
Network Working Group R. Miao
Internet-Draft H. Liu
Intended status: Experimental Alibaba Group
Expires: March 15, 2021 R. Pan
 J. Lee
 C. Kim
 Intel Corporation
 B. Gafni
 Y. Shpigelman
 Mellanox Technologies, Inc.
 September 11, 2020

 HPCC++: Enhanced High Precision Congestion Control
 draft-pan-tsvwg-hpccplus-02

Abstract

 Congestion control (CC) is the key to achieving ultra-low latency,
 high bandwidth and network stability in high-speed networks.
 However, the existing high-speed CC schemes have inherent limitations
 for reaching these goals.

 In this document, we describe HPCC++ (High Precision Congestion
 Control), a new high-speed CC mechanism which achieves the three
 goals simultaneously. HPCC++ leverages inband telemetry to obtain
 precise link load information and controls traffic precisely. By
 addressing challenges such as delayed inband telemetry information
 during congestion and overreaction to inband telemetry information,
 HPCC++ can quickly converge to utilize free bandwidth while avoiding
 congestion, and can maintain near-zero in-network queues for ultra-
 low latency. HPCC++ is also fair and easy to deploy in hardware,
 implementable with commodity NICs and switches.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Miao, et al. Expires March 15, 2021 [Page 1]

Internet-Draft HPCC++ September 2020

 This Internet-Draft will expire on March 15, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 4
 3. System Overview . 4
 4. HPCC++ Algorithm . 5
 4.1. Notations . 5
 4.2. Design Functions and Procedures 6
 5. Configuration Parameters 8
 6. Design Enhancement and Implementation 8
 6.1. HPCC++ Guidelines . 9
 6.2. Receiver-based HPCC 9
 7. Reference Implementations 10
 7.1. Inband telemetry padding at the network elements 10
 7.2. Congestion control at NICs 10
 8. IANA Considerations . 12
 9. Security Considerations 12
 10. Acknowledgments . 12
 11. Contributors . 12
 12. References . 12
 12.1. Normative References 12
 12.2. Informative References 13
 Authors’ Addresses . 13

1. Introduction

 The link speed in data center networks has grown from 1Gbps to
 100Gbps in the past decade, and this growth is continuing. Ultralow
 latency and high bandwidth, which are demanded by more and more
 applications, are two critical requirements in today’s and future
 high-speed networks.

Miao, et al. Expires March 15, 2021 [Page 2]

Internet-Draft HPCC++ September 2020

 Given that traditional software-based network stacks in hosts can no
 longer sustain the critical latency and bandwidth requirements
 [Zhu-SIGCOMM2015], offloading network stacks into hardware is an
 inevitable direction in high-speed networks. Large-scale networks
 with RDMA (remote direct memory access) often uses hardware-
 offloading solutions. In some cases, the RDMA networks still face
 fundamental challenges to reconcile low latency, high bandwidth
 utilization, and high stability.

 This document describes a new CC mechanism, HPCC++ (Enhanced High
 Precision Congestion Control), for large-scale, high-speed networks.
 The key idea behind HPCC++ is to leverage the precise link load
 information from inband telemetry to compute accurate flow rate
 updates. Unlike existing approaches that often require a large
 number of iterations to find the proper flow rates, HPCC++ requires
 only one rate update step in most cases. Using precise information
 from inband telemetry enables HPCC++ to address the limitations in
 current CC schemes. First, HPCC++ senders can quickly ramp up flow
 rates for high utilization and ramp down flow rates for congestion
 avoidance. Second, HPCC++ senders can quickly adjust the flow rates
 to keep each link’s output rate slightly lower than the link’s
 capacity, preventing queues from being built-up as well as preserving
 high link utilization. Finally, since sending rates are computed
 precisely based on direct measurements at switches, HPCC++ requires
 merely three independent parameters that are used to tune fairness
 and efficiency.

 The base form of HPCC++ is the original HPCC algorithm and its full
 description can be found in [SIGCOMM-HPCC]. While the original
 design lays the foundation for inband telemetry based precision
 congestion control, HPCC++ is an enhanced version which takes into
 account system constraints and aims to reduce the design overhead and
 further improves the performance. Section 6 describes these detailed
 proposed design enhancements and guidelines.

