Supporting BIER in non-MPLS IPv6 Networks

Sandy Zhang, Jeffrey Zhang
IJsbrand Wijnands, Hooman Bidgoli

IETF 109
IPv6 is Nothing Special to BIER

• Existing procedures defined for IPv4 non-MPLS networks apply to IPv6 with no need for any changes or enhancements
 • BIER header follows L2/tunnel header as L2/tunnel payload
 • Do need a new “next header” type defined for BIER in case of native IPv4/v6 tunnel

• IPv4/IPv6 tunneling/encap, if used, is just a transport means to BIER
 • Just like any other means, e.g. MPLS/GRE/whatever
 • Between BFRs not directly connected
 • BIER header is the beginning part of IP payload
 • IP encapsulation not needed between directly connected BFRs
 • IPv4/IPv6 and BIER are independent of each other
BIERin6

• draft-zhang-bier-bierin6 reflects the concepts in previous slide
• IPv6 encapsulation needed only between BFRs not directly connected
 • BIER header follows L2 header directly between directly connected BFRs
• It does *optionally* use IPv6 encapsulation even between directly connected BFRs
 • To allow certain platforms that does not yet support BIER Ethertype
 • To allow software-based BIER forwarding in certain deployment scenarios
• Purposes of this draft:
 • Specify the above *optional* feature
 • Explain how existing BIER procedures can work for IPv6 networks
BIERV6

- draft-xie-bier-ipv6-encapsulation
- BIER header is encoded in IPv6 Destination Options Header (DOH)
 - BFIR->BFER IPv6 encapsulation end-to-end
 - SRv6-style handling, with special overlay (MVPN/EVPN) procedures
- WG requested to have a requirements draft first
 - To justify this additional solution
 - Multiple solutions allowed *if there are significant advantages*
Requirements for Supporting BIER in IPv6

- draft-ietf-bier-ipv6-requirements

- Mandatory Requirements
 - Basically, support BIER architecture

- Optional Requirements
 - Fragmentation
 - IPsec ESP

- *Nothing IPv6 specific*
BIERin6 Satisfies All Listed Requirements

• Optional fragmentation/ESP requirements can be met by one of two methods

1. IPv6 encapsulation with fragmentation/ESP, then treated as BIER payload
 • L2/tunnel header + BIER header + IPv6 header
 • IPv6 encapsulation and BIER are independent of each other

2. Generic fragmentation/ESP (no IP encapsulation), then treated as BIER payload
 • L2/tunnel header + BIER header + Generic fragmentation/ESP header
 • No IP encapsulation and its overhead
 • draft-zzhang-.tsvwg-generic-transport-functions
 • Generically applicable to MPLS/BIER or any layer (even Ethernet if IEEE so desires)
BIERv6 Not Needed

• BIERin6, which is consistent with existing IPv4 solution, satisfies all requirements
 • No IPv6 overhead with BIERin6
 • Saves minimum 40 bytes compared to BIERv6
 • Use that 40 bytes for BitString – accommodates 320 more BFERs
• No need for BIERv6 as an additional solution
 • IPv6 encapsulation overhead with no obvious benefits
 • Why bother with BFIR->BFER IPv6 encapsulation
 • Complexities with handling BIER header encoding in DOH
 • Discussed separately
 • SRv6-style handling not needed but leads to complexities (e.g. MVPN procedures)
 • Hop-by-hop BIER forwarding does not need SRv6
 • BFIR/ BFER do not need SRv6 based network programming
Suggested Next Steps

• Adopt BIERin6 as WG document
• Discuss BIERv6 further