Separation of Data Path and Data Flow Sublayers in the Transport Layer
<draft-asai-.tsvwg-transport-review-00>

Hirochika Asai
Preferred Networks / WIDE Project
panda@wide.ad.jp
Smart Network from End-to-End Principle

• End-to-End Principle
 • Dumb network with smart end-hosts

• Smarter network \(\rightarrow\) Non-standardized (or ad-hoc sometimes) architecture for intra-domain services
 • QoS
 • DiffServ
 • Segment routing
 • Middlebox
 • Firewall
 • Content caching, Transcoding
 • TCP acceleration
 • New distributed computing paradigm
 • Pub/sub model for machine-to-machine communication
 • Edge computing
 • In-network computing

- path-aware but transparent
- e.g., force rerouting to a waypoint with policy-based routing
- e.g., overlay networking
Transport Layer Functionality: Data Path vs. Data Flow

• Data Path
 • Trajectory & waypoint handling
 • Bidirectional connection
 • Resource monitoring (e.g., congestion)
 • Congestion control
 • Data flow multiplexing
 • Packet duplication for packet loss recovery (like FEC)

 → Stateless or per-path/per-connection states

• Data Flow
 • Retransmission for reliable data communication
 • Flow control (buffer management)
 • Flow prioritization
 • End-to-end security
 • Inverse multiplexing for multipath protocols

 → Per-flow states
Use Cases

• Multipath transport protocols
• Congestion control acceleration
• In-network computing
• Flow arbitration
• etc...
In-network Computing

- In-network computing
 - Compute chain
 - Active network
 - Service function chaining
 - Data aggregation and redistribution
 - All-Reduce in distributed deep learning
Stateless per-packet in-network computing

ECMP can be leveraged if the in-network computing routers do not store any states.
Stateful per-packet in-network computing

A waypoint must be designated and controlled; i.e., stateful for data paths but stateless for data flows
Stateful per-packet in-network computing

Policy-based routing,

Different programs
More complex computing; e.g., per-flow in-network computing

Policy-based routing, Segment routing, etc. (w/ flow classification)

A waypoint must be designated and controlled.
In-network computing router must be aware of flows.
More complex computing; e.g., per-flow in-network computing

- Compute+Buffer
- Policy-based routing,
- Same program
- IP router
- End-host
- A waypoint must be designated and controlled.

Layer Diagram:

- Application Layer
- Data Flow Layer
- Data Path Layer
- Internet Layer
- Link Layer

Policy-based routing, e.g., aggregate two consecutive packets per flow

- Same program
- Compute+Buffer
Summary & Next Step

• Summary: Separation of data path and data flow layers
 • Data path: Aware of network resources and trajectory or waypoints
 • Data flow: Aware of computing resource and flow-level integrity

• Next Step
 • Improve the I-D
 • Add analysis of existing protocols
 • e.g., TCP’s ACK for congestion control and integrity
 • Existing TCP accelerators need a buffer to send back an ACK on behalf of receivers
 • Add more use cases and examples
 • Protocols for data path and data flow layers