
Network Working Group E. Omara
Internet-Draft J. Uberti
Intended status: Informational Google
Expires: November 20, 2020 A. GOUAILLARD
 S. Murillo
 CoSMo Software
 May 19, 2020

 Secure Frame (SFrame)
 draft-omara-sframe-00

Abstract

 This document describes the Secure Frame (SFrame) end-to-end
 encryption and authentication mechanism for media frames in a
 multiparty conference call, in which central media servers (SFUs) can
 access the media metadata needed to make forwarding decisions without
 having access to the actual media. The proposed mechanism differs
 from other approaches through its use of media frames as the
 encryptable unit, instead of individual RTP packets, which makes it
 more bandwidth efficient and also allows use with non-RTP transports.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 20, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Omara, et al. Expires November 20, 2020 [Page 1]

Internet-Draft SFrame May 2020

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Goals . 4
 4. SFrame . 5
 4.1. SFrame Format . 7
 4.2. SFrame Header . 7
 4.3. Encryption Schema . 8
 4.3.1. Key Derivation 8
 4.3.2. Encryption . 9
 4.3.3. Decryption . 10
 4.3.4. Duplicate Frames 11
 4.3.5. Key Rotation . 11
 4.4. Authentication . 12
 4.5. Ciphersuites . 14
 4.5.1. SFrame . 14
 4.5.2. DTLS-SRTP . 15
 5. Key Management . 15
 5.1. MLS-SFrame . 15
 6. Media Considerations . 16
 6.1. SFU . 16
 6.1.1. LastN and RTP stream reuse 16
 6.1.2. Simulcast . 16
 6.1.3. SVC . 16
 6.2. Video Key Frames . 17
 6.3. Partial Decoding . 17
 7. Overhead . 17
 7.1. Audio . 17
 7.2. Video . 18
 7.3. SFrame vs PERC-lite 18
 7.3.1. Audio . 19
 7.3.2. Video . 19
 8. Security Considerations 19
 8.1. Key Management . 19
 8.2. Authentication tag length 19
 9. IANA Considerations . 19
 10. References . 19
 10.1. Normative References 19
 10.2. Informative References 20
 Authors’ Addresses . 20

Omara, et al. Expires November 20, 2020 [Page 2]

Internet-Draft SFrame May 2020

1. Introduction

 Modern multi-party video call systems use Selective Forwarding Unit
 (SFU) servers to efficiently route RTP streams to call endpoints
 based on factors such as available bandwidth, desired video size,
 codec support, and other factors. In order for the SFU to work
 properly though, it needs to be able to access RTP metadata and RTCP
 feedback messages, which is not possible if all RTP/RTCP traffic is
 end-to-end encrypted.

 As such, two layers of encryptions and authentication are required:
 1- Hop-by-hop (HBH) encryption of media, metadata, and feedback
 messages between the the endpoints and SFU 2- End-to-end (E2E)
 encryption of media between the endpoints

 While DTLS-SRTP can be used as an efficient HBH mechanism, it is
 inherently point-to-point and therefore not suitable for a SFU
 context. In addition, given the various scenarios in which video
 calling occurs, minimizing the bandwidth overhead of end-to-end
 encryption is also an important goal.

 This document proposes a new end-to-end encryption mechanism known as
 SFrame, specifically designed to work in group conference calls with
 SFUs.

 +-------------------------------+-------------------------------+^+
 |V=2|P|X| CC |M| PT | sequence number | |
 +-------------------------------+-------------------------------+ |
 | timestamp | |
 +---+ |
 | synchronization source (SSRC) identifier | |
 |=+=| |
 | contributing source (CSRC) identifiers | |
 | | |
 +---+ |
 | RTP extension(s) (OPTIONAL) | |
 +^---------------------+--+ |
	payload header		
+--------------------+ payload ...			
+^+---+^+			
: authentication tag :			
+---+			
 ++ Encrypted Portion* Authenticated Portion +--+

