TLS-POK

Proof of Knowledge
draft-friel-tls-eap-dpp

Friel, Harkins

Context

* Wi-Fi alliance Device Provisioning Protocol defines how a supplicant’s bootstrap keypair can be used to
bootstrap the supplicant against a Wi-Fi network

* DPP gives the supplicant a guarantee that it is connecting to a network that knows its bootstrap public key

* Bootstrap Public key:
* Encoded using the ASN.1 SEQUENCE SubjectPublicKeylnfo from RFC5280
* A raw keypair — does not have to be part of a PKI
* May be static, embedded in the supplicant, and printed in a QR label, included in a BOM, etc.
* May be dynamically generated and displayed on a GUI

* We want to reuse the same bootstrap public key to enable a device to securely bootstrap against a wired
network using EAP-TLS via a TLS extension

e This means that if a device supports both Wi-Fi and wired networks, the same QR, BOM, etc. may be used to
establish trust across both Wi-Fi and wired deployments

DPP:1:GS-803XL;K:MDkwEwYHK0ZIzj0CAQYIKoZIzjODAQcDIgAC8YIhbOMFjXZzwIS3Ry9c4UAR+VZutTkYnjNLNWWGedE=;;

DPP Qutline

1. Public bootstrap key is provisioned in DPP Configurator
* Configurator could be a mobile App, or could be be embedded to Wi-Fi AP

2. Proof of knowledge via DH using the bootstrap key and the Configurator ephemeral key
* Supplicant proves it knows the private key of the bootstrap keypair
* Configurator proves it knows the public key of the bootstrap keypair
* Secure channel established

3. Network information is securely exchanged D

4. Supplicant attaches to network
DPP Configurator Supplicant

1. Import/scan pkBsk

A

Bsk: bOOtStrap key 2a. Broadcast H(pkBsk), pkCdhe
pkPsk: pubic key >
skBsk: private key 2b. Challenge DHE(pkCdhe * skBsk)

A

2c. R DHE(skCdhe * pkBsk
Cdhe: Configurator DHE keypair c. Response DHE(skCdhe * pkBsk)

pkCdhe: pubic key
skCdhe: private key

»
»

3. Encrypted Network Config Info

A
A

4. Authenticate

\ 4

Bootstrap key reuse for wired LAN

* The pkBsk is scanned into the network and known by the AAA / EAP
TLS server

* The device wants the network to prove it knows its pkBsk

e Can be achieved by exchanging two sets of DH keys in the
ClientHello/ServerHello
1. Standard key share where both sides generate ephemeral key pairs

2. Bootstrap extension where client sends its H(pkBsk) instead of pkBsk. Server
responds with a second ephemeral key, and uses H(pkBsk) to lookup the
actual pkBsk in order to complete its key derivation

* Both DHE calculations are injected into the key schedule using
mechanism outlined in draft-jhoyla-tls-extended-key-schedule

struct {
select (Handshake.msg type) {
case client hello:
opaque bskey[32];

case server_hello:
opaque bskey exchange<l..2"16-1>;
¥

} BootstrapKey;

The BootstrapKey extension is used by the client in its ClientHelleo
message to specify its bootstrapping key identifier. The 'bskey’
field of this extension SHALL consist of the basebd encoded SHAZ56
digest of the DER-encoded ASN.1 subjectPublicKeyInfo representation
of the bootstrapping public key.

The Boostrapkey extension is used by the server in its SerwverHello
message to specify its ephemeral ECDH keying information. The
‘bskey_exchange' field contains the key exchange information on the
curve that the bootstrapping key is on.

Client Server
ClientHello
+ bskey
+ key_share —-eeo--- 5
ServerHello

+ bskey exchange

+ key share
{EncryptedExtensions}
{Finished}
{mmmm oo - [Application Data*]
{Finished} @ —--oeao- >
[Application Data] R > [Application Data]

a8

v
P5K -> HKDF-Extract = Early Secret

- > Derive-Secret(...)
- » Derive-Secreti...)
$----- > Derive-Secret(...)
W

Derive-Secret(., "derived”, ™"}

|
W
bskey_input -»> HKDF-Extract
|
W
Derive-Secret(., "derived”, "")
|
v
(EC)DHE -> HKDF-Extract = Handshake Secret

Fomm-- > Derive-Secret(...)
- » Derive-Secreti...)
v

Derive-Secret({., "derived”, "")

W
@ -» HKDF-Extract = Master Secret

- » Derive-Secreti...)
$----- > Derive-Secret(...)
$----- > Derive-Secret(...)
$----- > Derive-Secret(...)

Everyone is Happy

*-??

—

TLS-POK

Scan/import

Security Considerations

* Leverages TLS handshake with no esoteric cryptography
 Existing TLS security proofs should still be applicable
 draft-jhoyla-tls-extended-key-schedule should handle key schedule changes

* Bootstrap key security
* TLS-POK has the same security stance as DPP with respect to Bootstrap keys

e DPP: If you know the bootstrap public key, you can claim the device
* TLS-POK: If you know the bootstrap public key, you can claim the device

Working TLS Code

* Golang mint TLS stack branch
* https://github.com/upros/mint/tree/tls-pok

https://github.com/upros/mint/tree/tls-pok

Discussion and Next Steps

* 3 general work areas
* TLS extensions to transport bootstrap key identifiers and extra DHE keypairs
e TLS key schedule enhancements (e.g. draft-jhoyla-tls-extended-key-schedule)
* EAP/TEAP extensions to leverage new TLS-POK handshake

* How many documents?

e Coverin1document asis?
e Or2?0r3?
 draft-jhoyla-tls-extended-key-schedule

* Short TLS WG draft for TLS extensions
e Short EMU WG draft for leveraging new TLS-POK mechanism

* |s there general interest in this?

