
WHIP
WebRTC HTTP Ingestion Protocol

The Problem
● WebRTC is the best media transport protocol for real-time streaming.
● While other media transport could be used for ingest, webrtc for both ingest and delivery allows:

○ Working on browsers.
○ Avoiding protocol translation, which could add delay and adds implementation complexity.
○ Avoiding transcoding by sharing common codecs.
○ Using webrtc features end to end.

● However, there is no standard signalling protocol available to pair with it:
○ SIP or XMPP are not designed to be used in broadcasting/streaming services, and there

also is no sign of adoption in that industry.
○ RTSP, which is based on RTP and maybe the closest in terms of features to webrtc, is not

compatible with WebRTC SDP offer/answer model
● Consequences:

○ Each WebRTC streaming services requires implementing a custom ad-hoc protocol.

We need a reference signalling protocol.

Requirements
● Must be simple to implement, as easy to use as current RTMP URI.
● Support the specific ingest use case, which is a subset of webrtc possible use cases:

○ Only needs to support unidirectional flows.
○ Server is assumed to not be behind NAT (having a public IP or deployed in same private

network as publisher)
○ No need to support renegotiations.

● Fully compliant with WebRTC and RTCWEB specs for the given use case.
● Must support authentication.
● Usable both in web browsers and in native encoders.
● Lower the requirements on both hardware encoders and broadcasting by reducing optionalities.
● Supports load balancing and redirections.

Proposed solution
● HTTP POST for exchanging and SDP O/A.
● Connection state is controlled by ICE/DTLS states

○ ICE consent freshness [RFC7675] will be used to
detect abrupt disconnection

○ DTLS teardown for session termination by either
side.

● Authentication and authorization is supported by the
Authorization HTTP header with a bearer token as per
[RFC6750].

● Support HTTP redirections for LB.

https://tools.ietf.org/html/rfc7675
https://tools.ietf.org/html/rfc6750

Example implementation in JS
//Get user media

const stream = await

navigator. mediaDevices .getUserMedia ({audio:true, video:true});

//Create peer connection

const pc = new RTCPeerConnection ();

//Listen for state change events

pc.onconnectionstatechange = (event) =>{

switch(pc.connectionState) {

case "connected" :

break;

case "disconnected" :

break;

case "failed":

break;

case "closed":

break;

}

}

//Send all tracks

for (const track of stream.getTracks())

 //You could add simulcast too here

pc.addTrack(track);

//Create SDP offer

const offer = await pc.createOffer ();

await pc.setLocalDescription (offer)

//Do the post request to the WHIP endpoint with the SDP offer

const fetched = await fetch(url, {

method: "POST",

body: offer.sdp,

headers:{

"Content-Type" : "application/sdp"

}

});

//Get the SDP answer

const answer = await fetched.text();

await pc.setRemoteDescription ({type:"answer",sdp: answer});

Reducing implementation complexity
● Server may implement ICE lite, encoder must implement full ICE.
● SDP bundle and RTCP muxing must be supported by both sides.
● Encoder/media producer may use a setup attribute value of setup:active in the SDP offer, server

must support acting as passive.

