
Network Working Group E. Omara
Internet-Draft Apple
Intended status: Informational J. Uberti
Expires: 17 February 2022 Google
 A. GOUAILLARD
 S. Murillo
 CoSMo Software
 16 August 2021

 Secure Frame (SFrame)
 draft-omara-sframe-03

Abstract

 This document describes the Secure Frame (SFrame) end-to-end
 encryption and authentication mechanism for media frames in a
 multiparty conference call, in which central media servers (SFUs) can
 access the media metadata needed to make forwarding decisions without
 having access to the actual media. The proposed mechanism differs
 from other approaches through its use of media frames as the
 encryptable unit, instead of individual RTP packets, which makes it
 more bandwidth efficient and also allows use with non-RTP transports.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 17 February 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Omara, et al. Expires 17 February 2022 [Page 1]

Internet-Draft SFrame August 2021

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Goals . 4
 4. SFrame . 5
 4.1. SFrame Format . 7
 4.2. SFrame Header . 7
 4.3. Encryption Schema . 8
 4.3.1. Key Selection . 9
 4.3.2. Key Derivation 9
 4.3.3. Encryption . 10
 4.3.4. Decryption . 12
 4.3.5. Duplicate Frames 12
 4.4. Ciphersuites . 12
 4.4.1. AES-CM with SHA2 13
 5. Key Management . 14
 5.1. Sender Keys . 15
 5.2. MLS . 15
 6. Media Considerations . 17
 6.1. SFU . 17
 6.1.1. LastN and RTP stream reuse 17
 6.1.2. Simulcast . 17
 6.1.3. SVC . 18
 6.2. Video Key Frames . 18
 6.3. Partial Decoding . 18
 7. Overhead . 18
 7.1. Audio . 19
 7.2. Video . 19
 7.3. SFrame vs PERC-lite 20
 7.3.1. Audio . 20
 7.3.2. Video . 20
 8. Security Considerations 21
 8.1. No Per-Sender Authentication 21
 8.2. Key Management . 21
 8.3. Authentication tag length 21
 9. IANA Considerations . 21
 10. Test Vectors . 21
 10.1. AES_CM_128_HMAC_SHA256_4 22

Omara, et al. Expires 17 February 2022 [Page 2]

Internet-Draft SFrame August 2021

 10.2. AES_CM_128_HMAC_SHA256_8 23
 10.3. AES_GCM_128_SHA256 25
 10.4. AES_GCM_256_SHA512 27
 11. References . 29
 11.1. Normative References 29
 11.2. Informative References 29
 Authors’ Addresses . 30

1. Introduction

 Modern multi-party video call systems use Selective Forwarding Unit
 (SFU) servers to efficiently route RTP streams to call endpoints
 based on factors such as available bandwidth, desired video size,
 codec support, and other factors. In order for the SFU to work
 properly though, it needs to be able to access RTP metadata and RTCP
 feedback messages, which is not possible if all RTP/RTCP traffic is
 end-to-end encrypted.

 As such, two layers of encryptions and authentication are required:

 1. Hop-by-hop (HBH) encryption of media, metadata, and feedback
 messages between the the endpoints and SFU

 2. End-to-end (E2E) encryption of media between the endpoints

 While DTLS-SRTP can be used as an efficient HBH mechanism, it is
 inherently point-to-point and therefore not suitable for a SFU
 context. In addition, given the various scenarios in which video
 calling occurs, minimizing the bandwidth overhead of end-to-end
 encryption is also an important goal.

 This document proposes a new end-to-end encryption mechanism known as
 SFrame, specifically designed to work in group conference calls with
 SFUs.

Omara, et al. Expires 17 February 2022 [Page 3]

Internet-Draft SFrame August 2021

 +-------------------------------+-------------------------------+^+
 |V=2|P|X| CC |M| PT | sequence number | |
 +-------------------------------+-------------------------------+ |
 | timestamp | |
 +---+ |
 | synchronization source (SSRC) identifier | |
 |=+=| |
 | contributing source (CSRC) identifiers | |
 | | |
 +---+ |
 | RTP extension(s) (OPTIONAL) | |
 +^---------------------+--+ |
	payload header		
+--------------------+ payload ...			
+^+---+^+			
: authentication tag :			
+---+			
 ++ Encrypted Portion Authenticated Portion +--+

 Figure 1: SRTP packet format

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 SFU: Selective Forwarding Unit (AKA RTP Switch)

 IV: Initialization Vector

 MAC: Message Authentication Code

 E2EE: End to End Encryption

 HBH: Hop By Hop

 KMS: Key Management System

3. Goals

 SFrame is designed to be a suitable E2EE protection scheme for
 conference call media in a broad range of scenarios, as outlined by
 the following goals:

Omara, et al. Expires 17 February 2022 [Page 4]

Internet-Draft SFrame August 2021

 1. Provide an secure E2EE mechanism for audio and video in
 conference calls that can be used with arbitrary SFU servers.

 2. Decouple media encryption from key management to allow SFrame to
 be used with an arbitrary KMS.

 3. Minimize packet expansion to allow successful conferencing in as
 many network conditions as possible.

 4. Independence from the underlying transport, including use in non-
 RTP transports, e.g., WebTransport.

 5. When used with RTP and its associated error resilience
 mechanisms, i.e., RTX and FEC, require no special handling for
 RTX and FEC packets.

 6. Minimize the changes needed in SFU servers.

 7. Minimize the changes needed in endpoints.

 8. Work with the most popular audio and video codecs used in
 conferencing scenarios.

4. SFrame

 We propose a frame level encryption mechanism that provides effective
 end-to-end encryption, is simple to implement, has no dependencies on
 RTP, and minimizes encryption bandwidth overhead. Because SFrame
 encrypts the full frame, rather than individual packets, bandwidth
 overhead is reduced by having a single IV and authentication tag for
 each media frame.

 Also, because media is encrypted prior to packetization, the
 encrypted frame is packetized using a generic RTP packetizer instead
 of codec-dependent packetization mechanisms. With this move to a
 generic packetizer, media metadata is moved from codec-specific
 mechanisms to a generic frame RTP header extension which, while
 visible to the SFU, is authenticated end-to-end. This extension
 includes metadata needed for SFU routing such as resolution, frame
 beginning and end markers, etc.

 The generic packetizer splits the E2E encrypted media frame into one
 or more RTP packets and adds the SFrame header to the beginning of
 the first packet and an auth tag to the end of the last packet.

