Considerations for Benchmarking
Network Performance in
Containerized Infrastructures

draft-dcn-bmwg-containerized-infra-05

KJ Sun, Hyunsik Yang, Jangwon Lee,
Nguyen Quang Huy, Younghan Kim

Internet Infrastructure System Technology Research Center(IISTRC)

About draft

 Describe differences and additional considerations for benchmarking
containerized infrastructure compared with VM-based infrastructure
* Network models
» Kernel space model
« User space model — vswitch model, device pass-through model

« Benchmarking scenarios
+ BMP2VMP
« VMP2VMP

 Resource considerations
- NUMA
« Huge page

Update from -02 to

« Adding description in Chapter 3.3

o Hugepage: When using Cent OS or RedHat OS in the VM-based
infrastructure, Hugepage should be set to at least 1G byte.
containerized infrastructure, container is isolated in the
application level so that administrators can set Hugepage more
granular level(e.g 2M, 4M, ...). In addition, since the increase of
the Hugepage can affect the Translation Lookaside Buffer (TLB) miss,
the value of the Hugepage should be taken into account in the
performance measurement. Moreover, benchmarking results may vary
according to Hugepage set value of kernel space model and user space
model in the containerized infrastructure so that Hugepage values
should be considered when we configure test environment.

In the

o NUMA: NUMA technology can be used both in the VM-based and
containerized infrastructure. However, the containerized
infrastructure provides more variable options than the VM-based
infrastructure such as kernel memory, user memory, and CPU setting.
Instantiation of C-VNFs is somewhat non-deterministic and apparently
NUMA-Node agnostic, which is one way of saying that performance will
likely vary whenever this instantiation is performed. So, when we
use NUMA in the containerized infrastructure, repeated instantiation
and testing to quantify the performance variation is required.

o RX/TX Multiple-Queue: RX/TX Multiple-Queue technology[Multique],
which enables packet sending/receiving processing to scale with
number of available vcpus of guest VM, may be used to enhance network
performance in the VM-based infrastructure. However, RX/TX Multiple-
Queue technology is not supported in the containerized infrastructure
yet.

-03

o Hugepage

The huge page is that configuring a large page size of memory to
reduce Translation Lookaside Buffer (TLB) miss rate and increase the
application performance. This increases the performance of logical/
virtual to physical address lookups performed by a CPU's memory
management unit, and generally overall system performance. When
using Cent OS or RedHat OS in the VM-based infrastructure, the huge
page should be set to at least 1G byte. In the VM-based
infrastructure, the host 0S and the hypervisor can configure a huge
page depending on the guest OS. For example, guest VMs with the
Linux OS requires to set huge pages at least 1G bytes. Even though
it is a huge size, since this memory page is for not only its running
application but also guest OS operation processes, actual memory
pages for application is smaller.

In the containerized infrastructure, the container is isolated in the
application level and administrators can set huge pages more granular
level (e.g. Kubernetes allows to use of 512M bytes huge pages for
the container as default values). Moreover, this page is dedicated
to the application but another process so application use page more
efficient way. Therefore, even if the page size is smaller than the
VM, the effect of the huge page is large, which leads to the
utilization of physical memory and the increasing number of functions
in the host.

o NUMA

NUMA technology can be used both in the VM-based and containerized
infrastructure. Using NUMA, performance will be increasing not CPU
and memory but also network since that network interface connected
PCIe slot of specific NUMA node have locality. Using NUMA, it
requires a strong understanding of VNF's memory requirements. If VNF
uses more memory than a single NUMA node contains, the overhead will
be occurred due to being spilled to another NUMA node.

In the VM-based infrastructure, the hypervisor can perform extracting
NUMA topology and schedules VM workloads. In containerized
infrastructure, however, it is more difficult to expose the NUMA
topology to the container and currently, it is hard to guarantee the
locality of memory when the container is deployed to host that has
multiple NUMA nodes. For that reason, the instantiation of C-VNFs is
somewhat non-deterministic and apparently NUMA-Node agnostic, which
is one way of saying that performance will likely vary whenever this
instantiation is performed. So, when we use NUMA in the
containerized infrastructure, repeated instantiation and testing to
quantify the performance variation is required.