 HPCC++ proposes a new architecture for congestion control in large-
 scale, high-speed networks. On one hand, HPCC++ leverages the inband
 telemetry for congestion feedback, which offers more precise link
 load information for congestion avoidance than conventional signals
 such as ECN or RTT. This draft describes the architecture changes in
 switches and end-host to support inband telemetry and proves the
 efficiency in handling network congestion. On the other hand, HPCC++
 is generic to support a wide range of transport protocols such as
 TCP, UDP, iWARP, etc. It requires to have the window limit and
 congestion feedback through ACK self-clocking, which naturally
 conforms to the paradigm of TCP/iWARP design. However, HPCC++
 introduces a scheme to measure the total inflight bytes for more
 precise congestion control. To run in UDP, some modifications need

Miao, et al. Expires March 15, 2021 [Page 3]

Internet-Draft HPCC++ September 2020

 to be done to enforce the window limit and collect congestion
 feedback via probing packets, which is incremental. In addition,
 this new architecture should work for both datacenter and the WAN
 networks, if the inband telemetry is supported in network switches
 and end-host protocols.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. System Overview

 Figure 1 shows the end-to-end system that HPCC++ operates in. During
 the traverse of the packet from the sender to the receiver, each
 switch along the path inserts inband telemetry that reports the
 current state of the packet’s egress port, including timestamp (ts),
 queue length (qLen), transmitted bytes (txBytes), and the link
 bandwidth capacity (B), together with switch_ID and port_ID. When
 the receiver gets the packet, it may copy all the inband telemetry
 recorded from the network to the ACK message it sends back to the
 sender, and then the sender decides how to adjust its flow rate each
 time it receives an ACK with network load information.
 Alternatively, the receiver may calculate the flow rate based on the
 inband telemetry information and feedback the calculated rate back to
 the sender. The notification packets would include delayed ack
 information as well.

 Note that there also exist network nodes along the reverse
 (potentially uncongested) path that the RTCP feedback reports
 traverse. Those network nodes are not shown in the figure for sake
 of brevity.

 +---------+ pkt +-------+ pkt+tlm +-------+ pkt+tlm +----------+
 | Data |-------->| |-------->| |-------->| Data |
 | Sender |=========|Switch1|=========|Switch2|=========| Receiver |
 +---------+ Link-0 +-------+ Link-1 +-------+ Link-2 +----------+
 /|\ |
 | |
 +---+
 Notification Packets/ACKs

 Figure 1: System Overview (tlm=inband telemtry)

Miao, et al. Expires March 15, 2021 [Page 4]

Internet-Draft HPCC++ September 2020

 o Data sender: responsible for controlling inflight bytes. HPCC++
 is a window-based CC scheme that controls the number of inflight
 bytes. The inflight bytes mean the amount of data that have been
 sent, but not acknowledged at the sender yet. Controlling
 inflight bytes has an important advantage compared to controlling
 rates. In the absence of congestion, the inflight bytes and rate
 are interchangeable with equation inflight = rate * T where T is
 the base propagation RTT. The rate can be calculated locally or
 obtained from the notification packet. The sender may further use
 the data pacing mechanism in hardware to limit the rate
 accordingly.

 o Network nodes: responsible of inserting the inband telemetry
 information to the data packet. The inband telemetry information
 reports the current load of the packet’s egress port, including
 timestamp (ts), queue length (qLen), transmitted bytes (txBytes),
 and the link bandwidth capacity (B). Besides, the inband
 telemetry contains switch_ID and port_ID to identify a link.

 o Data receiver: responsible for either reflecting back the inband
 telemetry information in the data packet or calculating the proper
 flow rate based on network congestion information in inband
 telemetry and sending notification packets back to the sender.

4. HPCC++ Algorithm

 HPCC++ is a window-based congestion control algorithm. The key
 design choice of HPCC++ is to rely on network nodes to provide fine-
 grained load information, such as queue size and accumulated tx/rx
 traffic to compute precise flow rates. This has two major benefits:
 (i) HPCC++ can quickly converge to proper flow rates to highly
 utilize bandwidth while avoiding congestion; and (ii) HPCC++ can
 consistently maintain a close-to-zero queue for low latency.

 This section introduces the list of notations and describes the core
 congestion control algorithm.

4.1. Notations

 This section summarizes the list of variables and parameters used in
 the HPCC++ algorithm. Figure 3 also includes the default values for
 choosing the algorithm parameters either to represent a typical
 setting in practical applications or based on theoretical and
 simulation studies.

