SECURE CRYPTO
CONFIG (SCC)

@IETF 109 / CRYPTO FORUM RESEARCH GROUP

KAI MINDERMANN, M.SC.

SECURE CRYPTO CONFIG IN A NUTSHELL

e Builds upon COSE format

* SCC Process publishes yearly a selected list of secure COSE Algorithm/-
Configuration Ids

* Cryptography Software libraries provide a simplified interface for common
cryptography operations by using COSE as output format and using SCC
configurations to allow both automatic/default and easier manual selection
of algorithms and their parameters.

PROBLEMS OF
CRYPTOGRAPHY
ALGORITHM
INTERFACES/APIS

PROBLEMS OF
CRYPTOGRAPHY

ALGORITHMS
INTERFACES/APIS

Choosing Secure
Parameters/-Combinations
is really difficult

Establishing Secure Defaults
is difficult to make future
proof

It‘s difficult to make
cryptography software
libraries misuse resitant

4

EXAMPLE 1: AES

SR Y D

What Key length?

Which block mode?

Which or at all Padding Algorithm?
Tag length?

Nonce length?

How to change these settings in the future?

Argon? Algorithm

Argon? Inputzs and Ontputs

EXAMPLE 2: ARGON2

1. Format for input string

Length of nonce

Number of threads (parallelism)
Length of tag

Number of bytes (memory size)
Number of passes (iterations)
Type of Argon2?

running time in
» numker from 1 to 27

CEE SR Sl N

* How do | know that | chose a secure combination? (Yes there is a
guide in the standard, that’s very nice, but still difficult in practice)

If used,

* It's great that we have the Argon2, yet lot of implementation choices
6

- BrgonZd,

DEVELOPER EXPECTATION VS ALGORITHM FLEXIBILITY

e Assumption: Developers are not security experts

* Expected parameters to use symmetric encryption:
1. Key
2. Plaintext
3. NOTHING MORE
* Expected parameters to use hashing:
1. Plaintext
2. NOTHING MORE

SECURE CRYPTO CONFIG (SCC)

1. A process that is repeated every two years, where a new set of default configurations for standardized
cryptography primitives is published in a standardized machine-readable format.

2. A Secure Crypto Config Interface that describes a common API to use cryptography primitives in
software to be offered by standard libraries.

3. Using COSE to derive (and save) the parameters from output of cryptography primitives, otherwise
future changes of the default configuration would change existing applications behavior.

https://datatracker.ietf.org/doc/draft-kaimindermann-securecryptoconfig/

https://github.com/secureCryptoConfig/secureCryptoConfig

https://datatracker.ietf.org/doc/draft-kaimindermann-securecryptoconfig/
https://github.com/secureCryptoConfig/secureCryptoConfig

m
O BS|

\ o
Speficy Secure Parameters

|ETF o&

‘ CHr NIST

7

— -

/ N\

Parameter set for TOP SECRET
Parameter set for SECRET
Parameter set for CONFIDENTIAL

Integrate Parameter Specification e@

Cryptography Library
DeveloperlAuthor

—/> Distribution / Make Available
Parameter Specification

Choose and set default
parameter set from specification
(then automatic for latest specficiation)

Cryptography Library
J Cryptogaphlc Message Syntax
Appllcatlon
Specify Altered Crypto Parameter Set \

Parameter set for TOP SECRET
Altered Parameter set for SECRET
Parameter set for CONFIDENTIAL

Company | Developer

PROCESS

Mindermann, K. & Wagner, S., (2019).
Towards a central, distributed and
secure default cryptography
parameter set. In: Kiefer, F. &
Loebenberger, D. (Hrsg.), crypto day
matters 30. Bonn: Gesellschaft fur
Informatik e.V. / FG KRYPTO. DOI:
10.18420/cdm-2019-30-25

(There | was still referring to Cryptographic
Message Syntax (CMS) instead of COSE)

https://dx.doi.org/10.18420/cdm-2019-30-25

CRYPTOGRAPHY BUILDING BLOCKS FOR THE SCC

e Many per cryptography algorithm

e Distinct configuration
Siiliellell o Unique name for a configuration

e Based on COSE (RFC 8152)

S e |dentifier of algorithm (see above) and used parameters (e.g. lenghts and content like salt value)
* Parsable for inverse operations (decryption/validation/...)

Output e Allows changes of default implementations

10

https://tools.ietf.org/html/rfc8152

SECURE CRYPTO CONFIG — COMMON INTERFACE

Package org.securecryptoconfig

The Secure Crypto Config Interface provides methods for the most common cryptographic use cases:
Symmeiric encryption, Asymmetric encryption, hashing, password hashing and Signing. The
algorithms used for for the internal execution of the invoked use case is determined by the content of the
Secure Crypto Config files. With the release of a new version of the Interface the files will be updated to use
only currently secure algorithms and parameters. Therefore, it is necessary to update the
SecureCryptoConfig library as soon as possible if a new version is provided to be able to be up-to-date with
the current security standard. In this way the burden of making right choices for parameters and algorithms
to implement secure code can be lifted from the user.

For implementing different use cases the most important methods can be found at SecureCryptoConfig.

First create a instance of SecureCryptoConfig and invoke the corresponding method for the specific
cryptographic use case that should be implemented.

One of the most importatnt use cases provided is the symmetric en/decryption. This can be realized with the
Secure Crypto Config as follows:

bytel[] plaintext = "Hello World!".getBytes(StandardCharsets.UTF_8);
SCCKey key = SCCKey.createKey(KeyUseCase.SymmetricEncryption);
SecureCryptoConfig scc = new SecureCryptoConfig();

// Encryption
SCCCiphertext ciphertext = scc.encryptSymmetric(key, plaintext);

J// Decryption
I PlaintextContainer plain = scc.decryptSymmetric(key, ciphertext); ‘

https://github.com/secureCryptoConfig/secureCryptoConfigInterface

h The Secure Crypto Config (SCC) defines common use cases for
cryptography operations

SCC SUMMARY

based on the latest recommended configuation set (backwards

G The SCC allows cryptography libraries to change their defaults
compatbility ensured by output format with parameters)

https://datatracker.ietf.org/doc/draft-kaimindermann-
securecryptoconfig/

https://datatracker.ietf.org/doc/draft-kaimindermann-securecryptoconfig/

SOME OF THE OPEN QUESTIONS

 How to proceed with standardization?
e Is COSE the appropriate format to use for this

* Which is the ONE registry (IANA? Which one?) for cryptography algorithm suites (algorithm + parameter
selection definition)

* What are the common cryptography use cases?
 What are appropriate Security Levels?
 What format should be used for the cryptographic signature of the published configurations?

* How can parameters that depend on the runtime environment be chosen automatically (e.g.
memory/threads to be used for Argon2)?

* Key formats?

13

HOW TO CONTRIBUTE?

* Provide feedback on the Draft via the CFRG Mailinglist.

* Contribute and provide feedback through issues for the Draft on GitHub:
https://github.com/secureCryptoConfig/secureCryptoConfig

e Contribute, evaluate and provide feedback to the preliminary Java interface:
https://github.com/secureCryptoConfig/secureCryptoConfiginterface

14

https://github.com/secureCryptoConfig/secureCryptoConfig
https://github.com/secureCryptoConfig/secureCryptoConfigInterface