 SRTP packet format

Omara, et al. Expires November 20, 2020 [Page 3]

Internet-Draft SFrame May 2020

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 SFU: Selective Forwarding Unit (AKA RTP Switch)

 IV: Initialization Vector

 MAC: Message Authentication Code

 E2EE: End to End Encryption

 HBH: Hop By Hop

 KMS: Key Management System

3. Goals

 SFrame is designed to be a suitable E2EE protection scheme for
 conference call media in a broad range of scenarios, as outlined by
 the following goals:

 1. Provide an secure E2EE mechanism for audio and video in
 conference calls that can be used with arbitrary SFU servers.

 2. Decouple media encryption from key management to allow SFrame to
 be used with an arbitrary KMS.

 3. Minimize packet expansion to allow successful conferencing in as
 many network conditions as possible.

 4. Independence from the underlying transport, including use in non-
 RTP transports, e.g., WebTransport.

 5. When used with RTP and its associated error resilience
 mechanisms, i.e., RTX and FEC, require no special handling for
 RTX and FEC packets.

 6. Minimize the changes needed in SFU servers.

 7. Minimize the changes needed in endpoints.

 8. Work with the most popular audio and video codecs used in
 conferencing scenarios.

Omara, et al. Expires November 20, 2020 [Page 4]

Internet-Draft SFrame May 2020

4. SFrame

 We propose a frame level encryption mechanism that provides effective
 end-to-end encryption, is simple to implement, has no dependencies on
 RTP, and minimizes encryption bandwidth overhead. Because SFrame
 encrypts the full frame, rather than individual packets, bandwidth
 overhead is reduced by having a single IV and authentication tag for
 each media frame.

 Also, because media is encrypted prior to packetization, the
 encrypted frame is packetized using a generic RTP packetizer instead
 of codec-dependent packetization mechanisms. With this move to a
 generic packetizer, media metadata is moved from codec-specific
 mechanisms to a generic frame RTP header extension which, while
 visible to the SFU, is authenticated end-to-end. This extension
 includes metadata needed for SFU routing such as resolution, frame
 beginning and end markers, etc.

 The generic packetizer splits the E2E encrypted media frame into one
 or more RTP packets and adds the SFrame header to the beginning of
 the first packet and an auth tag to the end of the last packet.

Omara, et al. Expires November 20, 2020 [Page 5]

Internet-Draft SFrame May 2020

 +---+
 | |
 | +----------+ +------------+ +-----------+ |
 | | | | SFrame | |Packetizer | | DTLS+SRTP
 | | Encoder +----->+ Enc +----->+ +---------------------
----+
 ,+. | | | | | | | | +--+ +--+ +--
+ |
 ‘|’ | +----------+ +-----+------+ +-----------+ | | | | | |
| |
 /|\ | ^ | | | | | |
| |
 + | | | | | | | |
| |
 / \ | | | +--+ +--+ +--
+ |
Alice | +-----+------+ | Encrypted Packe
ts |
 | |Key Manager | |
 |
 | +------------+ |
 |
 | || |
 |
 | || |
 |
 | || |
 |
 +---+
 |
 ||
 |
 ||
 v
 +------------+ +-
----+------+
 E2EE channel | Messaging | |
 Media |
 via the | Server | |
 Server |
 Messaging Server | | |
 |
 +------------+ +-
----+------+
 ||
 |
 ||
 |
 +---+
 |
 | || |
 |
 | || |
 |
 | || |
 |
 | +------------+ |
 |

 | |Key Manager | |
 |
 ,+. | +-----+------+ | Encrypted Packe
ts |
 ‘|’ | | | +--+ +--+ +--
+ |
 /|\ | | | | | | | |
| |
 + | v | | | | | |
| |
 / \ | +----------+ +-----+------+ +-----------+ | | | | | |
| |
 Bob | | | | SFrame | | De+ | | +--+ +--+ +--
+ |
 | | Decoder +<-----+ Dec +<-----+Packetizer +<--------------------
----+
 | | | | | | | | DTLS+SRTP
 | +----------+ +------------+ +-----------+ |
 | |
 +---+

 The E2EE keys used to encrypt the frame are exchanged out of band
 using a secure E2EE channel.

