
CBOR Encoding of
X.509 Certificates
(CBOR Certificates)
draft-mattsson-cose-cbor-cert-compress-03

COSE, IETF 109, John PreußMattsson

High level
Discussion

CBOR Certificates Scope

— High level goal: “Make sweet CBOR wine from sour ASN.1 grapes”

— Began as optimal CBOR encoding of a small subset of RFC 7925. Now the
discussed scope is more general. Need to support a larger subset of RFC 5280 while
still achieving close to optimal encoding for the most constrained IoT certificates.

— Certificate profiles that have been mentioned are RFC 7925, draft-ietf-uta-tls13-
iot-profile, IEEE 802.1AR, but also other parts of RFC 5280 like
GeneralizedTime and COSE related EKUs, etc.

— Best approach is probably to define CBOR encoding for a quite large subset
of RFC 5280 so it works with existing and future X.509 profiles.
— We believe that this can be done while keeping the size of constrained

IoT certificates close to the current size (example certificate is 138 bytes).

— Make registrations so that CBOR certificates can be used in COSE and TLS.

CBOR Certificates Process

To discuss encodings we first need to decide on what to support:

— Proposal to do compressed X.509 certs and natively signed certs.

— ASN.1 encodings include e.g. BER, DER, CER, PER, CPER, XER, CXER,
EXER, OER, JER, GSER, SER, LWER, MBER.
— Proposal to only support compression of DER encoded

certificates.

— IETF PKIX (RFC 5280) is itself a profile of ITU-T X.509. Due to the
popularity of PKIX, X.509 nowadays usually refers to IETF PKIX.
— Proposal to do encoding for actively used parts of RFC 5280, as

well as future additions.
— Separate encoding specification from profile specification
— Details discussed on following slides.

— Proposed high level format is an RFC 8742 CBOR Sequence (Saves 1 byte compared to CBOR array)
— Proposed to only include 1 signature algorithm. Proposal to keep the field in TBSCertificate that is signed.
— Proposed to not support issuerUniqueID, subjectUniqueID
— Proposed to introduce ‘type’ to differentiate between compressed X.509 and natively signed.
— Proposed to split validity and subjectPublicKeyInfo into two elements (saves 2 bytes compared to arrays)

ASN.1 → CDDL
= removed
= split
= added

List of Changes

Changes from -01 to -02 to -03
Changes from -01 to -02
— Changed terminology to "natively signed”
— Completely changed the encoding of issuer and subject. The new encoding supports encoding of

sequences of sets of attribute types and values. The encoding handle any attribute type encoded as
utf8string and printableString.

— Moved signatureAlgorithm so it comes before signatureValue. Made the algorithm identifiers explicit
(no default) and split them into two items. This increases size with 2 bytes.

— Extension text moved to separate paragraph.
— Split CDDL into certificate and tbsCertificate similar to RFC 5280 to not have to duplicate CDDL.
— New section of compliance requirements.

Changes from -02 to -03
— Added GeneralizedTime as suggested by Jim. We also addresses an issue in that the old encoding could

not encode leap seconds (which X.509 can).
— Changed from TLS compression algorithms to TLS certificate Type as suggested by Ilari. This also

enables CBOR certificates to be used with a general compression algorithm in TLS.
— Added support for a lot more algorithms. Registered values for most algorithms without parameters.
— More strict text on several parts regarding encoding.

Changes from -01 to -02 to -03
Changes from -02 to -03
— Tried to reduce the number of negative ints.
— Update title based on comment from Jim
— Updated abstract and intro so it is up to date with the document.
— Added text that the string types teletexString, universalString, and bmpString are not supported.
— Allowed raw relative OIDs for algorithms and extensions.
— Added more detail on how ECDSA signatureValue is encoded
— Updated CDDL to follow RFC 8742 recommendations
— Fixed so that an empty subject can be encoded.
— Completely rewrote extension encoding as the old description was underspecified, had several

problems, and several limitations.
— Added IANA registries for extensions, EKU, and subjectaltname. Added registration procedures for the

IANA registries.
— Added c5bag and c5t as well.
— Specified how EUI-64 is compressed to 6 or 8 bytes

— The encoding of the tools.ietf.org certificate was added as an example.
— Added acknowledgements

https://tools.ietf.org/

Low level
Discussion

— version:
— RFC 5280: Version MUST be 3 (value is 2).
— Draft -03 assumes v3 and does not explicitly encode it.

