_id"

 * "unexpected_version"

 * "duplicate"

 * "invalid_initial"

 Note: sometimes packets are dropped before they can be associated
 with a particular connection (e.g., in case of
 "unsupported_version"). This situation is discussed more in
 Section 3.

 Note: for more details on "datagram_id", see Section 5.3.10. It is
 only needed when keeping track of packet coalescing.

5.3.8. packet_buffered

 Importance: Base

 This event is emitted when a packet is buffered because it cannot be
 processed yet. Typically, this is because the packet cannot be
 parsed yet, and thus we only log the full packet contents when it was
 parsed in a packet_received event.

 Data:

Marx Expires 6 May 2021 [Page 23]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

{
 header?:PacketHeader, // primarily packet_type and possible packet_number sho
uld be filled here, as other elements might not be available yet

 raw?:RawInfo,
 datagram_id?:uint32
}

 Note: for more details on "datagram_id", see Section 5.3.10. It is
 only needed when keeping track of packet coalescing.

 Triggers:

 * "backpressure" // indicates the parser cannot keep up, temporarily
 buffers packet for later processing

 * "keys_unavailable" // if packet cannot be decrypted because the
 proper keys were not yet available

5.3.9. packets_acked

 Importance: Extra

 This event is emitted when a (group of) sent packet(s) is
 acknowledged by the remote peer _for the first time_. This
 information could also be deduced from the contents of received ACK
 frames. However, ACK frames require additional processing logic to
 determine when a given packet is acknowledged for the first time, as
 QUIC uses ACK ranges which can include repeated ACKs. Additionally,
 this event can be used by implementations that do not log frame
 contents.

 Data: ˜˜˜ { packet_number_space?:PacketNumberSpace,

 packet_numbers?:Array<uint64> } ˜˜˜

 Note: if packet_number_space is omitted, it assumes the default value
 of PacketNumberSpace.application_data, as this is by far the most
 prevalent packet number space a typical QUIC connection will use.

5.3.10. datagrams_sent

 Importance: Extra

 When we pass one or more UDP-level datagrams to the socket. This is
 useful for determining how QUIC packet buffers are drained to the OS.

 Data:

Marx Expires 6 May 2021 [Page 24]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

{
 count?:uint16, // to support passing multiple at once
 raw?:Array<RawInfo>, // RawInfo:length field indicates total length of the da
tagrams, including UDP header length

 datagram_ids?:Array<uint32>
}

 Note: QUIC itself does not have a concept of a "datagram_id". This
 field is a purely qlog-specific construct to allow tracking how
 multiple QUIC packets are coalesced inside of a single UDP datagram,
 which is an important optimization during the QUIC handshake. For
 this, implementations assign a (per-endpoint) unique ID to each
 datagram and keep track of which packets were coalesced into the same
 datagram. As packet coalescing typically only happens during the
 handshake (as it requires at least one long header packet), this can
 be done without much overhead.

5.3.11. datagrams_received

 Importance: Extra

 When we receive one or more UDP-level datagrams from the socket.
 This is useful for determining how datagrams are passed to the user
 space stack from the OS.

 Data:

{
 count?:uint16, // to support passing multiple at once
 raw?:Array<RawInfo>, // RawInfo:length field indicates total length of the da
tagrams, including UDP header length

 datagram_ids?:Array<uint32>
}

 Note: for more details on "datagram_ids", see Section 5.3.10.

5.3.12. datagram_dropped

 Importance: Extra

 When we drop a UDP-level datagram. This is typically if it does not
 contain a valid QUIC packet (in that case, use packet_dropped
 instead).

 Data:

Marx Expires 6 May 2021 [Page 25]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 {
 raw?:RawInfo
 }

5.3.13. stream_state_updated

 Importance: Base

 This event is emitted whenever the internal state of a QUIC stream is
 updated, as described in QUIC transport draft-23 section 3. Most of
 this can be inferred from several types of frames going over the
 wire, but it’s much easier to have explicit signals for these state
 changes.

 Data:

Marx Expires 6 May 2021 [Page 26]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

{
 stream_id:uint64,
 stream_type?:"unidirectional"|"bidirectional", // mainly useful when opening
the stream

 old?:StreamState,
 new:StreamState,

 stream_side?:"sending"|"receiving"
}

enum StreamState {
 // bidirectional stream states, draft-23 3.4.
 idle,
 open,
 half_closed_local,
 half_closed_remote,
 closed,

 // sending-side stream states, draft-23 3.1.
 ready,
 send,
 data_sent,
 reset_sent,
 reset_received,

 // receive-side stream states, draft-23 3.2.
 receive,
 size_known,
 data_read,
 reset_read,

 // both-side states
 data_received,

 // qlog-defined
 destroyed // memory actually freed
}

 Note: QUIC implementations SHOULD mainly log the simplified
 bidirectional (HTTP/2-alike) stream states (e.g., idle, open, closed)
 instead of the more finegrained stream states (e.g., data_sent,
 reset_received). These latter ones are mainly for more in-depth
 debugging. Tools SHOULD be able to deal with both types equally.

5.3.14. frames_processed

 Importance: Extra

Marx Expires 6 May 2021 [Page 27]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 This event’s main goal is to prevent a large proliferation of
 specific purpose events (e.g., packets_acknowledged,
 flow_control_updated, stream_data_received). We want to give
 implementations the opportunity to (selectively) log this type of
 signal without having to log packet-level details (e.g., in
 packet_received). Since for almost all cases, the effects of
 applying a frame to the internal state of an implementation can be
 inferred from that frame’s contents, we aggregate these events in
 this single "frames_processed" event.

 Note: This event can be used to signal internal state change not
 resulting directly from the actual "parsing" of a frame (e.g., the
 frame could have been parsed, data put into a buffer, then later
 processed, then logged with this event).