Omara, et al. Expires November 20, 2020 [Page 6]

Internet-Draft SFrame May 2020

4.1. SFrame Format

 +------------+--+^+
 |S|LEN|X|KID | Frame Counter | |
 +^+------------+--+ |
	Encrypted Frame	
+^+---+^+		
	Authentication Tag	
+---+		
 +----+Encrypted Portion Authenticated Portion+---+

4.2. SFrame Header

 Since each endpoint can send multiple media layers, each frame will
 have a unique frame counter that will be used to derive the
 encryption IV. The frame counter must be unique and monotonically
 increasing to avoid IV reuse.

 As each sender will use their own key for encryption, so the SFrame
 header will include the key id to allow the receiver to identify the
 key that needs to be used for decrypting.

 Both the frame counter and the key id are encoded in a variable
 length format to decrease the overhead, so the first byte in the
 Sframe header is fixed and contains the header metadata with the
 following format:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |S|LEN |X| K |
 +-+-+-+-+-+-+-+-+
 SFrame header metadata

 Signature flag (S): 1 bit This field indicates the payload contains a
 signature if set. Counter Length (LEN): 3 bits This field indicates
 the length of the CTR fields in bytes. Extended Key Id Flag (X): 1

Omara, et al. Expires November 20, 2020 [Page 7]

Internet-Draft SFrame May 2020

 bit Indicates if the key field contains the key id or the key length.
 Key or Key Length: 3 bits This field contains the key id (KID) if the
 X flag is set to 0, or the key length (KLEN) if set to 1.

 If X flag is 0 then the KID is in the range of 0-7 and the frame
 counter (CTR) is found in the next LEN bytes:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+---------------------------------+
 |S|LEN |0| KID | CTR... (length=LEN) |
 +-+-+-+-+-+-+-+-+---------------------------------+

 Key id (KID): 3 bits The key id (0-7). Frame counter (CTR):
 (Variable length) Frame counter value up to 8 bytes long.

 if X flag is 1 then KLEN is the length of the key (KID), that is
 found after the SFrame header metadata byte. After the key id (KID),
 the frame counter (CTR) will be found in the next LEN bytes:

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+---------------------------+---------------------------+
|S|LEN |1|KLEN | KID... (length=KLEN) | CTR... (length=LEN) |
+-+-+-+-+-+-+-+-+---------------------------+---------------------------+

 Key length (KLEN): 3 bits The key length in bytes. Key id (KID):
 (Variable length) The key id value up to 8 bytes long. Frame counter
 (CTR): (Variable length) Frame counter value up to 8 bytes long.

4.3. Encryption Schema

4.3.1. Key Derivation

 Each client creates a 32 bytes secret key K and share it with with
 other participants via an E2EE channel. From K, we derive 3 secrets:

 1- Salt key used to calculate the IV

 Key = HKDF(K, ’SFrameSaltKey’, 16)

 2- Encryption key to encrypt the media frame

 Key = HKDF(K, ’SFrameEncryptionKey’, 16)

 3- Authentication key to authenticate the encrypted frame and the
 media metadata

 Key = HKDF(K, ’SFrameAuthenticationKey’, 32)

Omara, et al. Expires November 20, 2020 [Page 8]

Internet-Draft SFrame May 2020

 The IV is 128 bits long and calculated from the CTR field of the
 Frame header:

 IV = CTR XOR Salt key

4.3.2. Encryption

 After encoding the frame and before packetizing it, the necessary
 media metadata will be moved out of the encoded frame buffer, to be
 used later in the RTP generic frame header extension. The encoded
 frame, the metadata buffer and the frame counter are passed to SFrame
 encryptor. The encryptor constructs SFrame header using frame
 counter and key id and derive the encryption IV. The frame is
 encrypted using the encryption key and the header, encrypted frame,
 the media metadata and the header are authenticated using the
 authentication key. The authentication tag is then truncated (If
 supported by the cipher suite) and prepended at the end of the
 ciphertext.