— issuerUniqueID, subjectUniqueID:
— issuerUniqueID and subjectUniqueID are seldom used.
— Certificate extensions in version 3 replace the functionality of these members.
— Draft -03 does not support issuerUniqueID, subjectUniqueID.

— cborCertificateType:
— Draft -03 defines ‘type’ to differentiate between compressed X.509 and natively signed.
— Can be used for other purposes in the future if needed.

version, issuerUniqueID, subjectUniqueID, type

— serialNumber:
— RFC 5280: serialNumber MUST be a positive integer. Certificate users MUST be able to handle

serialNumber values up to 20 octets. Conforming CAs MUST NOT use serialNumber values longer
than 20 octets.

— Draft -03: encode as a CBOR byte string. Encoded as in a DER encoded INTEGER value field.
— CBOR unsigned integers are not suitable as they only support 8-, 16-, 32-, and 64-bit integers.
— CBOR bignum could be used, but is not as widely supported as bytes, and would increase size

with 1 byte.

— signatureValue:
— Draft -03: encode as a CBOR byte string. Encoded as in a DER encoded BIT STRING value field

(assuming zero unused bits). Special handling of ECDSA.
— ECDSA signature (r, s) is encoded as length 2 * (ceil(log2(n) / 8), where n is the curve order.

Is that correct also for Wei25519/W-25519 and Wei448/W-448?
— Cf. draft-lwig-curve-representations/

NIST SP 800-186

serialNumber, signatureValue

— subjectPublicKey:
— Draft -03: split up into algorithm and subjectPublicKey instead of encoding as CBOR array.
— Draft -03: encode subjectPublicKey as CBOR byte string. Encoded as in a DER encoded BIT STRING value

field (assuming zero unused bits). Special handling of id-ecPublicKey.
— id-ecPublicKey is point compressed as specified in SECG.
— Support point compressed X.509 certs in future version?

— signatureAlgorithm, signature:
— Duplicate. Draft -03 only includes one of these fields and calls it issuerSignatureAlgorihtm.

— issuerSignatureAlgorithm and subjectPublicKeyAlgorithm:
— RFC 5280: AlgorithmIdentifier is defined as OID + parameters of type ANY.
— Most algorithms omit parameters. rsaEncryption Public Keys and and PKCS #1 v1.5 Signatures has

parameters = NULL. Old RSASSA-PSS algorithms and old ECC public keys use parameters.
— Draft -03: no support for parameters. RSASSA-PSS is only supported with SHAKE.
— Draft -03: encode signature and public key algorithms as ints from different registries.
— id-ecPublicKey only supported with named curves.
— Should the draft allow raw DER encoded relative OIDs?
— Should any algorithms with parameters be supported?

subjectPublicKeyInfo, signatureAlgorithm, signature

issuerSignatureAlgorithm and subjectPublicKeyAlgorithm
— issuerSignatureAlgorithm and subjectPublicKeyAlgorithm:

— Which algorithms should values initially be registered for? Draft -03 registers algs below but to differentiate
between 1 and 2 byte identifiers. Wei25519/W-25519 and Wei448/W-448 should also be added.

— Weak signature algorithms with SHA-1 are still used in root certificates.

— issuer, subject:
— RFC 5280: both issuer and subject are defined as:

SEQUENCE OF SET OF { type AttributeType, value AttributeValue }
— Draft -03: encode this as a CBOR array of CBOR arrays of int keys and text values.

— Draft -03: omit the outer array when there is a single RDN.
— Draft -03: omit the map when there is a single utf8string encoded id-at-commonName.