Miao, et al. Expires March 15, 2021 [Page 5]

Internet-Draft HPCC++ September 2020

 +--------------+---+
 | Notation | Variable Name |
 +--------------+---+
 | W_i | Window for flow i |
 | Wc_i | Reference window for flow i |
 | B_j | Bandwidth for Link j |
 | I_j | Estimated inflight bytes for Link j |
 | U_j | Normalized inflight bytes for Link j |
 | qlen | Telemetry info: link j queue length |
 | txRate | Telemetry info: link j output rate |
 | ts | Telemetry info: timestamp |
 | txBytes | Telemetry info: link j total transmitted bytes |
 | | associated with timestamp ts |
 +--------------+---+

 Figure 2: List of variables.

 +--------------+----------------------------------+----------------+
 | Notation | Parameter Name | Default Value |
 +--------------+----------------------------------+----------------+
 | T | Known baseline RTT | 5us |
 | eta | Target link utilization | 95% |
 | maxStage | Maximum stages for additive | |
 | | increases | 5 |
 | N | Maximum number of flows | ... |
 | W_ai | Additive increase amount | ... |
 +--------------+----------------------------------+----------------+

 Figure 3: List of algorithm parameters and their default values.

4.2. Design Functions and Procedures

 The HPCC++ algorithm can be outlined as below:

 1: Function MeasureInflight(ack)
 2: u = 0;
 3: for each link i on the path do
 4: ack.L[i].txBytes-L[i].txBytes
 txRate = ----------------------------- ;
 ack.L[i].ts-L[i].ts
 5: min(ack.L[i].qlen,L[i].qlen) txRate
 u’ = ----------------------------- + ---------- ;
 ack.L[i].B*T ack.L[i].B
 6: if u’ > u then
 7: u = u’; tau = ack.L[i].ts - L[i].ts;
 8: tau = min(tau, T);
 9: U = (1 - tau/T)*U + tau/T*u;
 10: return U;

Miao, et al. Expires March 15, 2021 [Page 6]

Internet-Draft HPCC++ September 2020

 11: Function ComputeWind(U, updateWc)
 12: if U >= eta or incStage >= maxStagee then
 13: Wc
 W = ----- + W_ai;
 U/eta
 14: if updateWc then
 15: incStagee = 0; Wc = W ;
 16: else
 17: W = Wc + W_ai ;
 18: if updateWc then
 19: incStage++; Wc = W ;
 20: return W

 21: Procedure NewAck(ack)
 22: if ack.seq > lastUpdateSeq then
 23: W = ComputeWind(MeasureInflight(ack), True);
 24: lastUpdateSeq = snd_nxt;
 25: else
 26: W = ComputeWind(MeasureInflight(ack), False);
 27: R = W/T; L = ack.L;

 The above illustrates the overall process of CC at the sender side
 for a single flow. Each newly received ACK message triggers the
 procedure NewACK at Line 21. At Line 22, the variable lastUpdateSeq
 is used to remember the first packet sent with a new W c , and the
 sequence number in the incoming ACK should be larger than
 lastUpdateSeq to trigger a new sync betweenW c andW (Line 14-15 and
 18-19). The sender also remembers the pacing rate and current inband
 telemetry information at Line 27. The sender computes a new window
 size W at Line 23 or Line 26, depending on whether to update W c ,
 with function MeasureInflight and ComputeWind. Function
 MeasureInflight estimates normalized inflight bytes with Eqn (2) at
 Line 5. First, it computes txRate of each link from the current and
 last accumulated transferred bytes txBytes and timestamp ts (Line 4).
 It also uses the minimum of the current and last qlen to filter out
 noises in qlen (Line 5). The loop from Line 3 to 7 selects maxi(Ui)
 in Eqn. (3). Instead of directly using maxi(Ui), we use an EWMA
 (Exponentially Weighted Moving Average) to filter the noises from
 timer inaccuracy and transient queues. (Line 9). Function
 ComputeWind combines multiplicative increase/ decrease (MI/MD) and
 additive increase (AI) to balance the reaction speed and fairness.
 If a sender finds it should increase the window size, it first tries
 AI for maxStage times with the stepWAI (Line 17). If it still finds
 room to increase after maxStage times of AI or the normalized
 inflight bytes is above, it calls Eqn (4) once to quickly ramp up or
 ramp down the window size (Line 12-13).