Omara, et al. Expires 17 February 2022 [Page 5]

Internet-Draft SFrame August 2021

 +---+
 | |
 | +----------+ +------------+ +-----------+ |
 | | | | SFrame | |Packetizer | | DTLS+SRTP
 | | Encoder +----->+ Enc +----->+ +---------------------
----+
 ,+. | | | | | | | | +--+ +--+ +--
+ |
 ‘|’ | +----------+ +-----+------+ +-----------+ | | | | | |
| |
 /|\ | ^ | | | | | |
| |
 + | | | | | | | |
| |
 / \ | | | +--+ +--+ +--
+ |
Alice | +-----+------+ | Encrypted Packe
ts |
 | |Key Manager | |
 |
 | +------------+ |
 |
 | || |
 |
 | || |
 |
 | || |
 |
 +---+
 |
 ||
 |
 ||
 v
 +------------+ +-
----+------+
 E2EE channel | Messaging | |
 Media |
 via the | Server | |
 Server |
 Messaging Server | | |
 |
 +------------+ +-
----+------+
 ||
 |
 ||
 |
 +---+
 |
 | || |
 |
 | || |
 |
 | || |
 |
 | +------------+ |
 |

 | |Key Manager | |
 |
 ,+. | +-----+------+ | Encrypted Packe
ts |
 ‘|’ | | | +--+ +--+ +--
+ |
 /|\ | | | | | | | |
| |
 + | v | | | | | |
| |
 / \ | +----------+ +-----+------+ +-----------+ | | | | | |
| |
 Bob | | | | SFrame | | De+ | | +--+ +--+ +--
+ |
 | | Decoder +<-----+ Dec +<-----+Packetizer +<--------------------
----+
 | | | | | | | | DTLS+SRTP
 | +----------+ +------------+ +-----------+ |
 | |
 +---+

 The E2EE keys used to encrypt the frame are exchanged out of band
 using a secure E2EE channel.

Omara, et al. Expires 17 February 2022 [Page 6]

Internet-Draft SFrame August 2021

4.1. SFrame Format

 +------------+--+^+
 |S|LEN|X|KID | Frame Counter | |
 +^+------------+--+ |
	Encrypted Frame	
+^+---+^+		
	Authentication Tag	
+---+		
 +----+Encrypted Portion Authenticated Portion+---+

4.2. SFrame Header

 Since each endpoint can send multiple media layers, each frame will
 have a unique frame counter that will be used to derive the
 encryption IV. The frame counter must be unique and monotonically
 increasing to avoid IV reuse.

 As each sender will use their own key for encryption, so the SFrame
 header will include the key id to allow the receiver to identify the
 key that needs to be used for decrypting.

 Both the frame counter and the key id are encoded in a variable
 length format to decrease the overhead. The length is up to 8 bytes
 and is represented in 3 bits in the SFrame header: 000 represents a
 length of 1, 001 a length of 2... The first byte in the SFrame header
 is fixed and contains the header metadata with the following format:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |R|LEN |X| K |
 +-+-+-+-+-+-+-+-+
 SFrame header metadata

 Reserved (R): 1 bit This field MUST be set to zero on sending, and
 MUST be ignored by receivers. Counter Length (LEN): 3 bits This
 field indicates the length of the CTR fields in bytes (1-8).
 Extended Key Id Flag (X): 1 bit Indicates if the key field contains

Omara, et al. Expires 17 February 2022 [Page 7]

Internet-Draft SFrame August 2021

 the key id or the key length. Key or Key Length: 3 bits This field
 contains the key id (KID) if the X flag is set to 0, or the key
 length (KLEN) if set to 1.

 If X flag is 0 then the KID is in the range of 0-7 and the frame
 counter (CTR) is found in the next LEN bytes:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+---------------------------------+
 |R|LEN |0| KID | CTR... (length=LEN) |
 +-+-+-+-+-+-+-+-+---------------------------------+

 Frame counter byte length (LEN): 3bits The frame counter length in
 bytes (1-8). Key id (KID): 3 bits The key id (0-7). Frame counter
 (CTR): (Variable length) Frame counter value up to 8 bytes long.

 if X flag is 1 then KLEN is the length of the key (KID), that is
 found after the SFrame header metadata byte. After the key id (KID),
 the frame counter (CTR) will be found in the next LEN bytes:

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+---------------------------+---------------------------+
|R|LEN |1|KLEN | KID... (length=KLEN) | CTR... (length=LEN) |
+-+-+-+-+-+-+-+-+---------------------------+---------------------------+

 Frame counter byte length (LEN): 3bits The frame counter length in
 bytes (1-8). Key length (KLEN): 3 bits The key length in bytes
 (1-8). Key id (KID): (Variable length) The key id value up to 8
 bytes long. Frame counter (CTR): (Variable length) Frame counter
 value up to 8 bytes long.

4.3. Encryption Schema

 SFrame encryption uses an AEAD encryption algorithm and hash function
 defined by the ciphersuite in use (see Section 4.4). We will refer
 to the following aspects of the AEAD algorithm below:

 * "AEAD.Encrypt" and "AEAD.Decrypt" - The encryption and decryption
 functions for the AEAD. We follow the convention of RFC 5116
 [RFC5116] and consider the authentication tag part of the
 ciphertext produced by "AEAD.Encrypt" (as opposed to a separate
 field as in SRTP [RFC3711]).

 * "AEAD.Nk" - The size of a key for the encryption algorithm, in
 bytes

 * "AEAD.Nn" - The size of a nonce for the encryption algorithm, in
 bytes

Omara, et al. Expires 17 February 2022 [Page 8]

Internet-Draft SFrame August 2021

4.3.1. Key Selection

 Each SFrame encryption or decryption operation is premised on a
 single secret "base_key", which is labeled with an integer KID value
 signaled in the SFrame header.

 The sender and receivers need to agree on which key should be used
 for a given KID. The process for provisioning keys and their KID
 values is beyond the scope of this specification, but its security
 properties will bound the assurances that SFrame provides. For
 example, if SFrame is used to provide E2E security against
 intermediary media nodes, then SFrame keys MUST be negotiated in a
 way that does not make them accessible to these intermediaries.

 For each known KID value, the client stores the corresponding
 symmetric key "base_key". For keys that can be used for encryption,
 the client also stores the next counter value CTR to be used when
 encrypting (initially 0).

 When encrypting a frame, the application specifies which KID is to be
 used, and the counter is incremented after successful encryption.
 When decrypting, the "base_key" for decryption is selected from the
 available keys using the KID value in the SFrame Header.

 A given key MUST NOT be used for encryption by multiple senders.
 Such reuse would result in multiple encrypted frames being generated
 with the same (key, nonce) pair, which harms the protections provided
 by many AEAD algorithms. Implementations SHOULD mark each key as
 usable for encryption or decryption, never both.

