Authorization of AKE/enrolment

draft-selander-ace-ake-authz-02

Göran Selander, John Mattsson, Ericsson
Michael Richardson, SSW
Mališa Vučinić, INRIA
Aurelio Schellenbaum, ZHAW

ACE, IETF 109, November 2020
Device join example

- Device joining network
 - Authenticate
 - Authorize
 - Enrol operational certificate

- Potential inefficiencies
 - Sequential processing
 - Same data in different phases
 - Data sent over constrained link which can be accessible over unconstrained link

![Diagram of device join example](Image)
2.04 payload = CBOR cert. / ref.

message_1 (AD_1 = Voucher info)

message_2 (AD_2 = Voucher)

message_3

POST /sen

core-oscore-edhoc

cose-cbor-cert-compress

AUTHORIZATION

Voucher Request

Voucher Response

ACE-AKE-AUTHZ

Authorization Server

Device

constrained link

message_1 (AD_1 = Voucher info)

message_2 (AD_2 = Voucher)

message_3

POST /sen

payload = CBOR CSR

Certificate Enrollment

lake-edhoc

AKE

Optimization

ACE-EST-COAP-OSCORE

AUTHORIZATION

Voucher Request

Voucher Response

ACE-AKE-AUTHZ

Authorization Server

Device

constrained link

message_1 (AD_1 = Voucher info)

message_2 (AD_2 = Voucher)

message_3

POST /sen

payload = CBOR CSR

Certificate Enrollment

lake-edhoc

AKE

Optimization

ACE-EST-COAP-OSCORE

AUTHORIZATION

Voucher Request

Voucher Response

ACE-AKE-AUTHZ

Authorization Server
This draft

Lightweight authentication and authorization
- Makes use of Auxiliary Data (AD) in EDHOC (draft-ietf-lake-edhoc)
- Reuse of data: Identifiers etc. sent in EDHOC also used for authorization
- Lower overhead: Transport credentials over unconstrained instead of constrained network
Protocol sketch

Assumptions

U ↔ V
- No prior trust relation
- U provide location of W to V

V ↔ W
- Web based trust
 - Implicit trust anchors

U ↔ W
- U trust g^W (PK of W)
- W can look up Cert_PK_U using ID_U

EDHOC

Encap(g^W)

Authenticator (V)

Authz. V

Voucher = MAC(g^X | ID_U | PK_V)

ID_CRED_R = PK_V

Cert_PK_U

Decap(g^X,W)

E.g., TLS with certs

ECIES, e.g., HPKE

Device (U)

constrained link

Authenticator (V)

unconstrained link

Authorization Server (W)

ID_CRED_I = []

Authz. U

Cert DB

g^X, AEAD(ID_U)

ID_U

Cert_PK_U

Loc_W

PK_V, PoP

EDHOC

ACE mapping

Assumptions

RS \leftrightarrow C
- No prior trust relation
- RS provide location of AS to C

C \leftrightarrow AS
- Web based trust
 - Implicit trust anchors

RS \leftrightarrow AS
- RS know g^W (PK of AS)
- AS can look up Cert_PK_RS using ID_RS

Device (RS) \leftarrow constrained link \rightarrow Authenticator (C) \leftarrow unconstrained link \rightarrow Authorization Server (AS)

- POST /Token
 - ID_RS
 - Cert_PK_RS

- AD1 = AS Request
 - Creation Hints

- AD_2 = Access Token
 - Access Into
 - Authz. C
 - Authz. RS
Content of draft (work in progress)

- 2 new Auxiliary Data types for EDHOC
 - $\text{AD}_1 = (T0: \text{int}, \text{LOC}_W: \text{tstr}, \text{CC}: \text{bstr}, \text{CIPHERTEXT}_RQ: \text{bstr})$
 - $\text{AD}_2 = (T1: \text{int}, \text{Voucher}: \text{bstr})$

- Ultra-constrained voucher, AEAD with empty plain text of
 - $\text{external_aad_array} = [\text{V_TYPE}: \text{int}, \text{PK}_V: \text{bstr}, \text{G}_X: \text{bstr}, \text{CC}: \text{bstr}, \text{ID}_U: \text{bstr}]$

- Voucher Request/Response
 - $\text{VREQ} = [\text{G}_X: \text{bstr}, \text{CC}: \text{bstr}, \text{CIPHERTEXT}_RQ: \text{bstr}]$
 - $\text{VRES} = [\text{G}_X: \text{bstr}, \text{CC}: \text{bstr}, \text{CIPHERTEXT}_RQ: \text{bstr}]$
 - Independent of transport

- ACE mapping

- Security processing
Next steps

— Specify crypto context
— Details of ECIES
— Submit -03

— Reviews?