IP Layer Metrics for 5G Edge Computing Service

draft-dunbar-ippm-5g-edge-compute-ip-layer-metrics-01

Linda Dunbar
HaoYu Song
John Kaippallimalil
One Application has multiple Application Servers located in Edge Computing DCs.
From IP Network Perspective...

ANYCAST: IP Layer Application ID -> multiple App servers
Benefit of using ANYCAST:
✓ dynamically load balance across locations based on network conditions.
✓ leverages the proximity information present in the network (routing) layer and
✓ eliminates the single point of failure and bottleneck at the DNS resolvers and application layer load balancers.
✓ removes the dependency on UEs using their cached destination IP addresses for extended period

Problem 1: Selecting 5G Edge Application Location

- Many mini data centers can be close in proximity, making it difficult to differentiate in Routing Hops for App servers hosted in them,
- Some data centers can have higher capacity than others,
- Some sites may be more preferred when a UE anchored to a new 5G Site

Problem 2: UE mobility creates unbalanced anycast distribution
RTT to an ANYCAST Address in 5G EC

• RTT to “app.net” ANYCAST S1:
 • List of {
 - R1: RTT value
 - R2: RTT value
 - R3: RTT value
 }
Algorithm in Selecting the Optimal Target Location

To compare the cost to reach the Application Server between the Site-i or Site-j:

\[
\text{Cost}_i = \min \left(w \left(\frac{\text{Load}_i \times \text{CP}_j}{\text{Load}_j \times \text{CP}_i} \right) + (1-w) \left(\frac{\text{Pref}_j \times \text{Delay}_i}{\text{Pref}_i \times \text{Delay}_j} \right) \right)
\]

- **Load-i**: Load Index at Site-I =

 \[w_1 \times \text{ToPackets} + w_2 \times \text{FromPackes} + w_3 \times \text{ToBytes} + w_4 \times \text{FromBytes}\]

 \[0 \leq w_i \leq 1 \text{ and } w_1 + w_2 + w_3 + w_4 = 1.\]

- **CP-i** (Capacity-i) (higher value means higher capacity): capacity index at the site i.

- **Delay-i**: Network latency measurement (RTT) to the A-ER that has the Application Server attached at the site-i.

- **Pref-i** (Preference Index: higher value means higher preference): Network Preference index for the site-i.

- **w**: Weight for load and site information,

 - \[0 \leq w \leq 1\]: If smaller than 0.5, Network latency and the site Preference have more influence; otherwise, Server load and its capacity have more influence.
Next step:

• To standardize the IP Layer Metrics for Application Servers
 • To make network more aware of application server running status and environment
 • To achieve more optimized delivery of service

• Need your feedback