 Note that the set of available keys might change over the lifetime of
 a real-time session. In such cases, the client will need to manage
 key usage to avoid media loss due to a key being used to encrypt
 before all receivers are able to use it to decrypt. For example, an
 application may make decryption-only keys available immediately, but
 delay the use of encryption-only keys until (a) all receivers have
 acknowledged receipt of the new key or (b) a timeout expires.

4.3.2. Key Derivation

 SFrame encrytion and decryption use a key and salt derived from the
 "base_key" associated to a KID. Given a "base_key" value, the key
 and salt are derived using HKDF [RFC5869] as follows:

 sframe_secret = HKDF-Extract(K, ’SFrame10’)
 sframe_key = HKDF-Expand(sframe_secret, ’key’, AEAD.Nk)
 sframe_salt = HKDF-Expand(sframe_secret, ’salt’, AEAD.Nn)

Omara, et al. Expires 17 February 2022 [Page 9]

Internet-Draft SFrame August 2021

 The hash function used for HKDF is determined by the ciphersuite in
 use.

4.3.3. Encryption

 After encoding the frame and before packetizing it, the necessary
 media metadata will be moved out of the encoded frame buffer, to be
 used later in the RTP generic frame header extension. The encoded
 frame, the metadata buffer and the frame counter are passed to SFrame
 encryptor.

 SFrame encryption uses the AEAD encryption algorithm for the
 ciphersuite in use. The key for the encryption is the "sframe_key"
 and the nonce is formed by XORing the "sframe_salt" with the current
 counter, encoded as a big-endian integer of length "AEAD.Nn".

 The encryptor forms an SFrame header using the S, CTR, and KID values
 provided. The encoded header is provided as AAD to the AEAD
 encryption operation, with any frame metadata appended.

def encrypt(S, CTR, KID, frame_metadata, frame):
 sframe_key, sframe_salt = key_store[KID]

 frame_ctr = encode_big_endian(CTR, AEAD.Nn)
 frame_nonce = xor(sframe_salt, frame_ctr)

 header = encode_sframe_header(S, CTR, KID)
 frame_aad = header + frame_metadata

 encrypted_frame = AEAD.Encrypt(sframe_key, frame_nonce, frame_aad, frame)
 return header + encrypted_frame

 The encrypted payload is then passed to a generic RTP packetized to
 construct the RTP packets and encrypt it using SRTP keys for the HBH
 encryption to the media server.

Omara, et al. Expires 17 February 2022 [Page 10]

Internet-Draft SFrame August 2021

 +----------------+ +---------------+
 | frame metadata | | |
 +-------+--------+ | |
 | | frame |
 | | |
 | | |
 | +-------+-------+
 | |
 header ----+------------------>| AAD
 +-----+ |
 | S | |
 +-----+ |
 | KID +--+--> sframe_key ----->| Key
 | | | |
 | | +--> sframe_salt -+ |
 +-----+ | |
 | CTR +--------------------+-->| Nonce
 | | |
 | | |
 +-----+ |
 | AEAD.Encrypt
 | |
 | V
 | +-------+-------+
 | | |
 | | |
 | | encrypted |
 | | frame |
 | | |
 | | |
 | +-------+-------+
 | |
 | generic RTP packetize
 | |
 | v
 V
 +---------------+ +---------------+ +---------------+
 | SFrame header | | | | |
 +---------------+ | | | |
		payload 2/N		payload N/N
payload 1/N				
 +---------------+ +---------------+ +---------------+

 Figure 2: Encryption flow

Omara, et al. Expires 17 February 2022 [Page 11]

Internet-Draft SFrame August 2021

4.3.4. Decryption

 The receiving clients buffer all packets that belongs to the same
 frame using the frame beginning and ending marks in the generic RTP
 frame header extension, and once all packets are available, it passes
 it to SFrame for decryption. The KID field in the SFrame header is
 used to find the right key for the encrypted frame.

def decrypt(frame_metadata, sframe):
 header, encrypted_frame = split_header(sframe)
 S, CTR, KID = parse_header(header)

 sframe_key, sframe_salt = key_store[KID]

 frame_ctr = encode_big_endian(CTR, AEAD.Nn)
 frame_nonce = xor(sframe_salt, frame_ctr)
 frame_aad = header + frame_metadata

 return AEAD.Decrypt(sframe_key, frame_nonce, frame_aad, encrypted_frame)

 For frames that are failed to decrypt because there is key available
 for the KID in the SFrame header, the client MAY buffer the frame and
 retry decryption once a key with that KID is received.

4.3.5. Duplicate Frames

 Unlike messaging application, in video calls, receiving a duplicate
 frame doesn’t necessary mean the client is under a replay attack,
 there are other reasons that might cause this, for example the sender
 might just be sending them in case of packet loss. SFrame decryptors
 use the highest received frame counter to protect against this. It
 allows only older frame pithing a short interval to support out of
 order delivery.

4.4. Ciphersuites

 Each SFrame session uses a single ciphersuite that specifies the
 following primitives:

 o A hash function used for key derivation and hashing signature
 inputs

 o An AEAD encryption algorithm [RFC5116] used for frame encryption,
 optionally with a truncated authentication tag

 o [Optional] A signature algorithm

 This document defines the following ciphersuites:

Omara, et al. Expires 17 February 2022 [Page 12]

Internet-Draft SFrame August 2021

 +========+==========================+====+====+====+===========+
 | Value | Name | Nh | Nk | Nn | Reference |
 +========+==========================+====+====+====+===========+
 | 0x0001 | AES_CM_128_HMAC_SHA256_8 | 32 | 16 | 12 | RFC XXXX |
 +--------+--------------------------+----+----+----+-----------+
 | 0x0002 | AES_CM_128_HMAC_SHA256_4 | 32 | 16 | 12 | RFC XXXX |
 +--------+--------------------------+----+----+----+-----------+
 | 0x0003 | AES_GCM_128_SHA256 | 32 | 16 | 12 | RFC XXXX |
 +--------+--------------------------+----+----+----+-----------+
 | 0x0004 | AES_GCM_256_SHA512 | 64 | 32 | 12 | RFC XXXX |
 +--------+--------------------------+----+----+----+-----------+

 Table 1

 In the "AES_CM" suites, the length of the authentication tag is
 indicated by the last value: "_8" indicates an eight-byte tag and
 "_4" indicates a four-byte tag.