 Note: Implementations logging "packet_received" and which include all
 of the packet’s constituent frames therein, are not expected to emit
 this "frames_processed" event (contrary to the HTTP-level
 "frames_parsed" event). Rather, implementations not wishing to log
 full packets or that wish to explicitly convey extra information
 about when frames are processed (if not directly tied to their
 reception) can use this event.

 Note: for some events, this approach will lose some information
 (e.g., for which encryption level are packets being acknowledged?).
 If this information is important, please use the packet_received
 event instead.

 Note: in some implementations, it can be difficult to log frames
 directly, even when using packet_sent and packet_received events.
 For these cases, this event also contains the direct packet_number
 field, which can be used to more explicitly link this event to the
 packet_sent/received events.

 Data:

 {
 frames:Array<QuicFrame>, // see appendix for the definitions

 packet_number?:uint64
 }

5.3.15. data_moved

 Importance: Base

Marx Expires 6 May 2021 [Page 28]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 Used to indicate when data moves between the different layers (for
 example passing from HTTP/3 to QUIC stream buffers and vice versa) or
 between HTTP/3 and the actual user application on top (for example a
 browser engine). This helps make clear the flow of data, how long
 data remains in various buffers and the overheads introduced by
 individual layers.

 For example, this helps make clear whether received data on a QUIC
 stream is moved to the HTTP layer immediately (for example per
 received packet) or in larger batches (for example, all QUIC packets
 are processed first and afterwards the HTTP layer reads from the
 streams with newly available data). This in turn can help identify
 bottlenecks or scheduling problems.

 Data:

{
 stream_id?:uint64,
 offset?:uint64,
 length?:uint64, // byte length of the moved data

 from?:string, // typically: use either of "application","http","transport"
 to?:string, // typically: use either of "application","http","transport"

 data?:bytes // raw bytes that were transferred
}

 Note: we do not for example use a "direction" field (with values "up"
 and "down") to specify the data flow. This is because in some
 optimized implementations, data might skip some individual layers.
 Additionally, using explicit "from" and "to" fields is more flexible
 and allows the definition of other conceptual "layers" (for example
 to indicate data from QUIC CRYPTO frames being passed to a TLS
 library ("security") or from HTTP/3 to QPACK ("qpack")).

 Note: this event type is part of the "transport" category, but really
 spans all the different layers. This means we have a few leaky
 abstractions here (for example, the stream_id or stream offset might
 not be available at some logging points, or the raw data might not be
 in a byte-array form). In these situations, implementers can decide
 to define new, in-context fields to aid in manual debugging.

Marx Expires 6 May 2021 [Page 29]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

5.4. recovery

 Note: most of the events in this category are kept generic to support
 different recovery approaches and various congestion control
 algorithms. Tool creators SHOULD make an effort to support and
 visualize even unknown data in these events (e.g., plot unknown
 congestion states by name on a timeline visualization).

5.4.1. parameters_set

 Importance: Base

 This event groups initial parameters from both loss detection and
 congestion control into a single event. All these settings are
 typically set once and never change. Implementation that do, for
 some reason, change these parameters during execution, MAY emit the
 parameters_set event twice.

 Data:

{
 // Loss detection, see recovery draft-23, Appendix A.2
 reordering_threshold?:uint16, // in amount of packets
 time_threshold?:float, // as RTT multiplier
 timer_granularity?:uint16, // in ms
 initial_rtt?:float, // in ms

 // congestion control, Appendix B.1.
 max_datagram_size?:uint32, // in bytes // Note: this could be updated after p
mtud
 initial_congestion_window?:uint64, // in bytes
 minimum_congestion_window?:uint32, // in bytes // Note: this could change whe
n max_datagram_size changes
 loss_reduction_factor?:float,
 persistent_congestion_threshold?:uint16 // as PTO multiplier
}

 Additionally, this event can contain any number of unspecified fields
 to support different recovery approaches.

5.4.2. metrics_updated

 Importance: Core

Marx Expires 6 May 2021 [Page 30]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 This event is emitted when one or more of the observable recovery
 metrics changes value. This event SHOULD group all possible metric
 updates that happen at or around the same time in a single event
 (e.g., if min_rtt and smoothed_rtt change at the same time, they
 should be bundled in a single metrics_updated entry, rather than
 split out into two). Consequently, a metrics_updated event is only
 guaranteed to contain at least one of the listed metrics.

 Data:

{
 // Loss detection, see recovery draft-23, Appendix A.3
 min_rtt?:float, // in ms or us, depending on the overarching qlog’s configura
tion
 smoothed_rtt?:float, // in ms or us, depending on the overarching qlog’s conf
iguration
 latest_rtt?:float, // in ms or us, depending on the overarching qlog’s config
uration
 rtt_variance?:float, // in ms or us, depending on the overarching qlog’s conf
iguration

 pto_count?:uint16,

 // Congestion control, Appendix B.2.
 congestion_window?:uint64, // in bytes
 bytes_in_flight?:uint64,

 ssthresh?:uint64, // in bytes

 // qlog defined
 packets_in_flight?:uint64, // sum of all packet number spaces

 pacing_rate?:uint64 // in bps
}

 Note: to make logging easier, implementations MAY log values even if
 they are the same as previously reported values (e.g., two subsequent
 METRIC_UPDATE entries can both report the exact same value for
 min_rtt). However, applications SHOULD try to log only actual
 updates to values.

 Additionally, this event can contain any number of unspecified fields
 to support different recovery approaches.

5.4.3. congestion_state_updated

 Importance: Base

Marx Expires 6 May 2021 [Page 31]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 This event signifies when the congestion controller enters a
 significant new state and changes its behaviour. This event’s
 definition is kept generic to support different Congestion Control
 algorithms. For example, for the algorithm defined in the Recovery
 draft ("enhanced" New Reno), the following states are defined:

 * slow_start

 * congestion_avoidance

 * application_limited

 * recovery

 Data:

 {
 old?:string,
 new:string
 }

 The "trigger" field SHOULD be logged if there are multiple ways in
 which a state change can occur but MAY be omitted if a given state
 can only be due to a single event occuring (e.g., slow start is
 exited only when ssthresh is exceeded).