 The encrypted payload is then passed to a generic RTP packetized to
 construct the RTP packets and encrypts it using SRTP keys for the HBH
 encryption to the media server.

Omara, et al. Expires November 20, 2020 [Page 9]

Internet-Draft SFrame May 2020

 +---------------+ +---------------+
 | | | frame metadata+----+
 | | +---------------+ |
 | frame | |
 | | |
 | | |
 +-------+-------+ |
 | |
 CTR +---------------> IV |Enc Key <----Master Key |
 derive IV | | |
 + | | |
 | + v |
 | encrypt Auth Key |
 | | + | | |
 | | | |
 | v | |
 | +-------+-------+ | |
 | | | | |
 | | encrypted | v |
 | | frame +---->Authenticate<-----+
 + | | +
 encode CTR | | |
 + +-------+-------+ |
 | | |
 | | |
 | | |
 | generic RTP packetize |
 | + |
 | | |
 | | +--------------+
 +----------+ v |
 | |
 | +---------------+ +---------------+ +---------------+ |
 +-> | SFrame header | | | | | |
 +---------------+ | | | payload N/N | |
 | | | payload 2/N | | | |
 | payload 1/N | | | +---------------+ |
 | | | | | auth tag | <-+
 +---------------+ +---------------+ +---------------+
 Encryption flow

4.3.3. Decryption

 The receiving clients buffer all packets that belongs to the same
 frame using the frame beginning and ending marks in the generic RTP
 frame header extension, and once all packets are available, it passes
 it to Frame for decryption. SFrame maintains multiple decryptor
 objects, one for each client in the call. Initially the client might

Omara, et al. Expires November 20, 2020 [Page 10]

Internet-Draft SFrame May 2020

 not have the mapping between the incoming streams the user’s keys, in
 this case SFrame tries all unmapped keys until it finds one that
 passes the authentication verification and use it to decrypt the
 frame. If the client has the mapping ready, it can push it down to
 SFrame later.

 The KeyId field in the SFrame header is used to find the right key
 for that user, which is incremented by the sender when they switch to
 a new key.

 For frames that are failed to decrypt because there is not key
 available yet, SFrame will buffer them and retries to decrypt them
 once a key is received.

4.3.4. Duplicate Frames

 Unlike messaging application, in video calls, receiving a duplicate
 frame doesn’t necessary mean the client is under a replay attack,
 there are other reasons that might cause this, for example the sender
 might just be sending them in case of packet loss. SFrame decryptors
 use the highest received frame counter to protect against this. It
 allows only older frame pithing a short interval to support out of
 order delivery.

4.3.5. Key Rotation

 Because the E2EE keys could be rotated during the call when people
 join and leave, these new keys are exchanged using the same E2EE
 secure channel used in the initial key negotiation. Sending new
 fresh keys is an expensive operation, so the key management component
 might chose to send new keys only when other clients leave the call
 and use hash ratcheting for the join case, so no need to send a new
 key to the clients who are already on the call. SFrame supports both
 modes

4.3.5.1. Key Ratcheting

 When SFrame decryptor fails to decrypt one of the frames, it
 automatically ratchets the key forward and retries again until one
 ratchet succeed or it reaches the maximum allowed ratcheting window.
 If a new ratchet passed the decryption, all previous ratchets are
 deleted.

 K(i) = HKDF(K(i-1), ’SFrameRatchetKey’, 32)

Omara, et al. Expires November 20, 2020 [Page 11]

Internet-Draft SFrame May 2020

4.3.5.2. New Key

 SFrame will set the key immediately on the decrypts when it is
 received and destroys the old key material, so if the key manager
 sends a new key during the call, it is recommended not to start using
 it immediately and wait for a short time to make sure it is delivered
 to all other clients before using it to decrease the number of
 decryption failure. It is up to the application and the key manager
 to define how long this period is.