Update from -03 to -04 (1)

...

« Adding Chapter 6. Benchmarking Experiences oo etmerereow s —

* Including our testing results of 106-Hackathon

...

.......................

\
1
|
\
w |
- DPDK / Contiv-vpp | Sotuunt Somm
|
|
\

« User-space network model (v-switch) e SR vt |] vt o s
« Verifying CPU allocation of native Kubernetes | | s s

......................

CPU Scheduler (v1.6.1) | $emmmeanens e T [
« Compare with CPU pinning technology

« CMK (CPU Manager forK8s) 1 e e et
 Shared-mode / Exclusive-mode | 1 1 et VD —t—tet
- NUMA-sffinit | AL
« Network interface / Container | +==-1DP0K 100 |——mem | DEDKMOL |=eeness seer Soace |
« Same / Different NUMA zone e el tpese |
« Traffic Generator : T-Rex — IMIX traffic TTiiwro | wewc jweai i1
|| ez 0| 1ecmzc f1serall » S ————r—

...

Figure 10: Test Envircament-Network Architecture

Update from -03 to -04 (2)

* Trouble-shootings

» Routing table doesn’t work when we send
packet using T-Rex

« "IP packet forwarding rule” is processed only
default Virtual Routing and Forwarding (VRFO)

« vrf1 and vrf2 interface couldn’t route packet

« SOLVED : assigned vrfO and vrf1 to POD

B —————————————— B o ———————— +
| NUMA © | NUMA 0 |
P - | e +
Containerized Infrastructure Worker Node				
Porrmcrrcc e e e cceee———- +*	toermmmc e ——- +			
I POD1			POD2	
1	e +			$mmmeeeee
	D T L s			4=Vent Saye=s
		ethl	eth2	
	S — ® esalae +			#=eet =T
	DO P ——	+	tece	cccccca
temeceeas	l I			
	teececcccccee-	eeee—	mmm——— ‘	
	bomm———— R ¢			
$fpeeTommeT o= [=em———- ===t				
	v v l			
	+-taplO-~tapll-+			
	" ~ l			
		wwry		l
	$om	mmmmmnee ==+		
		eeet		
	p=*tap00-~*tapllerrvmmmmn~	wmm	—— .	
		#=-Vereee== v=¢ VRIF0 #---n Vomm=y=t		
	k=] 10C ETHO/O	~muuua 10G ETHO/1	-+ [
	L teseee jalrepp—— $ descssss ol			
	mmmme Vememmb bmeeeee Vemmnt l			
#===	*IDPDXKPMDO	~vww=~ * DPDXPMD]	=ww===t	
s fm——— + S Mt	User Space			
-------------] L
v v

*~ CPU pinning interface

Figure 11: Test Enviromment-Network Architecture(CPU Pinning)

Update from -03 to -04 (3)

* Test Results
« Performance is reduced between the vpp-switch and the POD
« Same-NUMA affinity increased network throughput by about 50%

S S SV +
| Model | NUMA Mode (pinning)| Result(Gbps) /|
S S OSSN —— S — +
| | N/A | 3.1 |
| Switch only e T +
| | same NUMA | 9.8 |
A R S O . +
| K8S Scheduler | N/A | 1.5 |
S RS S S S - +
| | same NUMA | 4.7 |
| CMK-Exclusive Mode +--=—————mmmmmmmmm e L +
| | Different NUMA | 3.1 |
iy T S +
| | same NUMA | 3.5 |
| CMK-shared Mode +-—————c—mmmmmmmm T +
| | Different NUMA | 2.3 |
R R S S S, +

Figure 12: Test Results

Update from -04 to -05

« Adding Chapter 7 — Benchmarking Experiment
« We implemented and tested at this Hackathon 109

» User-space network model (device pass-through)
« SR-IOV / DPDK
 Verifying huge pages impacts on network performance

Virtual address space Physical address space
] 512 pages
. Requires 1G 2Mi
Container SMi
2Mi