 Some triggers for ("enhanced" New Reno):

 * persistent_congestion

 * ECN

5.4.4. loss_timer_updated

 Importance: Extra

 This event is emitted when a recovery loss timer changes state. The
 three main event types are:

 * set: the timer is set with a delta timeout for when it will
 trigger next

 * expired: when the timer effectively expires after the delta
 timeout

 * cancelled: when a timer is cancelled (e.g., all outstanding
 packets are acknowledged, start idle period)

Marx Expires 6 May 2021 [Page 32]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 Note: to indicate an active timer’s timeout update, a new "set" event
 is used.

 Data:

{
 timer_type?:"ack"|"pto", // called "mode" in draft-23 A.9.
 packet_number_space?: PacketNumberSpace,

 event_type:"set"|"expired"|"cancelled",

 delta?:float // if event_type === "set": delta time in ms or us (see configur
ation) from this event’s timestamp until when the timer will trigger
}

 TODO: how about CC algo’s that use multiple timers? How generic do
 these events need to be? Just support QUIC-style recovery from the
 spec or broader?

 TODO: read up on the loss detection logic in draft-27 onward and see
 if this suffices

5.4.5. packet_lost

 Importance: Core

 This event is emitted when a packet is deemed lost by loss detection.

 Data:

{
 header?:PacketHeader, // should include at least the packet_type and packet_n
umber

 // not all implementations will keep track of full packets, so these are opti
onal
 frames?:Array<QuicFrame> // see appendix for the definitions
}

 For this event, the "trigger" field SHOULD be set (for example to one
 of the values below), as this helps tremendously in debugging.

 Triggers:

 * "reordering_threshold",

 * "time_threshold"

 * "pto_expired" // draft-23 section 5.3.1, MAY

Marx Expires 6 May 2021 [Page 33]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

5.4.6. marked_for_retransmit

 Importance: Extra

 This event indicates which data was marked for retransmit upon
 detecing a packet loss (see packet_lost). Similar to our reasoning
 for the "frames_processed" event, in order to keep the amount of
 different events low, we group this signal for all types of
 retransmittable data in a single event based on existing QUIC frame
 definitions.

 Implementations retransmitting full packets or frames directly can
 just log the consituent frames of the lost packet here (or do away
 with this event and use the contents of the packet_lost event
 instead). Conversely, implementations that have more complex logic
 (e.g., marking ranges in a stream’s data buffer as in-flight), or
 that do not track sent frames in full (e.g., only stream offset +
 length), can translate their internal behaviour into the appropriate
 frame instance here even if that frame was never or will never be put
 on the wire.

 Note: much of this data can be inferred if implementations log
 packet_sent events (e.g., looking at overlapping stream data offsets
 and length, one can determine when data was retransmitted).

 Data:

 {
 frames:Array<QuicFrame>, // see appendix for the definitions
 }

6. HTTP/3 event definitions

6.1. http

 Note: like all category values, the "http" category is written in
 lowercase.

6.1.1. parameters_set

 Importance: Base

 This event contains HTTP/3 and QPACK-level settings, mostly those
 received from the HTTP/3 SETTINGS frame. All these parameters are
 typically set once and never change. However, they are typically set
 at different times during the connection, so there can be several
 instances of this event with different fields set.

Marx Expires 6 May 2021 [Page 34]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 Note that some settings have two variations (one set locally, one
 requested by the remote peer). This is reflected in the "owner"
 field. As such, this field MUST be correct for all settings included
 a single event instance. If you need to log settings from two sides,
 you MUST emit two separate event instances.

 Data:

{
 owner?:"local" | "remote",

 max_header_list_size?:uint64, // from SETTINGS_MAX_HEADER_LIST_SIZE
 max_table_capacity?:uint64, // from SETTINGS_QPACK_MAX_TABLE_CAPACITY
 blocked_streams_count?:uint64, // from SETTINGS_QPACK_BLOCKED_STREAMS

 // qlog-defined
 waits_for_settings?:boolean // indicates whether this implementation waits fo
r a SETTINGS frame before processing requests
}

 Note: enabling server push is not explicitly done in HTTP/3 by use of
 a setting or parameter. Instead, it is communicated by use of the
 MAX_PUSH_ID frame, which should be logged using the frame_created and
 frame_parsed events below.

 Additionally, this event can contain any number of unspecified
 fields. This is to reflect setting of for example unknown (greased)
 settings or parameters of (proprietary) extensions.

6.1.2. parameters_restored

 Importance: Base

 When using QUIC 0-RTT, clients are expected to remember and reuse the
 server’s SETTINGs from the previous connection. This event is used
 to indicate which settings were restored and to which values when
 utilizing 0-RTT.

 Data:

 {
 max_header_list_size?:uint64,
 max_table_capacity?:uint64,
 blocked_streams_count?:uint64
 }

 Note that, like for parameters_set above, this event can contain any
 number of unspecified fields to allow for additional and custom
 settings.

Marx Expires 6 May 2021 [Page 35]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

6.1.3. stream_type_set

 Importance: Base

 Emitted when a stream’s type becomes known. This is typically when a
 stream is opened and the stream’s type indicator is sent or received.

 Note: most of this information can also be inferred by looking at a
 stream’s id, since id’s are strictly partitioned at the QUIC level.
 Even so, this event has a "Base" importance because it helps a lot in
 debugging to have this information clearly spelled out.

 Data:

 {
 stream_id:uint64,

 owner?:"local"|"remote"

 old?:StreamType,
 new:StreamType,

 associated_push_id?:uint64 // only when new == "push"
 }

 enum StreamType {
 data, // bidirectional request-response streams
 control,
 push,
 reserved,
 qpack_encode,
 qpack_decode
 }

6.1.4. frame_created

 Importance: Core

 HTTP equivalent to the packet_sent event. This event is emitted when
 the HTTP/3 framing actually happens. Note: this is not necessarily
 the same as when the HTTP/3 data is passed on to the QUIC layer. For
 that, see the "data_moved" event.