4.4. Authentication

 Every client in the call knows the secret key for all other clients
 so it can decrypt their traffic, it also means a malicious client can
 impersonate any other client in the call by using the victim key to
 encrypt their traffic. This might not be a problem for consumer
 application where the number of clients in the call is small and
 users know each others, however for enterprise use case where large
 conference calls are common, an authentication mechanism is needed to
 protect against malicious users. This authentication will come with
 extra cost.

 Adding a digital signature to each encrypted frame will be an
 overkill, instead we propose adding signature over multiple frames.

 The signature is calculated by concatenating the authentication tags
 of the frames that the sender wants to authenticate (in reverse sent
 order) and signing it with the signature key. Signature keys are
 exchanged out of band along the encryption keys.

Signature = Sign(Key, AuthTag(Frame N) || AuthTag(Frame N-1) || ...|| AuthTag(Fra
me N-M))

 The authentication tags for the previous frames covered by the
 signature and the signature itself will be appended at end of the
 frame, after the current frame authentication tag, in the same order
 that the signature was calculated, and the SFrame header metadata
 signature bit (S) will be set to 1.

Omara, et al. Expires November 20, 2020 [Page 12]

Internet-Draft SFrame May 2020

 +^ +------------------+
 | | SFrame header S=1|
 | +------------------+
 | | Encrypted |
 | | payload |
 | | |
 |^ +------------------+ ^+
 | | Auth Tag N | |
 | +------------------+ |
 | | Auth Tag N-1 | |
 | +------------------+ |
 | | | |
 | +------------------+ |
 | | Auth Tag N-M | |
 | +------------------+ ^|
 | | NUM | Signature : |
 | +-----+ + |
 | : | |
 | +------------------+ |
 | |
 +-> Authenticated with +-> Signed with
 Auth Tag N Signature

 Encrypted Frame with Signature

 Note that the authentication tag for the current frame will only
 authenticate the SFrame header and the encrypted payload, ant not the
 signature nor the previous frames’s authentication tags (N-1 to N-M)
 used to calculate the signature.

 The last byte (NUM) after the authentication tag list and before the
 signature indicates the number of the authentication tags from
 previous frames present in the current frame. All the
 authentications tags MUST have the same size, which MUST be equal to
 the authentication tag size of the current frame. The signature is
 fixed size depending on the signature algorithm used (for example, 64
 bytes for Ed25519).

 The receiver has to keep track of all the frames received but yet not
 verified, by storing the authentication tags of each received frame.
 When a signature is received, the receiver will verify it with the
 signature key associated to the key id of the frame the signature was
 sent in. If the verification is successful, the received will mark
 the frames as authenticated and remove them from the list of the not
 verified frames. It is up to the application to decide what to do
 when signature verification fails.

Omara, et al. Expires November 20, 2020 [Page 13]

Internet-Draft SFrame May 2020

 When using SVC, the hash will be calculated over all the frames of
 the different spatial layers within the same superframe/picture.
 However the SFU will be able to drop frames within the same stream
 (either spatial or temporal) to match target bitrate.

 If the signature is sent on a frame which layer that is dropped by
 the SFU, the receiver will not receive it and will not be able to
 perform the signature of the other received layers.

 An easy way of solving the issue would be to perform signature only
 on the base layer or take into consideration the frame dependency
 graph and send multiple signatures in parallel (each for a branch of
 the dependency graph).

 In case of simulcast or K-SVC, each spatial layer should be
 authenticated with different signatures to prevent the SFU to discard
 frames with the signature info.

 In any case, it is possible that the frame with the signature is lost
 or the SFU drops it, so the receiver MUST be prepared to not receive
 a signature for a frame and remove it from the pending to be verified
 list after a timeout.

