Enhancing Security and Privacy with In-Network Computing

https://www.ietf.org/id/draft-fink-coin-sec-priv-01.txt

Ina Fink, Klaus Wehrle
Enhancing Security & Privacy with INC - Recap

- (Legacy) devices are increasingly connected to the Internet
 - Sensitive data & processes

- Lack of security & privacy mechanisms on devices
 - Financial and safety threats

- Potential to retrofit functions efficiently within the network

Basic Protection Mechanisms
- Encryption, integrity checks, authorization, authentication, privacy mechanisms

Efficient Enforcement of Network Policies
- E.g., Manufacturer Usage Description [RFC2805]

Intrusion and Anomaly Detection
- E.g., dead man switch

Incident Investigation
- Efficient network monitoring

In-Network Vulnerability Patches

https://www.ietf.org/id/draft-fink-coin-sec-priv-01.txt
Protection Mechanism: In-Network Vulnerability Patches

- Problem: Resource-constrained devices are hard to update
 - Device vulnerabilities often cannot be fixed after deployment

- Idea: Define fine-granular rules to describe known attack patterns
 - Basically signature-based IPS
 - Efficient but flexible enforcement at switches at line-rate

- “Patches” easy to distribute
 - (Automatic) software updates of capable networking devices

Evaluation of potential and performance benefits in comparison to traditional IPS systems needed
Conclusion

- Potential of In-Network Computing for retrofitting and enhancing security & privacy
 - Protection mechanisms, anomaly detection, incident investigation
 - Update: Efficient signature-based intrusion prevention
- Reduce hardware costs and processing overhead
 - Especially beneficial for time-sensitive contexts, e.g., industrial networks, and resource-constrained devices

Current research:
- In-network policy enforcement w.r.t. industrial devices
- Enhancing incident investigation by providing efficient network monitoring

Ina Fink
fink@comsys.rwth-aachen.de

Your thoughts?!