 Data:

Marx Expires 6 May 2021 [Page 36]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 {
 stream_id:uint64,
 length?:uint64, // payload byte length of the frame
 frame:HTTP3Frame, // see appendix for the definitions,

 raw?:RawInfo
 }

 Note: in HTTP/3, DATA frames can have arbitrarily large lengths to
 reduce frame header overhead. As such, DATA frames can span many
 QUIC packets and can be created in a streaming fashion. In this
 case, the frame_created event is emitted once for the frame header,
 and further streamed data is indicated using the data_moved event.

6.1.5. frame_parsed

 Importance: Core

 HTTP equivalent to the packet_received event. This event is emitted
 when we actually parse the HTTP/3 frame. Note: this is not
 necessarily the same as when the HTTP/3 data is actually received on
 the QUIC layer. For that, see the "data_moved" event.

 Data:

 {
 stream_id:uint64,
 length?:uint64, // payload byte length of the frame
 frame:HTTP3Frame, // see appendix for the definitions,

 raw?:RawInfo
 }

 Note: in HTTP/3, DATA frames can have arbitrarily large lengths to
 reduce frame header overhead. As such, DATA frames can span many
 QUIC packets and can be processed in a streaming fashion. In this
 case, the frame_parsed event is emitted once for the frame header,
 and further streamed data is indicated using the data_moved event.

6.1.6. push_resolved

 Importance: Extra

 This event is emitted when a pushed resource is successfully claimed
 (used) or, conversely, abandoned (rejected) by the application on top
 of HTTP/3 (e.g., the web browser). This event is added to help debug
 problems with unexpected PUSH behaviour, which is commonplace with
 HTTP/2.

Marx Expires 6 May 2021 [Page 37]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

{
 push_id?:uint64,
 stream_id?:uint64, // in case this is logged from a place that does not have
access to the push_id

 decision:"claimed"|"abandoned"
}

6.2. qpack

 Note: like all category values, the "qpack" category is written in
 lowercase.

 The QPACK events mainly serve as an aid to debug low-level QPACK
 issues. The higher-level, plaintext header values SHOULD (also) be
 logged in the http.frame_created and http.frame_parsed event data
 (instead).

 Note: qpack does not have its own parameters_set event. This was
 merged with http.parameters_set for brevity, since qpack is a
 required extension for HTTP/3 anyway. Other HTTP/3 extensions MAY
 also log their SETTINGS fields in http.parameters_set or MAY define
 their own events.

6.2.1. state_updated

 Importance: Base

 This event is emitted when one or more of the internal QPACK
 variables changes value. Note that some variables have two
 variations (one set locally, one requested by the remote peer). This
 is reflected in the "owner" field. As such, this field MUST be
 correct for all variables included a single event instance. If you
 need to log settings from two sides, you MUST emit two separate event
 instances.

 Data:

{
 owner:"local" | "remote",

 dynamic_table_capacity?:uint64,
 dynamic_table_size?:uint64, // effective current size, sum of all the entries

 known_received_count?:uint64,
 current_insert_count?:uint64
}

Marx Expires 6 May 2021 [Page 38]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

6.2.2. stream_state_updated

 Importance: Core

 This event is emitted when a stream becomes blocked or unblocked by
 header decoding requests or QPACK instructions.

 Note: This event is of "Core" importance, as it might have a large
 impact on HTTP/3’s observed performance.

 Data:

{
 stream_id:uint64,

 state:"blocked"|"unblocked" // streams are assumed to start "unblocked" until
 they become "blocked"
}

6.2.3. dynamic_table_updated

 Importance: Extra

 This event is emitted when one or more entries are inserted or
 evicted from QPACK’s dynamic table.

 Data:

{
 owner:"local" | "remote", // local = the encoder’s dynamic table. remote = th
e decoder’s dynamic table

 update_type:"inserted"|"evicted",

 entries:Array<DynamicTableEntry>
}

class DynamicTableEntry {
 index:uint64;
 name?:string | bytes;
 value?:string | bytes;
}

6.2.4. headers_encoded

 Importance: Base

 This event is emitted when an uncompressed header block is encoded
 successfully.

Marx Expires 6 May 2021 [Page 39]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 Note: this event has overlap with http.frame_created for the
 HeadersFrame type. When outputting both events, implementers MAY
 omit the "headers" field in this event.

 Data:

 {
 stream_id?:uint64,

 headers?:Array<HTTPHeader>,

 block_prefix:QPackHeaderBlockPrefix,
 header_block:Array<QPackHeaderBlockRepresentation>,

 length?:uint32,
 raw?:bytes
 }

6.2.5. headers_decoded

 Importance: Base

 This event is emitted when a compressed header block is decoded
 successfully.

 Note: this event has overlap with http.frame_parsed for the
 HeadersFrame type. When outputting both events, implementers MAY
 omit the "headers" field in this event.

 Data:

 {
 stream_id?:uint64,

 headers?:Array<HTTPHeader>,

 block_prefix:QPackHeaderBlockPrefix,
 header_block:Array<QPackHeaderBlockRepresentation>,

 length?:uint32,
 raw?:bytes
 }

6.2.6. instruction_created

 Importance: Base

Marx Expires 6 May 2021 [Page 40]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 This event is emitted when a QPACK instruction (both decoder and
 encoder) is created and added to the encoder/decoder stream.

 Data:

 {
 instruction:QPackInstruction // see appendix for the definitions,

 length?:uint32,
 raw?:bytes
 }

 Note: encoder/decoder semantics and stream_id’s are implicit in
 either the instruction types or can be logged via other events (e.g.,
 http.stream_type_set)

6.2.7. instruction_parsed

 Importance: Base

 This event is emitted when a QPACK instruction (both decoder and
 encoder) is read from the encoder/decoder stream.