Miao, et al. Expires March 15, 2021 [Page 7]

Internet-Draft HPCC++ September 2020

5. Configuration Parameters

 HPCC++ has three easy-to-set parameters: eta, maxStagee, and W_ai.
 eta controls a simple tradeoff between utilization and transient
 queue length (due to the temporary collision of packets caused by
 their random arrivals, so we set it to 95% by default, which only
 loses 5% bandwidth but achieves almost zero queue. maxStage controls
 a simple tradeoff between steady state stability and the speed to
 reclaim free bandwidth. We find maxStage = 5 is conservatively large
 for stability, while the speed of reclaiming free bandwidth is still
 much faster than traditional additive increase, especially in high
 bandwidth networks. W_ai controls the tradeoff between the maximum
 number of concurrent flows on a link that can sustain near-zero
 queues and the speed of convergence to fairness. Note that none of
 the three parameters are reliability-critical.

 HPCC++’s design brings advantages to short-lived flows, by allowing
 flows starting at line-rate and the separation of utilization
 convergence and fairness convergence. HPCC++ achieves fast
 utilization convergence to mitigate congestion in almost one round-
 trip time, while allows flows to gradually converge to fairness.
 This design feature of HPCC++ is especially helpful for the workload
 of datacenter applications, where flows are usually short and
 latency-sensitive. Normally we set a very small W_ai to support a
 large number of concurrent flows on a link, because slower fairness
 is not critical. A rule of thumb is to set W_ai = W_init*(1-eta) / N
 where N is the expected or receiver reported maximum number of
 concurrent flows on a link. The intuition is that the total additive
 increase every round (N*W_ai) should not exceed the bandwidth
 headroom, and thus no queue forms. Even if the actual number of
 concurrent flows on a link exceeds N, the CC is still stable and
 achieves full utilization, but just cannot maintain zero queues.

6. Design Enhancement and Implementation

 The basic design of HPCC++, i.e. HPCC, as described above is to add
 inband telemetry information into every data packet to response
 congestion as soon as the very first packet observing the network
 congestion. This is especially helpful to reduce the risk of severe
 congestion in incast scenario at the first round-trip time. In
 addition, original HPCC’s algorithm introduction of Wc is for the
 purpose of solving the over-reaction issue from using this per-packet
 response.

 Alternatively, the inband telemetry information needs not to be added
 to every data packet to reduce the overhead. Switches can generate
 inband telemetry less frequently, e.g., once per RTT or upon
 congestion happening.

Miao, et al. Expires March 15, 2021 [Page 8]

Internet-Draft HPCC++ September 2020

6.1. HPCC++ Guidelines

 To ensure network stability, HPCC++ establishes a few guidelines for
 different implementations:

 o The algorithm should commit the window/rate update at most once
 per round-trip time, similar to the procedure of updating Wc.

 o To support different workloads and to properly set W_ai, HPCC++
 allows the option to incorporate mechanisms to speed up the
 fairness convergence.

 o The switch should capture inband telemetry information that
 includes link load (txBytes, qlen, ts) and link spec (switch_ID,
 port_ID, B) at the egress port. Note, each switch should record
 all those information at the single snapshot to achieve a precise
 link load estimate.

 o HPCC++ can use a probe packet to query the inband telemetry
 information. Thereby, the probe packets should take the same
 routing path and QoS queueing with the data packets.

 As long the above guidelines are met, this document does not mandate
 a particular inband telemetry header format or encapsulation, which
 are orthogonal to the HPCC++ algorithms described in this document.
 The algorithm can be implemented with a choice of inband telemetry
 protocols, such as in-band network telemetry [P4-INT], IOAM
 [I-D.ietf-ippm-ioam-data], IFA [I-D.ietf-kumar-ippm-ifa] and others.

6.2. Receiver-based HPCC

 Note that the window/rate calculation can be implemented at either
 the data sender or the data receiver. If the ACK packets already
 exist for reliability purpose, the inband telemetry information can
 be echoed back to the sender via ACK self-clocking. Not all ACK
 packets need to carry the inband telemetry information. To reduce
 the Packet Per Second (PPS) overhead, the receiver may examine the
 inband telemetry information and adopt the technique of delayed ACKs
 that only sends out an ACK for a few of received packets. In order
 to reduce PPS even further, one may implement the algorithm at the
 receiver and feedback the calculated window in the ACK packet once
 every RTT.

