
Kai Gao

Nov 10, 2020@ALTO Weekly Meeting



• HTTP/2 (RFC 7540) and HTTP/3 (RFC-to-be) improve the performance of HTTP
• Avoid slow-start of multiple connections
• Avoid head-of-line blocking of request piplining (in HTTP/1.1)
• Allow concurrent transmission (HTTP/3)
• Native support for server push and stream multiplexing

• ALTO extensions have workarounds that are unnecessary and inefficient when using 
HTTP/2 and above

• Path vector
• use multipart to encode two resources in the same response

• Incremental update
• allow one server to provide updates of many resources (to avoid creating too many connections)
• use SSE to multiplex the updates



• Transport mechanisms in the current 
ALTO framework

• Proposed alternative transport 

mechanism on top of HTTP/2 and above

HTTP/1.x

ALTO

Path Vector Incremental Updates

Multipart SSE

HTTP/2+

ALTO Path Vector Incremental Updates



• Workarounds can be replaced by standard features of HTTP/2 and above
• Server push

• Push (temporary) dependent data (e.g., path vector) as different streams
• Push incremental updates of each resource as a single stream

• Stream multiplexing
• Native and more efficient support for event multiplexing 

• Rest stream
• Subscription of incremental updates can be cancelled by the client using the rest stream frame

• Already supported by many mainstream programming languages (C/C++, Java, Python, 
Go, etc.) and network development frameworks (nginx, Apache, etc.)



• One consideration of using multipart 

message is to avoid security risks when it 

takes a long time for the client to query 

the property map part

• With HTTP/2+, an ALTO server can 

actively push the property part to the 

client, eliminating the need of a multipart 

message

ALTO client ALTO server

HTTP/1.x
w/o multipart

HTTP/1.x
w/ multipart
or
HTTP/2
w/ Server Push



   HTTP/1.1 200 OK
   Content-Length: [TBD]
   Content-Type: multipart/related; boundary=example-1;
                 type=application/alto-costmap+json

   --example-1
   Resource-Id: costmap
   Content-Type: application/alto-costmap+json

   {
     "meta": { “vtag": {
         "resource-id": "filtered-cost-map-pv.costmap",
         "tag": "d827f484cb66ce6df6b5077cb8562b0a"
       },
       "dependent-vtags": [{
           "resource-id": "my-default-networkmap",
           "tag": "75ed013b3cb58f896e839582504f6228"
       }],
       "cost-type": { "cost-mode": "array", "cost-metric": "ane-path" }
     },
     "cost-map": {
       "PID1": { "PID2": ["ANE1"] }
     }
   }
   --example-1
   Resource-Id: propmap
   Content-Type: application/alto-propmap+json

   {
     "meta": {
       "dependent-vtags": [{
           "resource-id": "filtered-cost-map-pv.costmap",
           "tag": "d827f484cb66ce6df6b5077cb8562b0a"
       }]
     },
     "property-map": {
       ".ane:ANE1": { "max-reservable-bandwidth": 100000000 }
     }
   }

// SETTINGS frame
...
// PUSH_PROMISE frame
:method: GET
:path: filtered-cost-map-pv.propmap
// promised_stream_id=2

// HEADER frame
:status: 200
content-type: application/alto-costmap+json
content-length: 46

// DATA frame
{
     "meta": { “vtag": {
         "resource-id": "filtered-cost-map-pv.costmap",
         "tag": "d827f484cb66ce6df6b5077cb8562b0a"
       },
       "dependent-vtags": [{
           "resource-id": "my-default-networkmap",
           "tag": "75ed013b3cb58f896e839582504f6228"
       }],
       "cost-type": { "cost-mode": "array", "cost-metric": "ane-path" }
     },
     "cost-map": {
       "PID1": { "PID2": ["ANE1"] }
     }
   }

// HEADER frame
:status: 200
content-type: application/alto-propmap+json
expires: Thu, 19 Nov 2020 06:39:22 GMT

// DATA frame
{
     "meta": {
       "dependent-vtags": [{
           "resource-id": "filtered-cost-map-pv.costmap",
           "tag": "d827f484cb66ce6df6b5077cb8562b0a"
       }]
     },
     "property-map": {
       ".ane:ANE1": { "max-reservable-bandwidth": 100000000 }
     }
   }



• Define a unified transport mechanism for ALTO objects over HTTP/2 and HTTP/3
• Specify unified naming and dependency indication of potentially dynamic resources 
• The current design is to reuse the idea of stream-id as in the incremental update extension

• Backward compatability
• Specify an extension to allow clients and servers to negotiate the transport mechanism
• The current design is to add a new cabability to the IRD, and clients must explicitly specify the 

new transport mechanism



• Security and privacy concerns introduced by HTTP/2 and above need to be investigated
• Potential future capabilities

• Transaction capability: The values/updates of dependent resources always belong to the same 
consistent snapshot.



• Who will work on this extension
• Kai
• Other people are more than welcome to contribute!

• Milestones
• A new IETF RFC
• An initial version before IETF 110