— Draft -03: encode as bytes instead of text when there is a single EUI-64.
— What is the difference between EUI-48, MAC-48, and 48-bit MAC address?
— Unspecified how a EUI-64 is encoded in X.509 (xx-xx-xx-FF-FE-xx-xx-xx, xx-xx-xx-FF-

FF-xx-xx-xx, something else?). EUI-64 encoding of MAC-48 deprecated?
— Are EUI-64 are created from 48-bit MAC addresses? Having a fixed MAC address goes

against the current trend of MAC Address randomization for privacy.

issuer, subject

AttributeType, AttributeValue
— AttributeType, AttributeValue:

— RFC 5280 defines a large number of attribute types and character string types.
— Draft -03: only register values for the attribute types which MUST and SHOULD be supported,

according to RFC 5280. Draft -03 encodes attribute type as absolute value of CBOR int.
— Are there any other attribute types that should be supported?
— RFC 5280: MUST use either the PrintableString or UTF8String. Draft -03: only support

PrintableString and UTF8String. Any other character string type needed?
— Draft -03: encode character string type (PrintableString or UTF8String) as sign of CBOR int.
— Each character in a PrintableString only contains 6.2 bits of information. Compress?

— validity:
— Draft -03: split up into notBefore and notAfter instead of encoding as CBOR array.
— Draft -03: support both UTCTime and GeneralizedTime. Encoded as a byte string, which is interpreted as an

unsigned integer n in network byte order, using the following invertible encoding (Horner's method with
different bases). UTCTime and GeneralizedTime are encoded as a byte strings of length 4 and 5 respectively.

UTCTime: n = SS + 61 * (MM + 60 * (HH + 24 * (dd + 32 * (mm + 13 * yy))))
GeneralizedTime: n = SS + 61 * (MM + 60 * (HH + 24 * (dd + 32 * (mm + 13 * yyyy))))

— Decoding can be done by a succession of modulo and subtraction operations. I.e. SS = n mod 61, MM = ((n -
SS) / 61) mod 60, etc.

— Encoding is strictly increasing so it is easy to check if compressed value < current time. Cannot directly
calculate distance between encoded values without decoding.

— Unix time could be used, but unix time does not handle leap seconds, unix time functions are not available on
all platforms, many existing time functions use local time, and unix time is tricky to implement incorrectly due
to complication leap year definitions.

— Comments?

validity

— extensions:
— Based on the discussion on the list, the restricted set of extensions in RFC 7925 is insufficient.
— Draft -03: encode extensions as an [* (int, ? any)] array.
— Draft -03: allow raw DER encoded relativeOIDs. A lot of extensions defined. Some private.
— Which extensions should be supported? Which extended key usage should be supported?

Which types of Subject Alt Names should be supported?
— Draft -03 defines CBOR encoding for the RFC 7925 extensions and try to minimize their encoding.

Which other extensions should be given CBOR encoding? Can we define a general DER-> CBOR
encoding to use when encoding size is not critical?

extensions

Extensions
— Limited amount of positive one-byte integers [1,23]. Need to determine which extensions that

should be allocated in that range. Should we reserve integers for future extensions?

= RFC 7925, 1-byte
= Other, 1-byte

Use in
COSE and TLS

— COSE:
— Draft -03 registers ’c5bag’, ’c5chain’, ’c5u’, and ‘c5t’ similar to ’x5bag’, ’x5chain’, ’x5u’, and ‘x5t’

— TLS
— Draft -03 registers CBOR certificates as a new TLS certificate type.
— This allows CBOR certificates to be used with certificate compression (for constrained IoT

certificates, the current general certificate compression mechanisms increase size. For non-IoT
certificates with many character strings, certificate compression is expected to decrease size).

COSE and TLS

— The DER encoding of the tools.ietf.org
certificate is 1647 bytes.

— The CBOR encoding (CBOR sequence) of
the CBOR certificate is 1374 bytes (16%
reduction).

— Non-RFC 7925 extension values are DER
encoded byte strings.

Example Encoding of a HTTPS Certificate

= RFC 7925

How to progress until next meeting

—Reviews

—Implementations

—Discussion on the list