 Data:

 {
 instruction:QPackInstruction // see appendix for the definitions,

 length?:uint32,
 raw?:bytes
 }

 Note: encoder/decoder semantics and stream_id’s are implicit in
 either the instruction types or can be logged via other events (e.g.,
 http.stream_type_set)

7. Generic events and Simulation indicators

7.1. generic

 The main goal of the events in this category is to allow
 implementations to fully replace their existing text-based logging by
 qlog. This is done by providing events to log generic strings for
 typical well-known logging levels (error, warning, info, debug,
 verbose).

Marx Expires 6 May 2021 [Page 41]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

7.1.1. error

 Importance: Core

 Used to log details of an internal error. For errors that
 effectively lead to the closure of a QUIC connection, it is
 recommended to use transport:connection_closed instead.

 Data:

 {
 code?:uint32,
 message?:string
 }

7.1.2. warning

 Importance: Base

 Used to log details of an internal warning that might not get
 reflected on the wire.

 Data:

 {
 code?:uint32,
 message?:string
 }

7.1.3. info

 Importance: Extra

 Used mainly for implementations that want to use qlog as their one
 and only logging format but still want to support unstructured string
 messages.

 Data:

 {
 message:string
 }

7.1.4. debug

 Importance: Extra

Marx Expires 6 May 2021 [Page 42]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 Used mainly for implementations that want to use qlog as their one
 and only logging format but still want to support unstructured string
 messages.

 Data:

 {
 message:string
 }

7.1.5. verbose

 Importance: Extra

 Used mainly for implementations that want to use qlog as their one
 and only logging format but still want to support unstructured string
 messages.

 Data:

 {
 message:string
 }

7.2. simulation

 When evaluating a protocol evaluation, one typically sets up a series
 of interoperability or benchmarking tests, in which the test
 situations can change over time. For example, the network bandwidth
 or latency can vary during the test, or the network can be fully
 disable for a short time. In these setups, it is useful to know when
 exactly these conditions are triggered, to allow for proper
 correlation with other events.

7.2.1. scenario

 Importance: Extra

 Used to specify which specific scenario is being tested at this
 particular instance. This could also be reflected in the top-level
 qlog’s "summary" or "configuration" fields, but having a separate
 event allows easier aggregation of several simulations into one
 trace.

 {
 name?:string,
 details?:any
 }

Marx Expires 6 May 2021 [Page 43]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

7.2.2. marker

 Importance: Extra

 Used to indicate when specific emulation conditions are triggered at
 set times (e.g., at 3 seconds in 2% packet loss is introduced, at 10s
 a NAT rebind is triggered).

 {
 type?:string,
 message?:string
 }

8. Security Considerations

 TBD

9. IANA Considerations

 TBD

10. References

10.1. Normative References

 [QLOG-MAIN]
 Marx, R., Ed., "Main logging schema for qlog", Work in
 Progress, Internet-Draft, draft-marx-qlog-main-schema-02,
 2 November 2020, <https://tools.ietf.org/html/draft-marx-
 qlog-main-schema-02>.

 [QUIC-HTTP]
 Bishop, M., Ed., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-
 quic-http-32, 1 October 2020,
 <https://tools.ietf.org/html/draft-ietf-quic-http-32>.

 [QUIC-QPACK]
 Frindell, A., Ed., "QPACK: Header Compression for HTTP/3",
 Work in Progress, Internet-Draft, draft-ietf-quic-qpack-
 19, 20 October 2020,
 <https://tools.ietf.org/html/draft-ietf-quic-qpack-19>.

Marx Expires 6 May 2021 [Page 44]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", Work in Progress,
 Internet-Draft, draft-ietf-quic-transport-32, 1 October
 2020, <https://tools.ietf.org/html/draft-ietf-quic-
 transport-32>.

10.2. Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Appendix A. QUIC data field definitions

A.1. IPAddress

class IPAddress : string | bytes;

// an IPAddress can either be a "human readable" form (e.g., "127.0.0.1" for v4 o
r "2001:0db8:85a3:0000:0000:8a2e:0370:7334" for v6) or use a raw byte-form (as th
e string forms can be ambiguous)

A.2. PacketType

 enum PacketType {
 initial,
 handshake,
 zerortt = "0RTT",
 onertt = "1RTT",
 retry,
 version_negotiation,
 stateless_reset,
 unknown
 }

A.3. PacketNumberSpace

 enum PacketNumberSpace {
 initial,
 handshake,
 application_data
 }

A.4. PacketHeader

Marx Expires 6 May 2021 [Page 45]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

class PacketHeader {
 // Note: short vs long header is implicit through PacketType

 packet_type: PacketType;
 packet_number: uint64;

 flags?: uint8; // the bit flags of the packet headers (spin bit, key update b
it, etc. up to and including the packet number length bits if present) interprete
d as a single 8-bit integer

 token?:Token; // only if packet_type == initial

 length?: uint16, // only if packet_type == initial || handshake || 0RTT. Sign
ifies length of the packet_number plus the payload.

 // only if present in the header
 // if correctly using transport:connection_id_updated events,
 // dcid can be skipped for 1RTT packets
 version?: bytes; // e.g., "ff00001d" for draft-29
 scil?: uint8;
 dcil?: uint8;
 scid?: bytes;
 dcid?: bytes;
}

A.5. Token

class Token {
 type?:"retry"|"resumption"|"stateless_reset";

 length?:uint32; // byte length of the token
 data?:bytes; // raw byte value of the token

 details?:any; // decoded fields included in the token (typically: peer’s IP a
ddress, creation time)
}

 The token carried in an Initial packet can either be a retry token
 from a Retry packet, a stateless reset token from a Stateless Reset
 packet or one originally provided by the server in a NEW_TOKEN frame
 used when resuming a connection (e.g., for address validation
 purposes). Retry and resumption tokens typically contain encoded
 metadata to check the token’s validity when it is used, but this
 metadata and its format is implementation specific. For that, this
 field includes a general-purpose "details" field.

