IETF – INTAREA WG

https://datatracker.ietf.org/doc/draft-jia-flex-ip-address-structure/

Flexible IP: An Adaptable IP Address Structure

IETF 109 – Online

Yihao Jia jiayihao@huawei.com

Gap Analysis

Scenarios potentially prefer a flexible IP address structure

- Internet of Things (IoTs)
- Satellite Network

... ...

- Dynamic Service and Resource
- Policy-based Traffic Control
- Robust Trust and Security

Based on the rationality of scenarios requirements

Targeted Scenario

Physical Location

- IPv6 remains the mainstay of the Internet backbone
- Various network is supposed to evolve to IPv6, with only a small number of legacy IPv4 networks
- New network scenario are located at the **edge** of Internet
- Edge Network can be depicted as limited domain in RFC8799
- FlexIP is expected to be used at limited domain only.

Logical Position

• FlexIP is a replacement of the global IPv6 address system, but only a **supplementary** of it.

Design Considerations

Multi-Semantics

• According to the gap analysis, a semantic enabled address structure can enrich advanced network functions, e.g., semantics-based routing.

Elastic Address Space

- Different semantics may require different address length, while a short address is a dramatic energy saving for constrained devices.
- Scalability
 - Boundless space may lead to routing table explosion. To makes the address practically values, balance must be reached between expansive address space and efficient routing performance.
- Interoperability
 - Since such address should only act as a supplementary of the global IPv6 address system, transformation must be conducted at the boundary of IPv6 and the new address structure.

FlexIP Address Structure

For short address length only

- length: 1-byte (0-239)
- One segment, topology semantic

For extendable address length

- length: Any-byte
- One segment, topology semantic

For multi-segment address

- length: accord with each segment
- Multiple segments, topology semantic

For non-topology semantic address

CH: (1) hierarchical (2)self-explanatory

	Index	Туре	Structure (default by topology semantic and 1 segment)
	0x01	Restrained Space	topology address - address 1
	0x02	Restrained Space	topology address - address 2
	0xEF	Restrained Space	topology address - address 239
	0xF0	Extendable Space	followed by address with 16-bit length
	0xF1	Extendable Space	followed by address with 32-bit length
	0xF2	Extendable Space	followed by address with 64-bit length
	0xF3	Extendable Space	followed by address with 128-bit length
	0xF4	Extendable Space	followed by address with 256-bit length
L	0xF5	Extendable Space	followed by address with X-bit length
$\left[\right]$	0xF6	Hierarchical Segments	followed by address with 2 segments
	0xF7	Hierarchical Segments	followed by address with 3 segments
L	0xF8	Hierarchical Segments	followed by address with Y segments
	0xF9	Multi-Semantics	followed by Non-topological semantic address
	0xFA - 0xFF	None	reserved

FlexIP Examples and Text Representation

Interoperability

- A translator is deployed at the **boundary** of the FlexIP limited domain.
- The translator is mainly constructed by a address mapper
- For packet transiting address mapper, the address will be transformed between **IPv6** and **FlexIP**.
- Till now, only address structure is discussed.
- Header structure is leave to future consideration.

IPv6

2001:A:5F:2C:A2F7::12F

[8]A2F7::12F

• Example:

Recap. FlexIP

- Gap analysis:
 - Increasingly network scenarios long for **TCP/IP** for **global reachability**.
 - New network scenarios → advance network features <GAP> IPv6 capability
- Target scenario location
 - Limited domain (edge network)
- Logic Position
 - a **supplementary** of the IPv6 address, not replacement
- Draft includes:
 - FlexIP address structure: hierarchical, self-explanatory
 - FlexIP Text Representation: [8]<GEO>A32F84C981002E9B[2]5A
 - FlexIP-IPv6 Interoperability: an address mapper
- Draft excludes: (not yet)
 - FlexIP packet header: to be designed and discussed in the future

IETF 109 – INTAREA WG

https://datatracker.ietf.org/doc/draft-jia-flex-ip-address-structure/

THANKS!

Questions / Comments?

Yihao Jia jiayihao@huawei.com