 The receiver-based algorithm, Rx-HPCC, is based on int.L, which is
 the inband telemetry information in the packet header. The receiver
 performs the same functions except using int.L instead of ack.L. The
 new function NewINT(int.L) is to replace NewACK(int.L)

Miao, et al. Expires March 15, 2021 [Page 9]

Internet-Draft HPCC++ September 2020

 28: Procedure NewINT(int.L)
 29: if now > (lastUpdateTime + T) then
 30: W = ComputeWind(MeasureInflight(int), True);
 31: send_ack(W)
 32: lastUpdateTime = now;
 33: else
 34: W = ComputeWind(MeasureInflight(int), False);

 Here, since the receiver does not know the starting sequence number
 of a burst, it simply records the lastUpdateTime. If time T has
 passed since lastUpdateTime, the algorithm would recalcuate Wc as in
 Line 30 and send out the ACK packet which would include W
 information. Otherwise, it would just update W information locally.
 This would reduce the amount of traffic that needs to be feedback to
 the data sender.

 Note that the receiver can also measure the number of outstanding
 flows, N, if the last hop is the congestion point and use this
 information to dynamically adjust W_ai to achieve better fairness.
 The improvement would allow flows to quickly converge to fairness
 without causing large swings under heavy load.

7. Reference Implementations

 A prototype of HPCC++ in NICs is implemented to realize the CC
 algorithm and switches to realize the inband telemetry feature.

7.1. Inband telemetry padding at the network elements

 HPCC++ only relies on packets to share information across senders,
 receivers, and switches. HPCC++ is open to a variety of inband
 telemetry format standards. Inside a data center, the path length is
 often no more than 5 hops. The overhead of the inband telemetry
 padding for HPCC++ is considered to be low.

7.2. Congestion control at NICs

 (Figure 4) shows HPCC++ implementation on a NIC. The NIC provides an
 HPCC++ module that resides on the data path of the NIC, HPCC++
 modules realize both sender and receiver roles.

Miao, et al. Expires March 15, 2021 [Page 10]

Internet-Draft HPCC++ September 2020

 +--+
 | +---------+ window update +-----------+ PktSend +-----------+ |
 | | |-------------->| Scheduler |-------> |Tx pipeline|---+->
		rate update +-----------+ +-----------+	
	HPCC++	^	
		inband telemetry	
	module		
		+-----+-----+	
		<-----------------------------------	Rx pipeline
+---------+ telemetry response event +-----------+			
 +--+

 Figure 4: Overview of NIC Implementation

 1. Sender side flow

 The HPCC++ module running the HPCC CC algorithm in the sender side
 for every flow in the NIC. Flow can be defined by some transport
 parameters including 5-tuples, destination QP (queue pair), etc. It
 receives inband telemetry response events per flow which are
 generated from the RX pipeline, adjusts the sending window and rate,
 and update the scheduler on the rate and window of the flow.

 The scheduler contains a pacing mechanism that determine the flow
 rate by the value it got from the algorithm. It also maintains the
 current sending window size for active flows. If the pacing
 mechanism and the flow’s sending window permits, the scheduler
 invokes for the flow a PktSend command to TX pipeline.

 The TX pipeline implements packet processing. Once it receives the
 PktSend event with flow ID from the scheduler, it generates the
 corresponding packet and delivers to the Network. If a sent packet
 should collect telemetry on its way the TX pipeline may add
 indications/headers that triggers the network elements to add
 telemetry data according to the inband telemetry protocol in use.
 The telemetry can be collected by the data packet or by dedicated
 prob packets generated in the TX pipeline.

 The RX pipe parses the incoming packets from the network and
 identifies whether telemetry is embedded in the parsed packet. On
 receiving a telemetry response packet, the RX pipeline extracts the
 network status from the packet and passes it to the HPCC++ module for
 processing. A telemetry response packet can be an ACK containing
 inband telemetry, or a dedicated telemetry response prob packet.

 2. Receiver side flow

Miao, et al. Expires March 15, 2021 [Page 11]

Internet-Draft HPCC++ September 2020

 On receiving a packet containing inband telemetry, the RX pipeline
 extracts the network status, and the flow parameters from the packet
 and passes it to the TX pipeline. The packet can be a data packet
 containing inband telemetry, or a dedicated telemetry request prob
 packet. The Tx pipeline may process and edit the telemetry data, and
 then sends back to the sender the data using either an ACK packet of
 the flow or a dedicated telemetry response packet.