A.6. KeyType

Marx Expires 6 May 2021 [Page 46]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 enum KeyType {
 server_initial_secret,
 client_initial_secret,

 server_handshake_secret,
 client_handshake_secret,

 server_0rtt_secret,
 client_0rtt_secret,

 server_1rtt_secret,
 client_1rtt_secret
 }

A.7. QUIC Frames

type QuicFrame = PaddingFrame | PingFrame | AckFrame | ResetStreamFrame | StopSen
dingFrame | CryptoFrame | NewTokenFrame | StreamFrame | MaxDataFrame | MaxStreamD
ataFrame | MaxStreamsFrame | DataBlockedFrame | StreamDataBlockedFrame | StreamsB
lockedFrame | NewConnectionIDFrame | RetireConnectionIDFrame | PathChallengeFrame
 | PathResponseFrame | ConnectionCloseFrame | HandshakeDoneFrame | UnknownFrame;

A.7.1. PaddingFrame

 In QUIC, PADDING frames are simply identified as a single byte of
 value 0. As such, each padding byte could be theoretically
 interpreted and logged as an individual PaddingFrame.

 However, as this leads to heavy logging overhead, implementations
 SHOULD instead emit just a single PaddingFrame and set the
 payload_length property to the amount of PADDING bytes/frames
 included in the packet.

 class PaddingFrame{
 frame_type:string = "padding";

 length?:uint32; // total frame length, including frame header
 payload_length?:uint32;
 }

A.7.2. PingFrame

 class PingFrame{
 frame_type:string = "ping";

 length?:uint32; // total frame length, including frame header
 payload_length?:uint32;
 }

A.7.3. AckFrame

Marx Expires 6 May 2021 [Page 47]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

class AckFrame{
 frame_type:string = "ack";

 ack_delay?:float; // in ms

 // first number is "from": lowest packet number in interval
 // second number is "to": up to and including // highest packet number in int
erval
 // e.g., looks like [[1,2],[4,5]]
 acked_ranges?:Array<[uint64, uint64]|[uint64]>;

 // ECN (explicit congestion notification) related fields (not always present)
 ect1?:uint64;
 ect0?:uint64;
 ce?:uint64;

 length?:uint32; // total frame length, including frame header
 payload_length?:uint32;
}

 Note: the packet ranges in AckFrame.acked_ranges do not necessarily
 have to be ordered (e.g., [[5,9],[1,4]] is a valid value).

 Note: the two numbers in the packet range can be the same (e.g.,
 [120,120] means that packet with number 120 was ACKed). However, in
 that case, implementers SHOULD log [120] instead and tools MUST be
 able to deal with both notations.

A.7.4. ResetStreamFrame

 class ResetStreamFrame{
 frame_type:string = "reset_stream";

 stream_id:uint64;
 error_code:ApplicationError | uint32;
 final_size:uint64; // in bytes

 length?:uint32; // total frame length, including frame header
 payload_length?:uint32;
 }

A.7.5. StopSendingFrame

Marx Expires 6 May 2021 [Page 48]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 class StopSendingFrame{
 frame_type:string = "stop_sending";

 stream_id:uint64;
 error_code:ApplicationError | uint32;

 length?:uint32; // total frame length, including frame header
 payload_length?:uint32;
 }

A.7.6. CryptoFrame

 class CryptoFrame{
 frame_type:string = "crypto";

 offset:uint64;
 length:uint64;

 payload_length?:uint32;
 }

A.7.7. NewTokenFrame

 class NewTokenFrame{
 frame_type:string = "new_token";

 token:Token
 }

A.7.8. StreamFrame

class StreamFrame{
 frame_type:string = "stream";

 stream_id:uint64;

 // These two MUST always be set
 // If not present in the Frame type, log their default values
 offset:uint64;
 length:uint64;

 // this MAY be set any time, but MUST only be set if the value is "true"
 // if absent, the value MUST be assumed to be "false"
 fin?:boolean;

 raw?:bytes;
}

Marx Expires 6 May 2021 [Page 49]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

A.7.9. MaxDataFrame

 class MaxDataFrame{
 frame_type:string = "max_data";

 maximum:uint64;
 }

A.7.10. MaxStreamDataFrame

 class MaxStreamDataFrame{
 frame_type:string = "max_stream_data";

 stream_id:uint64;
 maximum:uint64;
 }

A.7.11. MaxStreamsFrame

 class MaxStreamsFrame{
 frame_type:string = "max_streams";

 stream_type:string = "bidirectional" | "unidirectional";
 maximum:uint64;
 }

A.7.12. DataBlockedFrame

 class DataBlockedFrame{
 frame_type:string = "data_blocked";

 limit:uint64;
 }

A.7.13. StreamDataBlockedFrame

 class StreamDataBlockedFrame{
 frame_type:string = "stream_data_blocked";

 stream_id:uint64;
 limit:uint64;
 }

A.7.14. StreamsBlockedFrame

Marx Expires 6 May 2021 [Page 50]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 class StreamsBlockedFrame{
 frame_type:string = "streams_blocked";

 stream_type:string = "bidirectional" | "unidirectional";
 limit:uint64;
 }

A.7.15. NewConnectionIDFrame

 class NewConnectionIDFrame{
 frame_type:string = "new_connection_id";

 sequence_number:uint32;
 retire_prior_to:uint32;

 connection_id_length?:uint8;
 connection_id:bytes;

 stateless_reset_token?:Token;
 }

A.7.16. RetireConnectionIDFrame

 class RetireConnectionIDFrame{
 frame_type:string = "retire_connection_id";

 sequence_number:uint32;
 }

A.7.17. PathChallengeFrame

 class PathChallengeFrame{
 frame_type:string = "path_challenge";

 data?:bytes; // always 64-bit
 }

A.7.18. PathResponseFrame

 class PathResponseFrame{
 frame_type:string = "path_response";

 data?:bytes; // always 64-bit
 }

Marx Expires 6 May 2021 [Page 51]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

