
TLS-POK
Proof of Knowledge

draft-friel-tls-eap-dpp

Friel, Harkins



Context

• Wi-Fi alliance Device Provisioning Protocol defines how a supplicant’s bootstrap keypair can be used to 
bootstrap the supplicant against a Wi-Fi network

• DPP gives the supplicant a guarantee that it is connecting to a network that knows its bootstrap public key

• Bootstrap Public key:

• Encoded using the ASN.1 SEQUENCE SubjectPublicKeyInfo from RFC5280 

• A raw keypair – does not have to be part of a PKI

• May be static, embedded in the supplicant, and printed in a QR label, included in a BOM, etc.

• May be dynamically generated and displayed on a GUI

• We want to reuse the same bootstrap public key to enable a device to securely bootstrap against a wired 
network using EAP-TLS via a TLS extension

• This means that if a device supports both Wi-Fi and wired networks, the same QR, BOM, etc. may be used to 
establish trust across both Wi-Fi and wired deployments

DPP:I:GS-803XL;K:MDkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDIgAC8YIhb0MFjXZzwIS3Ry9c4UAR+VZutTkYnjNLNWWGedE=;;



DPP Outline
1. Public bootstrap key is provisioned in DPP Configurator

• Configurator could be a mobile App, or could be be embedded to Wi-Fi AP

2. Proof of knowledge via DH using the bootstrap key and the Configurator ephemeral key

• Supplicant proves it knows the private key of the bootstrap keypair

• Configurator proves it knows the public key of the bootstrap keypair

• Secure channel established

3. Network information is securely exchanged

4. Supplicant attaches to network

1. Import/scan pkBsk

Bsk: bootstrap key
pkPsk: pubic key
skBsk: private key

Cdhe: Configurator DHE keypair 
pkCdhe: pubic key
skCdhe: private key

2a. Broadcast H(pkBsk), pkCdhe

2b. Challenge DHE(pkCdhe * skBsk)

2c. Response DHE(skCdhe * pkBsk)

3. Encrypted Network Config Info

4. Authenticate

DPP Configurator Supplicant



Bootstrap key reuse for wired LAN

• The pkBsk is scanned into the network and known by the AAA / EAP 
TLS server

• The device wants the network to prove it knows its pkBsk

• Can be achieved by exchanging two sets of DH keys in the 
ClientHello/ServerHello

1. Standard key_share where both sides generate ephemeral key pairs
2. Bootstrap extension where client sends its H(pkBsk) instead of pkBsk. Server 

responds with a second ephemeral key, and uses H(pkBsk) to lookup the 
actual pkBsk in order to complete its key derivation

• Both DHE calculations are injected into the key schedule using 
mechanism outlined in draft-jhoyla-tls-extended-key-schedule





Everyone is Happy

AAA

Scan/import

DPP

EAP using
TLS-POK



Security Considerations

• Leverages TLS handshake with no esoteric cryptography
• Existing TLS security proofs should still be applicable 

• draft-jhoyla-tls-extended-key-schedule should handle key schedule changes

• Bootstrap key security
• TLS-POK has the same security stance as DPP with respect to Bootstrap keys

• DPP: If you know the bootstrap public key, you can claim the device

• TLS-POK: If you know the bootstrap public key, you can claim the device



Working TLS Code

• Golang mint TLS stack branch

• https://github.com/upros/mint/tree/tls-pok

https://github.com/upros/mint/tree/tls-pok


Discussion and Next Steps

• 3 general work areas
• TLS extensions to transport bootstrap key identifiers and extra DHE keypairs
• TLS key schedule enhancements (e.g. draft-jhoyla-tls-extended-key-schedule)
• EAP/TEAP extensions to leverage new TLS-POK handshake

• How many documents?
• Cover in 1 document as is?
• Or 2? Or 3?

• draft-jhoyla-tls-extended-key-schedule
• Short TLS WG draft for TLS extensions
• Short EMU WG draft for leveraging new TLS-POK mechanism

• Is there general interest in this?


