WHIP

WebRTC HTTP Ingestion Protocol

The Problem

e WebRTC is the best media transport protocol for real-time streaming.
e While other media transport could be used for ingest, webrtc for both ingest and delivery allows:
o Working on browsers.
o Avoiding protocol translation, which could add delay and adds implementation complexity.
o Avoiding transcoding by sharing common codecs.
o Using webrtc features end to end.
e However, there is no standard signalling protocol available to pair with it:
o SIP or XMPP are not designed to be used in broadcasting/streaming services, and there
also is no sign of adoption in that industry.
o RTSP, which is based on RTP and maybe the closest in terms of features to webrtc, is not
compatible with WebRTC SDP offer/answer model
e Consequences:
o Each WebRTC streaming services requires implementing a custom ad-hoc protocol.

We need a reference signalling protocol.

Requirements

Must be simple to implement, as easy to use as current RTMP URI.
Support the specific ingest use case, which is a subset of webrtc possible use cases:
o Only needs to support unidirectional flows.
o Server is assumed to not be behind NAT (having a public IP or deployed in same private
network as publisher)
o No need to support renegotiations.
Fully compliant with WebRTC and RTCWEB specs for the given use case.
Must support authentication.
Usable both in web browsers and in native encoders.
Lower the requirements on both hardware encoders and broadcasting by reducing optionalities.
Supports load balancing and redirections.

Proposed solution

HTTP POST for exchanging and SDP O/A.
Connection state is controlled by ICE/DTLS states

O ICE consent freshness [REC7675] will be used to
detect abrupt disconnection
O DTLS teardown for session termination by either
side.
Authentication and authorization is supported by the
Authorization HTTP header with a bearer token as per
[RECE750].
Support HTTP redirections for LB.

#ommsmme e + Fommmmmm e m——— + tommmmmmme e +
| WebRTC Producer | WHIP endpoint | | Media Server
e F------- + e +- ----- + +------ e +
| | I
| | I
|HTTP POST (SDP Offer) | |
o mm e +
| 202 Accepted (SDP answer) | |
Fmmmmm oo + |
| ICE REQUEST |
e et >+
| ICE RESPONSE |
S e e e +
| DTLS SETUP |
e
| RTP FLOW |
B e >

WHIP session setup

https://tools.ietf.org/html/rfc7675
https://tools.ietf.org/html/rfc6750

Example implementation in JS

//Get user media //Send all tracks

const stream = await for (const track of stream.getTracks ())
navigator.mediaDevices .getUserMedia ({audio:true, video:true}); //You could add simulcast too here
//Create peer connection pc.addTrack (track) ;
const pc = new RTCPeerConnection (); //Create SDP offer
//Listen for state change events const offer = await pc.createOffer ();
pc.onconnectionstatechange = (event) =>{ await pc.setLocalDescription (offer)
switch (pc.connectionState) { //Do the post request to the WHIP endpoint with the SDP offer
case "connected" : const fetched = await fetch (url, {
break; method: "POST",
case "disconnected" : body: offer. sdp,
break; headers : {
case "failed": "Content-Type" : "application/sdp"
break; }
case "closed": }) i
break; //Get the SDP answer

} const answer = await fetched. text ();

} await pc.setRemoteDescription ({type:"answer",sdp: answer});

Reducing implementation complexity

e Server may implement ICE lite, encoder must implement full ICE.

e SDP bundle and RTCP muxing must be supported by both sides.

e Encoder/media producer may use a setup attribute value of setup:active in the SDP offer, server
must support acting as passive.