A.7.19. ConnectionCloseFrame

 raw_error_code is the actual, numerical code. This is useful because
 some error types are spread out over a range of codes (e.g., QUIC’s
 crypto_error).

type ErrorSpace = "transport" | "application";

class ConnectionCloseFrame{
 frame_type:string = "connection_close";

 error_space?:ErrorSpace;
 error_code?:TransportError | ApplicationError | uint32;
 raw_error_code?:uint32;
 reason?:string;

 trigger_frame_type?:uint64 | string; // For known frame types, the appropriat
e "frame_type" string. For unknown frame types, the hex encoded identifier value
}

A.7.20. HandshakeDoneFrame

 class HandshakeDoneFrame{
 frame_type:string = "handshake_done";
 }

A.7.21. UnknownFrame

 class UnknownFrame{
 frame_type:string = "unknown";
 raw_frame_type:uint64;

 raw_length?:uint32;
 raw?:bytes;
 }

A.7.22. TransportError

Marx Expires 6 May 2021 [Page 52]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 enum TransportError {
 no_error,
 internal_error,
 connection_refused,
 flow_control_error,
 stream_limit_error,
 stream_state_error,
 final_size_error,
 frame_encoding_error,
 transport_parameter_error,
 connection_id_limit_error,
 protocol_violation,
 invalid_token,
 application_error,
 crypto_buffer_exceeded
 }

A.7.23. CryptoError

 These errors are defined in the TLS document as "A TLS alert is
 turned into a QUIC connection error by converting the one-byte alert
 description into a QUIC error code. The alert description is added
 to 0x100 to produce a QUIC error code from the range reserved for
 CRYPTO_ERROR."

 This approach maps badly to a pre-defined enum. As such, we define
 the crypto_error string as having a dynamic component here, which
 should include the hex-encoded value of the TLS alert description.

 enum CryptoError {
 crypto_error_{TLS_ALERT}
 }

Appendix B. HTTP/3 data field definitions

B.1. HTTP/3 Frames

type HTTP3Frame = DataFrame | HeadersFrame | PriorityFrame | CancelPushFrame | Se
ttingsFrame | PushPromiseFrame | GoAwayFrame | MaxPushIDFrame | DuplicatePushFram
e | ReservedFrame | UnknownFrame;

B.1.1. DataFrame

 class DataFrame{
 frame_type:string = "data";

 raw?:bytes;
 }

Marx Expires 6 May 2021 [Page 53]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

B.1.2. HeadersFrame

 This represents an _uncompressed_, plaintext HTTP Headers frame
 (e.g., no QPACK compression is applied).

 For example:

headers: [{"name":":path","value":"/"},{"name":":method","value":"GET"},{"name":"
:authority","value":"127.0.0.1:4433"},{"name":":scheme","value":"https"}]

 class HeadersFrame{
 frame_type:string = "header";
 headers:Array<HTTPHeader>;
 }

 class HTTPHeader {
 name:string;
 value:string;
 }

B.1.3. CancelPushFrame

 class CancelPushFrame{
 frame_type:string = "cancel_push";
 push_id:uint64;
 }

B.1.4. SettingsFrame

 class SettingsFrame{
 frame_type:string = "settings";
 settings:Array<Setting>;
 }

 class Setting{
 name:string;
 value:string;
 }

B.1.5. PushPromiseFrame

 class PushPromiseFrame{
 frame_type:string = "push_promise";
 push_id:uint64;

 headers:Array<HTTPHeader>;
 }

Marx Expires 6 May 2021 [Page 54]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

B.1.6. GoAwayFrame

 class GoAwayFrame{
 frame_type:string = "goaway";
 stream_id:uint64;
 }

B.1.7. MaxPushIDFrame

 class MaxPushIDFrame{
 frame_type:string = "max_push_id";
 push_id:uint64;
 }

B.1.8. DuplicatePushFrame

 class DuplicatePushFrame{
 frame_type:string = "duplicate_push";
 push_id:uint64;
 }

B.1.9. ReservedFrame

 class ReservedFrame{
 frame_type:string = "reserved";
 }

B.1.10. UnknownFrame

 HTTP/3 re-uses QUIC’s UnknownFrame definition, since their values and
 usage overlaps.

B.2. ApplicationError

Marx Expires 6 May 2021 [Page 55]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 enum ApplicationError{
 http_no_error,
 http_general_protocol_error,
 http_internal_error,
 http_stream_creation_error,
 http_closed_critical_stream,
 http_frame_unexpected,
 http_frame_error,
 http_excessive_load,
 http_id_error,
 http_settings_error,
 http_missing_settings,
 http_request_rejected,
 http_request_cancelled,
 http_request_incomplete,
 http_early_response,
 http_connect_error,
 http_version_fallback
 }

Appendix C. QPACK DATA type definitions

C.1. QPACK Instructions

 Note: the instructions do not have explicit encoder/decoder types,
 since there is no overlap between the insturctions of both types in
 neither name nor function.

type QPackInstruction = SetDynamicTableCapacityInstruction | InsertWithNameRefere
nceInstruction | InsertWithoutNameReferenceInstruction | DuplicateInstruction | H
eaderAcknowledgementInstruction | StreamCancellationInstruction | InsertCountIncr
ementInstruction;