4.5. Ciphersuites

4.5.1. SFrame

 Each SFrame session uses a single ciphersuite that specifies the
 following primitives:

 o A hash function This is used for the Key derivation and frame
 hashes for signature. We recommend using SHA256 hash function.

 o An AEAD encryption algorithm [RFC5116] While any AEAD algorithm can
 be used to encrypt the frame, we recommend using algorithms with safe
 MAC truncation like AES-CTR and HMAC to reduce the per-frame
 overhead. In this case we can use 80 bits MAC for video frames and
 32 bits for audio frames similar to DTLS-SRTP cipher suites:

 1- AES_CM_128_HMAC_SHA256_80

 2- AES_CM_128_HMAC_SHA256_32

 o [Optional] A signature algorithm If signature is supported, we
 recommend using ed25519

Omara, et al. Expires November 20, 2020 [Page 14]

Internet-Draft SFrame May 2020

4.5.2. DTLS-SRTP

 SRTP is used as an HBH encryption, since the media payload is already
 encrypted, and SRTP only protects the RTP headers, one implementation
 could use 4 bytes outer auth tag to decrease the overhead, however it
 is up to the application to use other ciphers like AES-128-GCM with
 full authentication tag.

5. Key Management

 SFrame must be integrated with an E2EE key management framework to
 exchange and rotate the encryption keys. This framework will
 maintain a group of participant endpoints who are in the call. At
 call setup time, each endpoint will create a fresh key material and
 optionally signing key pair for that call and encrypt the key
 material and the public signing key to every other endpoints. They
 encrypted keys are delivered by the messaging delivery server using a
 reliable channel.

 The KMS will monitor the group changes, and exchange new keys when
 necessary. It is up to the application to define this group, for
 example one application could have ephemeral group for every call and
 keep rotating key when end points joins or leave the call, while
 another application could have a persisted group that can be used for
 multiple calls and exchange keys with all group endpoints for every
 call.

 When a new key material is created during the call, we recommend not
 to start using it immediately in SFrame to give time for the new keys
 to be delivered. If the application supports delivery receipts, it
 can be used to track if the key is delivered to all other endpoints
 on the call before using it.

 Keys must have a sequential id starting from 0 and incremented eery
 time a new key is generated for this endpoint. The key id will be
 added in the SFrame header during encryption, so the recipient know
 which key to use for the decryption.

5.1. MLS-SFrame

 While any other E2EE KMS can be used with SFrame, there is a big
 advantage if it is used with [MLSARCH] which natively supports very
 large groups efficiently. When [MLSPROTO] is used, the endpoints
 keys (AKA Application secret) can be used directly for SFrame without
 the need to exchange separate key material. The application secret
 is rotated automatically by [MLSPROTO] when group membership changes.

Omara, et al. Expires November 20, 2020 [Page 15]

Internet-Draft SFrame May 2020

6. Media Considerations

6.1. SFU

 Selective Forwarding Units (SFUs) as described in
 https://tools.ietf.org/html/rfc7667#section-3.7 receives the RTP
 streams from each participant and selects which ones should be
 forwarded to each of the other participants. There are several
 approaches about how to do this stream selection but in general, in
 order to do so, the SFU needs to access metadata associated to each
 frame and modify the RTP information of the incoming packets when
 they are transmitted to the received participants.

 This section describes how this normal SFU modes of operation
 interacts with the E2EE provided by SFrame

6.1.1. LastN and RTP stream reuse

 The SFU may choose to send only a certain number of streams based on
 the voice activity of the participants. To reduce the number of SDP
 O/A required to establish a new RTP stream, the SFU may decide to
 reuse previously existing RTP sessions or even pre-allocate a
 predefined number of RTP streams and choose in each moment in time
 which participant media will be sending through it. This means that
 in the same RTP stream (defined by either SSRC or MID) may carry
 media from different streams of different participants. As different
 keys are used by each participant for encoding their media, the
 receiver will be able to verify which is the sender of the media
 coming within the RTP stream at any given point if time, preventing
 the SFU trying to impersonate any of the participants with another
 participant’s media. Note that in order to prevent impersonation by
 a malicious participant (not the SFU) usage of the signature is
 required. In case of video, the a new signature should be started
 each time a key frame is sent to allow the receiver to identify the
 source faster after a switch.