8. IANA Considerations

 This document makes no request of IANA.

9. Security Considerations

 The rate adaptation mechanism in HPCC++ relies on feedback from the
 network. As such, it is vulnerable to attacks where feedback
 messages are hijacked, replaced, or intentionally injected with
 misleading information resulting in denial of service, similar to
 those that can affect TCP. It is therefore RECOMMENDED that the
 notification feedback message is at least integrity checked. In
 addition, [I-D.ietf-avtcore-cc-feedback-message] discusses the
 potential risk of a receiver providing misleading congestion feedback
 information and the mechanisms for mitigating such risks.

10. Acknowledgments

 The authors would like to thank ... for their valuable review
 comments and helpful input to this specification.

11. Contributors

 The following individuals have contributed to the implementation and
 evaluation of the proposed scheme, and therefore have helped to
 validate and substantially improve this specification: Pedro Y.
 Segura, Roberto P. Cebrian, Robert Southworth and Malek Musleh.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Miao, et al. Expires March 15, 2021 [Page 12]

Internet-Draft HPCC++ September 2020

12.2. Informative References

 [I-D.ietf-avtcore-cc-feedback-message]
 Sarker, Z., Perkins, C., Singh, V., and M. Ramalho, "RTP
 Control Protocol (RTCP) Feedback for Congestion Control",
 draft-ietf-avtcore-cc-feedback-message-08 (work in
 progress), September 2020.

 [I-D.ietf-ippm-ioam-data]
 "Data Fields for In-situ OAM", March 2020,
 <https://tools.ietf.org/html/draft-ietf-ippm-ioam-data-
 09>.

 [I-D.ietf-kumar-ippm-ifa]
 "Inband Flow Analyzer", February 2019,
 <https://tools.ietf.org/html/draft-kumar-ippm-ifa-01>.

 [P4-INT] "In-band Network Telemetry (INT) Dataplane Specification,
 v2.0", February 2020, <https://github.com/p4lang/p4-
 applications/blob/master/docs/INT_v2_0.pdf>.

 [SIGCOMM-HPCC]
 Li, Y., Miao, R., Liu, H., Zhuang, Y., Fei Feng, F., Tang,
 L., Cao, Z., Zhang, M., Kelly, F., Alizadeh, M., and M.
 Yu, "HPCC: High Precision Congestion Control", ACM
 SIGCOMM Beijing, China, August 2019.

 [Zhu-SIGCOMM2015]
 Zhu, Y., Eran, H., Firestone, D., Guo, C., Lipshteyn, M.,
 Liron, Y., Padhye, J., Raindel, S., Yahia, M., and M.
 Zhang, "Congestion Control for Large-Scale RDMA
 Deployments", ACM SIGCOMM London, United Kingdom, August
 2015.

Authors’ Addresses

 Rui Miao
 Alibaba Group
 525 Almanor Ave, 4th Floor
 Sunnyvale, CA 94085
 USA

 Email: miao.rui@alibaba-inc.com

Miao, et al. Expires March 15, 2021 [Page 13]

Internet-Draft HPCC++ September 2020

 Hongqiang H. Liu
 Alibaba Group
 108th Ave NE, Suite 800
 Bellevue, WA 98004
 USA

 Email: hongqiang.liu@alibaba-inc.com

 Rong Pan
 Intel, Corp.
 2200 Mission College Blvd.
 Santa Clara, CA 95054
 USA

 Email: rong.pan@intel.com

 Jeongkeun Lee
 Intel, Corp.
 4750 Patrick Henry Dr.
 Santa Clara, CA 95054
 USA

 Email: jk.lee@intel.com

 Changhoon Kim
 Intel Corporation
 4750 Patrick Henry Dr.
 Santa Clara, CA 95054
 USA

 Email: chang.kim@intel.com

 Barak Gafni
 Mellanox Technologies, Inc.
 350 Oakmead Parkway, Suite 100
 Sunnyvale, CA 94085
 USA

 Email: gbarak@mellanox.com

Miao, et al. Expires March 15, 2021 [Page 14]

Internet-Draft HPCC++ September 2020

 Yuval Shpigelman
 Mellanox Technologies, Inc.
 Haim Hazaz 3A
 Netanya 4247417
 Israel

 Email: yuvals@nvidia.com

Miao, et al. Expires March 15, 2021 [Page 15]