 In a session that uses multiple media streams, different ciphersuites
 might be configured for different media streams. For example, in
 order to conserve bandwidth, a session might use a ciphersuite with
 80-bit tags for video frames and another ciphersuite with 32-bit tags
 for audio frames.

4.4.1. AES-CM with SHA2

 In order to allow very short tag sizes, we define a synthetic AEAD
 function using the authenticated counter mode of AES together with
 HMAC for authentication. We use an encrypt-then-MAC approach as in
 SRTP [RFC3711].

 Before encryption or decryption, encryption and authentication
 subkeys are derived from the single AEAD key using HKDF. The subkeys
 are derived as follows, where "Nk" represents the key size for the
 AES block cipher in use and "Nh" represents the output size of the
 hash function:

 def derive_subkeys(sframe_key):
 aead_secret = HKDF-Extract(sframe_key, ’SFrame10 AES CM AEAD’)
 enc_key = HKDF-Expand(aead_secret, ’enc’, Nk)
 auth_key = HKDF-Expand(aead_secret, ’auth’, Nh)
 return enc_key, auth_key

 The AEAD encryption and decryption functions are then composed of
 individual calls to the CM encrypt function and HMAC. The resulting
 MAC value is truncated to a number of bytes "tag_len" fixed by the
 ciphersuite.

Omara, et al. Expires 17 February 2022 [Page 13]

Internet-Draft SFrame August 2021

 def compute_tag(auth_key, nonce, aad, ct):
 aad_len = encode_big_endian(len(aad), 8)
 ct_len = encode_big_endian(len(ct), 8)
 auth_data = aad_len + ct_len + nonce + aad + ct
 tag = HMAC(auth_key, auth_data)
 return truncate(tag, tag_len)

 def AEAD.Encrypt(key, nonce, aad, pt):
 enc_key, auth_key = derive_subkeys(key)
 ct = AES-CM.Encrypt(enc_key, nonce, pt)
 tag = compute_tag(auth_key, nonce, aad, ct)
 return ct + tag

 def AEAD.Decrypt(key, nonce, aad, ct):
 inner_ct, tag = split_ct(ct, tag_len)

 enc_key, auth_key = derive_subkeys(key)
 candidate_tag = compute_tag(auth_key, nonce, aad, inner_ct)
 if !constant_time_equal(tag, candidate_tag):
 raise Exception("Authentication Failure")

 return AES-CM.Decrypt(enc_key, nonce, inner_ct)

5. Key Management

 SFrame must be integrated with an E2E key management framework to
 exchange and rotate the keys used for SFrame encryption and/or
 signing. The key management framework provides the following
 functions:

 * Provisioning KID/"base_key" mappings to participating clients

 * (optional) Provisioning clients with a list of trusted signing
 keys

 * Updating the above data as clients join or leave

 It is up to the application to define a rotation schedule for keys.
 For example, one application might have an ephemeral group for every
 call and keep rotating key when end points joins or leave the call,
 while another application could have a persistent group that can be
 used for multiple calls and simply derives ephemeral symmetric keys
 for a specific call.

Omara, et al. Expires 17 February 2022 [Page 14]

Internet-Draft SFrame August 2021

5.1. Sender Keys

 If the participants in a call have a pre-existing E2E-secure channel,
 they can use it to distribute SFrame keys. Each client participating
 in a call generates a fresh encryption key and optionally a signing
 key pair. The client then uses the E2E-secure channel to send their
 encryption key and signing public key to the other participants.

 In this scheme, it is assumed that receivers have a signal outside of
 SFrame for which client has sent a given frame, for example the RTP
 SSRC. SFrame KID values are then used to distinguish generations of
 the sender’s key. At the beginning of a call, each sender encrypts
 with KID=0. Thereafter, the sender can ratchet their key forward for
 forward secrecy:

 sender_key[i+1] = HKDF-Expand(
 HKDF-Extract(sender_key[i], ’SFrame10 ratchet’),
 ’’, AEAD.Nk)

 The sender signals such an update by incrementing their KID value. A
 receiver who receives from a sender with a new KID computes the new
 key as above. The old key may be kept for some time to allow for
 out-of-order delivery, but should be deleted promptly.

 If a new participant joins mid-call, they will need to receive from
 each sender (a) the current sender key for that sender, (b) the
 signing key for the sender, if used, and (c) the current KID value
 for the sender. Evicting a participant requires each sender to send
 a fresh sender key to all receivers.

5.2. MLS

 The Messaging Layer Security (MLS) protocol provides group
 authenticated key exchange [I-D.ietf-mls-architecture]
 [I-D.ietf-mls-protocol]. In principle, it could be used to
 instantiate the sender key scheme above, but it can also be used more
 efficiently directly.

 MLS creates a linear sequence of keys, each of which is shared among
 the members of a group at a given point in time. When a member joins
 or leaves the group, a new key is produced that is known only to the
 augmented or reduced group. Each step in the lifetime of the group
 is know as an "epoch", and each member of the group is assigned an
 "index" that is constant for the time they are in the group.

Omara, et al. Expires 17 February 2022 [Page 15]

Internet-Draft SFrame August 2021

 In SFrame, we derive per-sender "base_key" values from the group
 secret for an epoch, and use the KID field to signal the epoch and
 sender index. First, we use the MLS exporter to compute a shared
 SFrame secret for the epoch.

 sframe_epoch_secret = MLS-Exporter("SFrame 10 MLS", "", AEAD.Nk)

 sender_base_key[index] = HKDF-Expand(sframe_epoch_secret,
 encode_big_endian(index, 4), AEAD.Nk)

 For compactness, do not send the whole epoch number. Instead, we
 send only its low-order E bits. Note that E effectively defines a
 re-ordering window, since no more than 2^E epoch can be active at a
 given time. Receivers MUST be prepared for the epoch counter to roll
 over, removing an old epoch when a new epoch with the same E lower
 bits is introduced. (Sender indices cannot be similarly compressed.)

 KID = (sender_index << E) + (epoch % (1 << E))

 Once an SFrame stack has been provisioned with the
 "sframe_epoch_secret" for an epoch, it can compute the required KIDs
 and "sender_base_key" values on demand, as it needs to encrypt/
 decrypt for a given member.

 ...
 |
 Epoch 17 +--+-- index=33 -> KID = 0x211
 | |
 | +-- index=51 -> KID = 0x331
 |
 |
 Epoch 16 +--+-- index=2 --> KID = 0x20
 |
 |
 Epoch 15 +--+-- index=3 --> KID = 0x3f
 | |
 | +-- index=5 --> KID = 0x5f
 |
 |
 Epoch 14 +--+-- index=3 --> KID = 0x3e
 | |
 | +-- index=7 --> KID = 0x7e
 | |
 | +-- index=20 -> KID = 0x14e
 |
 ...