1Gi
s
1 page

109 Hackathon review (1)

e Infrastructure Setting

e https://github.com/huyng14/bmwg-container-network

POD
Testpmd Application
DPDK libraries
iavf Driver

Embedded Switch (Visual
Ethernet Bridge)

PO User space

Hackathon mirror workshop at
Busan, South Korea :
Collaborated with IPWAVE
and [2NSF team (SKKU)

» Physical HW specs are same that we used in the
106 Hackathon

« Kubernetes (1 master, 1 worker)
« MULTUS CNI

« CMK for CPU Pinning

Traffic generator

« SR-IOV plugin with DPDK

https://github.com/huyng14/bmwg-container-network

109 Hackathon review (2)

* Test Scenario
« 4GB memory for each container
* Hugepage setting
« 2Mi * 2,048 pages / 1GI * 4 pages
« Traffic pattern (using T-Rex)
« Ethernet frame — 64 / 128 / 256 / 1024 / 1518 (bytes) [RFC2544]

[root@tg ~]# ./dpdk-stable-19.11.5/usertools/./dpdk-devbind.py --status

Network devices using DPDK-compatible driver

root@k8s-master:~/scripts# kubectl ' =
'Ethernet Virtual Function Series drv=vfio-pci unused=i40evf

{ :04:02.1 ‘Ethernet Virtual Function Series r i i unused=i40evf
| 1 ‘Ethernet Virtual Function Series r i i unused=i40evf
'Ethernet Virtual Function Series r io-pci unused=i40evf

‘Ethernet Virtual Function Series r i i unused=i40evf

‘Ethernet Virtual Function Series drv=vfio-pci unused=i40evf

‘Ethernet Virtual Function Series dr fio-pci unused=i40evf

'Ethernet Virtual Function Series drv=vfio-pci unused=i40evf

devices using kernel driver

'82599ES 10-Gigabit SFI/SFP+ Network Connection 10fb' if=ens513f0 drv=ixgbe unused=vfio-pci
'82599ES 10-Gigabit SFI/SFP+ Network Connection 10fb' if=ens513fl drv=ixgbe unused=vfio-pci
‘Ethernet Controller 10-Gigabit X540-AT2 1528' if=enp3s0f0 drv=ixgbe unused=vfio-pci *Active*
'‘Ethernet Controller 10-Gigabit X540-AT2 1528' if=enp3s0fl dr 2 fio-pci
'Ethernet Controller XL710 for 40GbE QSFP+ 1583' if=ens786f0 drv

‘Ethernet Controller XL710 for 40GbE QSFP+ 1583' if=ens786fl drv=i40e unused=vfio-pci

Huge page setting DPDK combining with SRIOV-VF

109 Hackathon review (3)

* Test Results
« The huge page size does not affect the network performance
« Ethernet frame is limited to 1518 Bytes
e Just for networking, small size of huge page is enough
40.00

mHugepage-2Mi mHugepage-1Gi
35.00
30.00
0.00 S e e e
128 1024 1518

256
Frame size (Bytes)

Throughput(Gbps)
- — N N
o [6)] o o
o o o o
o o o o

cn-
A-

109 Hackathon review (4)

 Trouble-shootings & Issues

« Out of memory error
« Sometimes POD access to the non-allocated memory
 Just 1 huge page size should be tested for each time

« Different configuration of Grub, plugins and K8s should be required for each time and
should be repeated

* |t takes a lot of time to change configuration, and also high risk to be error
« Huge page impacts to application process

« Depending on application, performance of accessing memory can impacts performance
« Scalability

« Huge page may impacts resource utilization / scalability of container functions

« We will consider to figure out trade-offs between performance and resource utilization

Next Steps

 Draft update to -06
* Including our results and trouble-shootings of 109 Hackathon
« Updating up-to-date networking technology

« Also we consider to expand benchmarking scenario
 East-west traffic benchmarking

« We also will plan to the next Hackathon
 Finding items
 Different network technologies, different test scenarios

 All comments, suggestions and questions are welcome