6.1.2. Simulcast

 When using simulcast, the same input image will produce N different
 encoded frames (one per simulcast layer) which would be processed
 independently by the frame encryptor and assigned an unique counter
 for each.

6.1.3. SVC

 In both temporal and spatial scalability, the SFU may choose to drop
 layers in order to match a certain bitrate or forward specific media
 sizes or frames per second. In order to support it, the sender MUST

Omara, et al. Expires November 20, 2020 [Page 16]

Internet-Draft SFrame May 2020

 encode each spatial layer of a given picture in a different frame.
 That is, an RTP frame may contain more than one SFrame encrypted
 frame with an incrementing frame counter.

6.2. Video Key Frames

 Forward and Post-Compromise Security requires that the e2ee keys are
 updated anytime a participant joins/leave the call.

 The key exchange happens async and on a different path than the SFU
 signaling and media. So it may happen that when a new participant
 joins the call and the SFU side requests a key frame, the sender
 generates the e2ee encrypted frame with a key not known by the
 receiver, so it will be discarded. When the sender updates his
 sending key with the new key, it will send it in a non-key frame, so
 the receiver will be able to decrypt it, but not decode it.

 Receiver will re-request an key frame then, but due to sender and sfu
 policies, that new key frame could take some time to be generated.

 If the sender sends a key frame when the new e2ee key is in use, the
 time required for the new participant to display the video is
 minimized.

6.3. Partial Decoding

 Some codes support partial decoding, where it can decrypt individual
 packets without waiting for the full frame to arrive, with SFrame
 this won’t be possible because the decoder will not access the
 packets until the entire frame is arrived and decrypted.

7. Overhead

 The encryption overhead will vary between audio and video streams,
 because in audio each packet is considered a separate frame, so it
 will always have extra MAC and IV, however a video frame usually
 consists of multiple RTP packets. The number of bytes overhead per
 frame is calculated as the following 1 + FrameCounter length + 4 The
 constant 1 is the SFrame header byte and 4 bytes for the HBH
 authentication tag for both audio and video packets.

7.1. Audio

 Using three different audio frame durations 20ms (50 packets/s) 40ms
 (25 packets/s) 100ms (10 packets/s) Up to 3 bytes frame counter (3.8
 days of data for 20ms frame duration) and 4 bytes fixed MAC length.

Omara, et al. Expires November 20, 2020 [Page 17]

Internet-Draft SFrame May 2020

 +------------+-----------+-----------+----------+-----------+
 | Counter len| Packets | Overhead | Overhead | Overhead |
 | | | bps@20ms | bps@40ms | bps@100ms |
 +------------+-----------+-----------+----------+-----------+
1	0-255	2400	1200	480
2	255 - 65K	2800	1400	560
3	65K - 16M	3200	1600	640
 +------------+--------- -+-----------+----------+-----------+

7.2. Video

 The per-stream overhead bits per second as calculated for the
 following video encodings: 30fps@1000Kbps (4 packets per frame)
 30fps@512Kbps (2 packets per frame) 15fps@200Kbps (2 packets per
 frame) 7.5fps@30Kbps (1 packet per frame) Overhead bps = (Counter
 length + 1 + 4) * 8 * fps

 +------------+-----------+------------+------------+------------+
 | Counter len| Frames | Overhead | Overhead | Overhead |
 | | | bps@30fps | bps@15fps | bps@7.5fps |
 +------------+-----------+------------+------------+------------+
1	0-255	1440	1440	720
2	256 - 65K	1680	1680	840
3	56K - 16M	1920	1920	960
4	16M - 4B	2160	2160	1080
 +------------+-----------+------------+------------+------------+