Omara, et al. Expires 17 February 2022 [Page 16]

Internet-Draft SFrame August 2021

 MLS also provides an authenticated signing key pair for each
 participant. When SFrame uses signatures, these are the keys used to
 generate SFrame signatures.

6. Media Considerations

6.1. SFU

 Selective Forwarding Units (SFUs) as described in
 https://tools.ietf.org/html/rfc7667#section-3.7 receives the RTP
 streams from each participant and selects which ones should be
 forwarded to each of the other participants. There are several
 approaches about how to do this stream selection but in general, in
 order to do so, the SFU needs to access metadata associated to each
 frame and modify the RTP information of the incoming packets when
 they are transmitted to the received participants.

 This section describes how this normal SFU modes of operation
 interacts with the E2EE provided by SFrame

6.1.1. LastN and RTP stream reuse

 The SFU may choose to send only a certain number of streams based on
 the voice activity of the participants. To reduce the number of SDP
 O/A required to establish a new RTP stream, the SFU may decide to
 reuse previously existing RTP sessions or even pre-allocate a
 predefined number of RTP streams and choose in each moment in time
 which participant media will be sending through it. This means that
 in the same RTP stream (defined by either SSRC or MID) may carry
 media from different streams of different participants. As different
 keys are used by each participant for encoding their media, the
 receiver will be able to verify which is the sender of the media
 coming within the RTP stream at any given point if time, preventing
 the SFU trying to impersonate any of the participants with another
 participant’s media. Note that in order to prevent impersonation by
 a malicious participant (not the SFU) usage of the signature is
 required. In case of video, the a new signature should be started
 each time a key frame is sent to allow the receiver to identify the
 source faster after a switch.

6.1.2. Simulcast

 When using simulcast, the same input image will produce N different
 encoded frames (one per simulcast layer) which would be processed
 independently by the frame encryptor and assigned an unique counter
 for each.

Omara, et al. Expires 17 February 2022 [Page 17]

Internet-Draft SFrame August 2021

6.1.3. SVC

 In both temporal and spatial scalability, the SFU may choose to drop
 layers in order to match a certain bitrate or forward specific media
 sizes or frames per second. In order to support it, the sender MUST
 encode each spatial layer of a given picture in a different frame.
 That is, an RTP frame may contain more than one SFrame encrypted
 frame with an incrementing frame counter.

6.2. Video Key Frames

 Forward and Post-Compromise Security requires that the e2ee keys are
 updated anytime a participant joins/leave the call.

 The key exchange happens async and on a different path than the SFU
 signaling and media. So it may happen that when a new participant
 joins the call and the SFU side requests a key frame, the sender
 generates the e2ee encrypted frame with a key not known by the
 receiver, so it will be discarded. When the sender updates his
 sending key with the new key, it will send it in a non-key frame, so
 the receiver will be able to decrypt it, but not decode it.

 Receiver will re-request an key frame then, but due to sender and sfu
 policies, that new key frame could take some time to be generated.

 If the sender sends a key frame when the new e2ee key is in use, the
 time required for the new participant to display the video is
 minimized.

6.3. Partial Decoding

 Some codes support partial decoding, where it can decrypt individual
 packets without waiting for the full frame to arrive, with SFrame
 this won’t be possible because the decoder will not access the
 packets until the entire frame is arrived and decrypted.

7. Overhead

 The encryption overhead will vary between audio and video streams,
 because in audio each packet is considered a separate frame, so it
 will always have extra MAC and IV, however a video frame usually
 consists of multiple RTP packets. The number of bytes overhead per
 frame is calculated as the following 1 + FrameCounter length + 4 The
 constant 1 is the SFrame header byte and 4 bytes for the HBH
 authentication tag for both audio and video packets.

Omara, et al. Expires 17 February 2022 [Page 18]

Internet-Draft SFrame August 2021

7.1. Audio

 Using three different audio frame durations 20ms (50 packets/s) 40ms
 (25 packets/s) 100ms (10 packets/s) Up to 3 bytes frame counter (3.8
 days of data for 20ms frame duration) and 4 bytes fixed MAC length.

 +=============+===========+==========+==========+===========+
 | Counter len | Packets | Overhead | Overhead | Overhead |
 +=============+===========+==========+==========+===========+
 | | | bps@20ms | bps@40ms | bps@100ms |
 +-------------+-----------+----------+----------+-----------+
 | 1 | 0-255 | 2400 | 1200 | 480 |
 +-------------+-----------+----------+----------+-----------+
 | 2 | 255 - 65K | 2800 | 1400 | 560 |
 +-------------+-----------+----------+----------+-----------+
 | 3 | 65K - 16M | 3200 | 1600 | 640 |
 +-------------+-----------+----------+----------+-----------+

 Table 2

7.2. Video

 The per-stream overhead bits per second as calculated for the
 following video encodings: 30fps@1000Kbps (4 packets per frame)
 30fps@512Kbps (2 packets per frame) 15fps@200Kbps (2 packets per
 frame) 7.5fps@30Kbps (1 packet per frame) Overhead bps = (Counter
 length + 1 + 4) * 8 * fps

 +=============+===========+===========+===========+============+
 | Counter len | Frames | Overhead | Overhead | Overhead |
 +=============+===========+===========+===========+============+
 | | | bps@30fps | bps@15fps | bps@7.5fps |
 +-------------+-----------+-----------+-----------+------------+
 | 1 | 0-255 | 1440 | 1440 | 720 |
 +-------------+-----------+-----------+-----------+------------+
 | 2 | 256 - 65K | 1680 | 1680 | 840 |
 +-------------+-----------+-----------+-----------+------------+
 | 3 | 56K - 16M | 1920 | 1920 | 960 |
 +-------------+-----------+-----------+-----------+------------+
 | 4 | 16M - 4B | 2160 | 2160 | 1080 |
 +-------------+-----------+-----------+-----------+------------+

 Table 3

Omara, et al. Expires 17 February 2022 [Page 19]

Internet-Draft SFrame August 2021

7.3. SFrame vs PERC-lite

 [RFC8723] has significant overhead over SFrame because the overhead
 is per packet, not per frame, and OHB (Original Header Block) which
 duplicates any RTP header/extension field modified by the SFU.
 [I-D.murillo-perc-lite] https://mailarchive.ietf.org/arch/msg/perc/
 SB0qMHWz6EsDtz3yIEX0HWp5IEY/ is slightly better because it doesn’t
 use the OHB anymore, however it still does per packet encryption
 using SRTP. Below the the overheard in [I-D.murillo-perc-lite]
 implemented by Cosmos Software which uses extra 11 bytes per packet
 to preserve the PT, SEQ_NUM, TIME_STAMP and SSRC fields in addition
 to the extra MAC tag per packet.

