Layer Independent Generic Fragmentation/ESP

draft-zzhang-tsvwg-generic-transport-functions

Jeffrey Zhang, Ron Bonica, Kireeti Kompella
Juniper Networks
IETF 109
Observations

- With EVPN-MPLS, when a packet received from CE is larger than the underlay path MTU, there is no way to get it through the underlay
 - A workaround is MPLS (service label) over IP – impose service label, encapsulate the packet in IPv4/v6, fragment it, send across, reassemble, decapsulate IP, and then identify the Bridge Domain with the service label
 - MPLS is not used for transport at all
 - Large IPv6 overhead
 - PW/VPLS uses Control Word’s sequence number for fragmentation/reassembly – RFC 4623 – though not applicable for EVPN
 - EVPN either does not use CW or uses all-0 CW
 - PW/VPLS fragmentation/reassembly is done in PW context, which EVPN does not have
- IPv6 Fragmentation can be viewed as independent of IPv6
 - As long as context for Identification field in the frag header is available
 - (source, destination) address in case of IP
 - Is “destination” really needed?
Proposal

• Support independent fragmentation/reassembly function in a shim layer

• In the EVPN-MPLS example:
 • Ingress PE imposes service labels, then fragment the packet w/o IP encapsulation
 • A Generic Fragmentation Header (GFH) is prepended, with Next Header value set to “MPLS” to indicate MPLS is the payload
 • Compared to IPv6 Frag Header, GFH has additional information about the source
 • Ingress PE imposes a GFH label (with semantics “GFH follows”), imposes transport labels and send traffic
 • The GFH label could be individually advertised by the egress PEs or a well-known (but not special) label agreed by all routers for this purpose
 • Egress PE sees the GFH label, reassembles the packet, and then hands to MPLS for further handling based on the service labels
 • Because “next header” is “MPLS”
Fragmentation Header

| Next Header | Reserved | Fragment Offset | Res | M |

IPv6 Fragmentation Header

| 0 0 0 0 | Next Header |Hdr Len| Fragment Offset | R | S | M |

Generic Fragmentation Header
Generic Fragmentation Header

- 0000 nibble: Prevent ECMP hashing from mistaking as IP packet
- Hdr Len: Header length in 8-octet unit
- Identification field in GFH is an arbitrarily sized free-form field
 - If the outer encap header can identify the source, the Identification field can be a simple 32-bit number as in IPv6 Fragmentation header
 - Otherwise the field can additionally encode an IPv4/IPv6 address or any opaque number that can identify the source within the domain where the fragmentation/reassembly happens
 - In case of MPLS transport, the GFH label could also carry additional semantics like identifying the source (e.g., the egress PE could advertise different GFH labels for different ingress PEs)
- S-bit: if set, source identification is embedded in the Identification field
 - Otherwise, source information from outer encap must be used together with Identification field
 - Outer MPLS label, BIER ingress BFR-ID, or Ethernet source mac address
Motivations

• Solve the EVPN-MPLS fragmentation problem w/o incurring IP overhead or requiring IP transportation
• Support fragmentation function (and possibly other functions like ESP) without IP for possible other use cases
 • In theory, if an Ethertype is assigned for GFH, this could be used to fragment Ethernet frames w/o involving IP/MPLS at all.
 • BIER encapsulation has a protocol field that can specify payload type like GFH
• The generic solution works for all layers – MPLS/BIER/Ethernet
 • Can be used for PW/VPLS as well
Next Steps

• Seeking comments
 • Presentations/discussions in BESS/MPLS/BIER/PAL/TSV WGs
• Finding a home – TSVWG/INTAREA WG/?