7.3. SFrame vs PERC-lite

 [PERC] has significant overhead over SFrame because the overhead is
 per packet, not per frame, and OHB (Original Header Block) which
 duplicates any RTP header/extension field modified by the SFU.
 [PERCLITE] <https://mailarchive.ietf.org/arch/msg/perc/
 SB0qMHWz6EsDtz3yIEX0HWp5IEY/> is slightly better because it doesn’t
 use the OHB anymore, however it still does per packet encryption
 using SRTP. Below the the overheard in [PERCLITE] implemented by
 Cosmos Software which uses extra 11 bytes per packet to preserve the
 PT, SEQ_NUM, TIME_STAMP and SSRC fields in addition to the extra MAC
 tag per packet.

 OverheadPerPacket = 11 + MAC length Overhead bps = PacketPerSecond *
 OverHeadPerPacket * 8

 Similar to SFrame, we will assume the HBH authentication tag length
 will always be 4 bytes for audio and video even though it is not the
 case in this [PERCLITE] implementation

Omara, et al. Expires November 20, 2020 [Page 18]

Internet-Draft SFrame May 2020

7.3.1. Audio

 +-------------------+--------------------+--------------------+
 | Overhead bps@20ms | Overhead bps@40ms | Overhead bps@100ms |
 +-------------------+--------------------+--------------------+
 | 6000 | 3000 | 1200 |
 +-------------------+--------------------+--------------------+

7.3.2. Video

 +---------------------+----------------------+-----------------------+
 | Overhead bps@30fps | Overhead bps@15fps | Overhead bps@7.5fps |
 |(4 packets per frame)| (2 packets per frame)| (1 packet per frame) |
 +---------------------+----------------------+-----------------------+
 | 14400 | 7200 | 3600 |
 +---------------------+----------------------+-----------------------+

 For a conference with a single incoming audio stream (@ 50 pps) and 4
 incoming video streams (@200 Kbps), the savings in overhead is 34800
 - 9600 = ˜25 Kbps, or ˜3%.

8. Security Considerations

8.1. Key Management

 Key exchange mechanism is out of scope of this document, however
 every client MUST change their keys when new clients joins or leaves
 the call for "Forward Secrecy" and "Post Compromise Security".

8.2. Authentication tag length

 The cipher suites defined in this draft use short authentication tags
 for encryption, however it can easily support other ciphers with full
 authentication tag if the short ones are proved insecure.

9. IANA Considerations

 This document makes no requests of IANA.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Omara, et al. Expires November 20, 2020 [Page 19]

Internet-Draft SFrame May 2020

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [MLSARCH] Omara, E., Barnes, R., Rescorla, E., Inguva, S., Kwon, A.,
 and A. Duric, "Messaging Layer Security Architecture",
 2020.

 [MLSPROTO]
 Barnes, R., Millican, J., Omara, E., Cohn-Gordon, K., and
 R. Robert, "Messaging Layer Security Protocol", 2020.

 [PERC] Jennings, C., Jones, P., Barnes, R., and A. Roach, "PERC",
 2020, <https://datatracker.ietf.org/doc/rfc8723/>.

 [PERCLITE]
 GOUAILLARD, A. and S. Murillo, "PERC-Lite", 2020,
 <https://tools.ietf.org/html/draft-murillo-perc-lite-01>.

Authors’ Addresses

 Emad Omara
 Google

 Email: emadomara@google.com

 Justin Uberti
 Google

 Email: juberti@google.com

 Alexandre GOUAILLARD
 CoSMo Software

 Email: Alex.GOUAILLARD@cosmosoftware.io

 Sergio Garcia Murillo
 CoSMo Software

 Email: sergio.garcia.murillo@cosmosoftware.io

Omara, et al. Expires November 20, 2020 [Page 20]