 OverheadPerPacket = 11 + MAC length Overhead bps = PacketPerSecond *
 OverHeadPerPacket * 8

 Similar to SFrame, we will assume the HBH authentication tag length
 will always be 4 bytes for audio and video even though it is not the
 case in this [I-D.murillo-perc-lite] implementation

7.3.1. Audio

 +===================+===================+====================+
 | Overhead bps@20ms | Overhead bps@40ms | Overhead bps@100ms |
 +===================+===================+====================+
 | 6000 | 3000 | 1200 |
 +-------------------+-------------------+--------------------+

 Table 4

7.3.2. Video

 +=======================+====================+=====================+
 | Overhead bps@30fps | Overhead bps@15fps | Overhead bps@7.5fps |
 +=======================+====================+=====================+
 | (4 packets per frame) | (2 packets per | (1 packet per |
 | | frame) | frame) |
 +-----------------------+--------------------+---------------------+
 | 14400 | 7200 | 3600 |
 +-----------------------+--------------------+---------------------+

 Table 5

 For a conference with a single incoming audio stream (@ 50 pps) and 4
 incoming video streams (@200 Kbps), the savings in overhead is 34800
 - 9600 = ˜25 Kbps, or ˜3%.

Omara, et al. Expires 17 February 2022 [Page 20]

Internet-Draft SFrame August 2021

8. Security Considerations

8.1. No Per-Sender Authentication

 SFrame does not provide per-sender authentication of media data. Any
 sender in a session can send media that will be associated with any
 other sender. This is because SFrame uses symmetric encryption to
 protect media data, so that any receiver also has the keys required
 to encrypt packets for the sender.

8.2. Key Management

 Key exchange mechanism is out of scope of this document, however
 every client MUST change their keys when new clients joins or leaves
 the call for "Forward Secrecy" and "Post Compromise Security".

8.3. Authentication tag length

 The cipher suites defined in this draft use short authentication tags
 for encryption, however it can easily support other ciphers with full
 authentication tag if the short ones are proved insecure.

9. IANA Considerations

 This document makes no requests of IANA.

10. Test Vectors

 This section provides a set of test vectors that implementations can
 use to verify that they correctly implement SFrame encryption and
 decryption. For each ciphersuite, we provide:

 * [in] The "base_key" value (hex encoded)

 * [out] The "secret", "key", and "salt" values derived from the
 "base_key" (hex encoded)

 * A plaintext value that is encrypted in the following encryption
 cases

 * A sequence of encryption cases, including:

 - [in] The "KID" and "CTR" values to be included in the header

 - [out] The resulting encoded header (hex encoded)

 - [out] The nonce computed from the "salt" and "CTR" values

Omara, et al. Expires 17 February 2022 [Page 21]

Internet-Draft SFrame August 2021

 - The ciphertext resulting from encrypting the plaintext with
 these parameters (hex encoded)

 An implementation should reproduce the output values given the input
 values: * An implementation should be able to encrypt with the input
 values and the plaintext to produce the ciphertext. * An
 implementation must be able to decrypt with the input values and the
 ciphertext to generate the plaintext.

 Line breaks and whitespace within values are inserted to conform to
 the width requirements of the RFC format. They should be removed
 before use. These test vectors are also available in JSON format at
 [TestVectors].

10.1. AES_CM_128_HMAC_SHA256_4

 CipherSuite: 0x01
 Base Key: 101112131415161718191a1b1c1d1e1f
 Key: 343d3290f5c0b936415bea9a43c6f5a2
 Salt: 42d662fbad5cd81eb3aad79a
 Plaintext: 46726f6d2068656176656e6c79206861
 726d6f6e79202f2f205468697320756e
 6976657273616c206672616d65206265
 67616e

 KID: 0x7
 CTR: 0x0
 Header: 1700
 Nonce: 42d662fbad5cd81eb3aad79a
 Ciphertext: 170065c67c6fb784631a7db1b589ffb6
 2d75b78e28b0899e632fbbee3b944747
 a6382d75b6bd3788dc7b71b9295c7fb9
 0b5098f7add14ef329

 KID: 0x7
 CTR: 0x1
 Header: 1701
 Nonce: 42d662fbad5cd81eb3aad79b
 Ciphertext: 1701ec742e98d667be810f153ff0d4da
 d7969f69b310aa7c6b9cb911e83af09b
 0f0a6d74772d8195c8c9dae3878fd1cb
 10edb4176d12e2387a

Omara, et al. Expires 17 February 2022 [Page 22]

Internet-Draft SFrame August 2021

 KID: 0x7
 CTR: 0x2
 Header: 1702
 Nonce: 42d662fbad5cd81eb3aad798
 Ciphertext: 1702ac9b495d37a1e48c712ade5cba72
 df0bf90f24aa022a454cfb92d8b87cd5
 4335fb6b9eeded6a5aa4e2643d7a0994
 6646001d0a41b09557

 KID: 0xf
 CTR: 0xaa
 Header: 190faa
 Nonce: 42d662fbad5cd81eb3aad730
 Ciphertext: 190faaeaa5adc70cae0d6ebd36805fa8
 7d2351dd02c55c751cd351a7fdb7f092
 7b474eae3e800033e08100a440002da1
 7579678b36dc275789d5

 KID: 0x1ff
 CTR: 0xaa
 Header: 1a01ffaa
 Nonce: 42d662fbad5cd81eb3aad730
 Ciphertext: 1a01ffaaeaa5adc70cae0d6ebd36805f
 a87d2351dd02c55c751cd351a7fdb7f0
 927b474eae3e800033e08100a440002d
 a17579678b36dc9bbe558b

 KID: 0x1ff
 CTR: 0xaaaa
 Header: 2a01ffaaaa
 Nonce: 42d662fbad5cd81eb3aa7d30
 Ciphertext: 2a01ffaaaa170500225053f1a044e51c
 4e91a6b783f69b1714fb31531d95d5b8
 dd7926c2d43405b4f32b9b49dd6e0aa5
 aba2427a94ff97f81dcd2826

 KID: 0xffffffffffffff
 CTR: 0xffffffffffffff
 Header: 7fffffffffffffffffffffffffffff
 Nonce: 42d662fbada327e14c552865
 Ciphertext: 7fffffffffffffffffffffffffffffdc
 a3655d5117bc838d6f4382ca468a4f99
 2ff77bfd1d2f4391be6b33e8fb638dc4
 8aa82f57fd91430c714def0b2089c8bf
 b2ac9da92415