C.1.1. SetDynamicTableCapacityInstruction

 class SetDynamicTableCapacityInstruction {
 instruction_type:string = "set_dynamic_table_capacity";

 capacity:uint32;
 }

C.1.2. InsertWithNameReferenceInstruction

Marx Expires 6 May 2021 [Page 56]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 class InsertWithNameReferenceInstruction {
 instruction_type:string = "insert_with_name_reference";

 table_type:"static"|"dynamic";

 name_index:uint32;

 huffman_encoded_value:boolean;

 value_length?:uint32;
 value?:string;
 }

C.1.3. InsertWithoutNameReferenceInstruction

 class InsertWithoutNameReferenceInstruction {
 instruction_type:string = "insert_without_name_reference";

 huffman_encoded_name:boolean;

 name_length?:uint32;
 name?:string;

 huffman_encoded_value:boolean;

 value_length?:uint32;
 value?:string;
 }

C.1.4. DuplicateInstruction

 class DuplicateInstruction {
 instruction_type:string = "duplicate";

 index:uint32;
 }

C.1.5. HeaderAcknowledgementInstruction

 class HeaderAcknowledgementInstruction {
 instruction_type:string = "header_acknowledgement";

 stream_id:uint64;
 }

C.1.6. StreamCancellationInstruction

Marx Expires 6 May 2021 [Page 57]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 class StreamCancellationInstruction {
 instruction_type:string = "stream_cancellation";

 stream_id:uint64;
 }

C.1.7. InsertCountIncrementInstruction

 class InsertCountIncrementInstruction {
 instruction_type:string = "insert_count_increment";

 increment:uint32;
 }

C.2. QPACK Header compression

type QPackHeaderBlockRepresentation = IndexedHeaderField | LiteralHeaderFieldWith
Name | LiteralHeaderFieldWithoutName;

C.2.1. IndexedHeaderField

 Note: also used for "indexed header field with post-base index"

class IndexedHeaderField {
 header_field_type:string = "indexed_header";

 table_type:"static"|"dynamic"; // MUST be "dynamic" if is_post_base is true
 index:uint32;

 is_post_base:boolean = false; // to represent the "indexed header field with
post-base index" header field type
}

C.2.2. LiteralHeaderFieldWithName

 Note: also used for "Literal header field with post-base name
 reference"

Marx Expires 6 May 2021 [Page 58]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

class LiteralHeaderFieldWithName {
 header_field_type:string = "literal_with_name";

 preserve_literal:boolean; // the 3rd "N" bit
 table_type:"static"|"dynamic"; // MUST be "dynamic" if is_post_base is true
 name_index:uint32;

 huffman_encoded_value:boolean;
 value_length?:uint32;
 value?:string;

 is_post_base:boolean = false; // to represent the "Literal header field with
post-base name reference" header field type
}

C.2.3. LiteralHeaderFieldWithoutName

 class LiteralHeaderFieldWithoutName {
 header_field_type:string = "literal_without_name";

 preserve_literal:boolean; // the 3rd "N" bit

 huffman_encoded_name:boolean;
 name_length?:uint32;
 name?:string;

 huffman_encoded_value:boolean;
 value_length?:uint32;
 value?:string;
 }

C.2.4. QPackHeaderBlockPrefix

 class QPackHeaderBlockPrefix {
 required_insert_count:uint32;
 sign_bit:boolean;
 delta_base:uint32;
 }

Appendix D. Change Log

D.1. Since draft-01:

 Major changes:

 * Moved data_moved from http to transport. Also made the "from" and
 "to" fields flexible strings instead of an enum (#111,#65)

Marx Expires 6 May 2021 [Page 59]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 * Moved packet_type fields to PacketHeader. Moved packet_size field
 out of PacketHeader to RawInfo:length (#40)

 * Made events that need to log packet_type and packet_number use a
 header field instead of logging these fields individually

 * Added support for logging retry, stateless reset and initial
 tokens (#94,#86,#117)

 * Moved separate general event categories into a single category
 "generic" (#47)

 * Added "transport:connection_closed" event (#43,#85,#78,#49)

 * Added version_information and alpn_information events
 (#85,#75,#28)

 * Added parameters_restored events to help clarify 0-RTT behaviour
 (#88)

 Smaller changes:

 * Merged loss_timer events into one loss_timer_updated event

 * Field data types are now strongly defined (#10,#39,#36,#115)

 * Renamed qpack instruction_received and instruction_sent to
 instruction_created and instruction_parsed (#114)

 * Updated qpack:dynamic_table_updated.update_type. It now has the
 value "inserted" instead of "added" (#113)

 * Updated qpack:dynamic_table_updated. It now has an "owner" field
 to differentiate encoder vs decoder state (#112)

 * Removed push_allowed from http:parameters_set (#110)

 * Removed explicit trigger field indications from events, since this
 was moved to be a generic property of the "data" field (#80)

 * Updated transport:connection_id_updated to be more in line with
 other similar events. Also dropped importance from Core to Base
 (#45)

 * Added length property to PaddingFrame (#34)

 * Added packet_number field to transport:frames_processed (#74)

Marx Expires 6 May 2021 [Page 60]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 * Added a way to generically log packet header flags (first 8 bits)
 to PacketHeader

 * Added additional guidance on which events to log in which
 situations (#53)

 * Added "simulation:scenario" event to help indicate simulation
 details

 * Added "packets_acked" event (#107)

 * Added "datagram_ids" to the datagram_X and packet_X events to
 allow tracking of coalesced QUIC packets (#91)

 * Extended connection_state_updated with more fine-grained states
 (#49)

D.2. Since draft-00:

 * Event and category names are now all lowercase

 * Added many new events and their definitions

 * "type" fields have been made more specific (especially important
 for PacketType fields, which are now called packet_type instead of
 type)

 * Events are given an importance indicator (issue #22)

 * Event names are more consistent and use past tense (issue #21)

 * Triggers have been redefined as properties of the "data" field and
 updated for most events (issue #23)

Appendix E. Design Variations

 TBD

Appendix F. Acknowledgements

 Thanks to Marten Seemann, Jana Iyengar, Brian Trammell, Dmitri
 Tikhonov, Stephen Petrides, Jari Arkko, Marcus Ihlar, Victor
 Vasiliev, Mirja Kuehlewind, Jeremy Laine, Kazu Yamamoto, Christian
 Huitema, and Lucas Pardue for their feedback and suggestions.

Author’s Address

Marx Expires 6 May 2021 [Page 61]

Internet-Draft QUIC and HTTP/3 event definitions for ql November 2020

 Robin Marx
 Hasselt University

 Email: robin.marx@uhasselt.be

Marx Expires 6 May 2021 [Page 62]