10.2. AES_CM_128_HMAC_SHA256_8

Omara, et al. Expires 17 February 2022 [Page 23]

Internet-Draft SFrame August 2021

 CipherSuite: 0x02
 Base Key: 202122232425262728292a2b2c2d2e2f
 Key: 3fce747d505e46ec9b92d9f58ee7a5d4
 Salt: 77fbf5f1d82c73f6d2b353c9
 Plaintext: 46726f6d2068656176656e6c79206861
 726d6f6e79202f2f205468697320756e
 6976657273616c206672616d65206265
 67616e

 KID: 0x7
 CTR: 0x0
 Header: 1700
 Nonce: 77fbf5f1d82c73f6d2b353c9
 Ciphertext: 1700647513fce71aab7fed1e904fd924
 0343d77092c831f0d58fde0985a0f3e5
 ba4020e87a7b9c870b5f8f7f628d2769
 0cc1e571e4d391da5fbf428433

 KID: 0x7
 CTR: 0x1
 Header: 1701
 Nonce: 77fbf5f1d82c73f6d2b353c8
 Ciphertext: 17019e1bdf713b0d4c02f3dbf50a72ea
 773286e7da38f3872cc734f3e1b1448a
 ab5009b424e05495214f96d02e4e8f8d
 a975cc808f40f67cafead7cffd

 KID: 0x7
 CTR: 0x2
 Header: 1702
 Nonce: 77fbf5f1d82c73f6d2b353cb
 Ciphertext: 170220ad36fd9191453ace2d36a175ad
 8a69c1f16b8613d14b4f7ef30c68bc56
 09e349df38155cc1544d7dbfa079e3fa
 ae3c7883b448e75047caafe05b

 KID: 0xf
 CTR: 0xaa
 Header: 190faa
 Nonce: 77fbf5f1d82c73f6d2b35363
 Ciphertext: 190faadab9b284a4b9e3aea36b9cdcae
 4a58e141d3f0f52f240ef80a93dbb8d8
 09ede01b05b2cace18a22fb39c032724
 481c5baa181d6b793458355b0f30

Omara, et al. Expires 17 February 2022 [Page 24]

Internet-Draft SFrame August 2021

 KID: 0x1ff
 CTR: 0xaa
 Header: 1a01ffaa
 Nonce: 77fbf5f1d82c73f6d2b35363
 Ciphertext: 1a01ffaadab9b284a4b9e3aea36b9cdc
 ae4a58e141d3f0f52f240ef80a93dbb8
 d809ede01b05b2cace18a22fb39c0327
 24481c5baa181dad5ad0f89a1cfb58

 KID: 0x1ff
 CTR: 0xaaaa
 Header: 2a01ffaaaa
 Nonce: 77fbf5f1d82c73f6d2b3f963
 Ciphertext: 2a01ffaaaae0f2384e4dc472cb92238b
 5b722159205c4481665484de66985f15
 5071655ca4e9d1c998781f8c7d439f8d
 1eb6f6071cd80fd22f7e8846ba91036a

 KID: 0xffffffffffffff
 CTR: 0xffffffffffffff
 Header: 7fffffffffffffffffffffffffffff
 Nonce: 77fbf5f1d8d38c092d4cac36
 Ciphertext: 7fffffffffffffffffffffffffffff4b
 8c7429d7ee83eec5e53808b80555b1f8
 0b1df9d97877575fa1c7fa35b6119c68
 ed6543020075959dcc4ca6900a7f9cf1
 d936b640bba41ca62f6c

10.3. AES_GCM_128_SHA256

 CipherSuite: 0x03
 Base Key: 303132333435363738393a3b3c3d3e3f
 Key: 2ea2e8163ff56c0613e6fa9f20a213da
 Salt: a80478b3f6fba19983d540d5
 Plaintext: 46726f6d2068656176656e6c79206861
 726d6f6e79202f2f205468697320756e
 6976657273616c206672616d65206265
 67616e

 KID: 0x7
 CTR: 0x0
 Header: 1700
 Nonce: a80478b3f6fba19983d540d5
 Ciphertext: 17000e426255e47ed70dd7d15d69d759
 bf459032ca15f5e8b2a91e7d348aa7c1
 86d403f620801c495b1717a35097411a
 a97cbb140671eb3b49ac3775926db74d
 57b91e8e6c

Omara, et al. Expires 17 February 2022 [Page 25]

Internet-Draft SFrame August 2021

 KID: 0x7
 CTR: 0x1
 Header: 1701
 Nonce: a80478b3f6fba19983d540d4
 Ciphertext: 170103bbafa34ada8a6b9f2066bc34a1
 959d87384c9f4b1ce34fed58e938bde1
 43393910b1aeb55b48d91d5b0db3ea67
 e3d0e02b843afd41630c940b1948e72d
 d45396a43a

 KID: 0x7
 CTR: 0x2
 Header: 1702
 Nonce: a80478b3f6fba19983d540d7
 Ciphertext: 170258d58adebd8bf6f3cc0c1fcacf34
 ba4d7a763b2683fe302a57f1be7f2a27
 4bf81b2236995fec1203cadb146cd402
 e1c52d5e6a10989dfe0f4116da1ee4c2
 fad0d21f8f

 KID: 0xf
 CTR: 0xaa
 Header: 190faa
 Nonce: a80478b3f6fba19983d5407f
 Ciphertext: 190faad0b1743bf5248f90869c945636
 6d55724d16bbe08060875815565e90b1
 14f9ccbdba192422b33848a1ae1e3bd2
 66a001b2f5bb727112772e0072ea8679
 ca1850cf11d8

 KID: 0x1ff
 CTR: 0xaa
 Header: 1a01ffaa
 Nonce: a80478b3f6fba19983d5407f
 Ciphertext: 1a01ffaad0b1743bf5248f90869c9456
 366d55724d16bbe08060875815565e90
 b114f9ccbdba192422b33848a1ae1e3b
 d266a001b2f5bbc9c63bd3973c19bd57
 127f565380ed4a

Omara, et al. Expires 17 February 2022 [Page 26]

Internet-Draft SFrame August 2021

 KID: 0x1ff
 CTR: 0xaaaa
 Header: 2a01ffaaaa
 Nonce: a80478b3f6fba19983d5ea7f
 Ciphertext: 2a01ffaaaa9de65e21e4f1ca2247b879
 43c03c5cb7b182090e93d508dcfb76e0
 8174c6397356e682d2eaddabc0b3c101
 8d2c13c3570f61c1beaab805f27b565e
 1329a823a7a649b6

 KID: 0xffffffffffffff
 CTR: 0xffffffffffffff
 Header: 7fffffffffffffffffffffffffffff
 Nonce: a80478b3f6045e667c2abf2a
 Ciphertext: 7fffffffffffffffffffffffffffff09
 981bdcdad80e380b6f74cf6afdbce946
 839bedadd57578bfcd809dbcea535546
 cc24660613d2761adea852155785011e
 633534f4ecc3b8257c8d34321c27854a
 1422

10.4. AES_GCM_256_SHA512

 CipherSuite: 0x04
 Base Key: 404142434445464748494a4b4c4d4e4f
 505152535455565758595a5b5c5d5e5f
 Key: 436774b0b5ae45633d96547f8f3cb06c
 8e6628eff2e4255b5c4d77e721aa3355
 Salt: 31ed26f90a072e6aee646298
 Plaintext: 46726f6d2068656176656e6c79206861
 726d6f6e79202f2f205468697320756e
 6976657273616c206672616d65206265
 67616e

 KID: 0x7
 CTR: 0x0
 Header: 1700
 Nonce: 31ed26f90a072e6aee646298
 Ciphertext: 1700f3e297c1e95207710bd31ccc4ba3
 96fbef7b257440bde638ff0f3c891154
 0136df61b26220249d6c432c245ae8d5
 5ef45bfccf32530a15aeaaf313a03838
 e51bd45652

Omara, et al. Expires 17 February 2022 [Page 27]

Internet-Draft SFrame August 2021

 KID: 0x7
 CTR: 0x1
 Header: 1701
 Nonce: 31ed26f90a072e6aee646299
 Ciphertext: 170193268b0bf030071bff443bb6b447
 1bdfb1cc81bc9625f4697b0336ff4665
 d15f152f02169448d8a967fb06359a87
 d2145398de0ce3fbe257b0992a3da153
 7590459f3c

 KID: 0x7
 CTR: 0x2
 Header: 1702
 Nonce: 31ed26f90a072e6aee64629a
 Ciphertext: 1702649691ba27c4c01a41280fba4657
 c03fa7fe21c8f5c862e9094227c3ca3e
 c0d9468b1a2cb060ff0978f25a24e6b1
 06f5a6e1053c1b8f5fce794d88a0e481
 8c081e18ea

 KID: 0xf
 CTR: 0xaa
 Header: 190faa
 Nonce: 31ed26f90a072e6aee646232
 Ciphertext: 190faa2858c10b5ddd231c1f26819490
 521678603a050448d563c503b1fd890d
 02ead01d754f074ecb6f32da9b2f3859
 f380b4f47d4edd1e15f42f9a2d7ecfac
 99067e238321

 KID: 0x1ff
 CTR: 0xaa
 Header: 1a01ffaa
 Nonce: 31ed26f90a072e6aee646232
 Ciphertext: 1a01ffaa2858c10b5ddd231c1f268194
 90521678603a050448d563c503b1fd89
 0d02ead01d754f074ecb6f32da9b2f38
 59f380b4f47d4e3bf7040eb10ec25b81
 26b2ce7b1d9d31

Omara, et al. Expires 17 February 2022 [Page 28]

Internet-Draft SFrame August 2021

 KID: 0x1ff
 CTR: 0xaaaa
 Header: 2a01ffaaaa
 Nonce: 31ed26f90a072e6aee64c832
 Ciphertext: 2a01ffaaaad9bc6a258a07d210a814d5
 45eca70321c0e87498ada6e5c708b7ea
 d162ffcf4fbaba1eb82650590a87122b
 4d95fe36bd88b278812166d26e046ed0
 a530b7ee232ee0f2

 KID: 0xffffffffffffff
 CTR: 0xffffffffffffff
 Header: 7fffffffffffffffffffffffffffff
 Nonce: 31ed26f90af8d195119b9d67
 Ciphertext: 7fffffffffffffffffffffffffffffaf
 480d4779ce0c02b5137ee6a61e026c04
 ac999cb0c97319feceeb258d58df23bc
 e14979e5c67a431777b34498062e72f9
 39ca42ec84ffbc7b50eff923f515a2df
 760c

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.ietf-mls-architecture]
 Omara, E., Beurdouche, B., Rescorla, E., Inguva, S., Kwon,
 A., and A. Duric, "The Messaging Layer Security (MLS)

Omara, et al. Expires 17 February 2022 [Page 29]

Internet-Draft SFrame August 2021

 Architecture", Work in Progress, Internet-Draft, draft-
 ietf-mls-architecture-06, 8 March 2021,
 <https://www.ietf.org/archive/id/draft-ietf-mls-
 architecture-06.txt>.

 [I-D.ietf-mls-protocol]
 Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-
 Gordon, K., and R. Robert, "The Messaging Layer Security
 (MLS) Protocol", Work in Progress, Internet-Draft, draft-
 ietf-mls-protocol-11, 22 December 2020,
 <https://www.ietf.org/archive/id/draft-ietf-mls-protocol-
 11.txt>.

 [I-D.murillo-perc-lite]
 Murillo, S. G. and A. Gouaillard, "End to End Media
 Encryption Procedures", Work in Progress, Internet-Draft,
 draft-murillo-perc-lite-01, 12 May 2020,
 <https://www.ietf.org/archive/id/draft-murillo-perc-lite-
 01.txt>.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <https://www.rfc-editor.org/info/rfc3711>.

 [RFC8723] Jennings, C., Jones, P., Barnes, R., and A.B. Roach,
 "Double Encryption Procedures for the Secure Real-Time
 Transport Protocol (SRTP)", RFC 8723,
 DOI 10.17487/RFC8723, April 2020,
 <https://www.rfc-editor.org/info/rfc8723>.

 [TestVectors]
 "SFrame Test Vectors", 2021,
 <https://github.com/eomara/sframe/blob/master/test-
 vectors.json>.

Authors’ Addresses

 Emad Omara
 Apple

 Email: eomara@apple.com

 Justin Uberti
 Google

 Email: juberti@google.com

Omara, et al. Expires 17 February 2022 [Page 30]

Internet-Draft SFrame August 2021

 Alexandre GOUAILLARD
 CoSMo Software

 Email: Alex.GOUAILLARD@cosmosoftware.io

 Sergio Garcia Murillo
 CoSMo Software

 Email: sergio.garcia.murillo@cosmosoftware.io

Omara, et al. Expires 17 February 2022 [Page 31]

