Deploying LISP in a Campus Network

Jordi Paillisse, Marc Portoles, Albert Lopez, Alberto Rodriguez-Natal, David Iacobacci, Johnson Leong, Victor Moreno, Albert Cabellos, Fabio Maino, and Sanjay Hooda

LISP WG, IETF 109, Nov, 19th

Summary

1. Overview of Software-Defined Access (SDA)
2. LISP use-cases in SDA
3. Architecture and Design
4. Evaluation
Introduction: SDA

- SDN-based solution for Campus and Access Networks
- VXLAN data plane
- LISP control plane
- Unified Wired + Wireless
- Endpoint Mobility
- L3 Segmentation:
 - VXLAN VNI
 - Group-based policies
- L2 stretching
LISP use-cases in SDA

- L2/L3 EID Mobility
- Reduce and distribute data plane state
- Minimize CAPEX via providing routes on-demand
 - Less data plane entries \rightarrow Smaller FIB \rightarrow Less memory \rightarrow Reduced cost
- Incremental deployment
 - Keep existing underlay, with standard OSPF or IS-IS
Architecture & Design
Architecture

- LISP control plane
- VXLAN data plane
- EIDs are individual hosts
- Three mappings per endpoint: IPv4, IPv6, and MAC to RLOC
- Plus MAC EID to IP EID
Architecture - Wireless

- WLAN controller connected to Map Server
- Updates location based on new authentications
Architecture - Wireless

- WLAN controller connected to Map Server
- Updates location based on new authentications

- ‘Regular’ underlay VXLAN tunnels
- xTR – AP VXLAN tunnels – multiplex several APs, not in MS
Design – Mobility (I)

- Static VXLAN tunnel between AP and xTR
 - Multiple APs per xTR
 - Store (AP IP → xTR RLOC) mappings
- WLAN controller detects host movement
 - Map Request: AP C? → xTR B
- Registers new location
 - EID Host → xTR B
Design – Mobility (II)

- xTR B receives Map Notify and updates local state → EID Host behind AP C
- Additional mechanisms to improve mobility:
 - Away entry (to not drop packets)
 - SMR (to notify outdated remote xTR)
Design – Mobility (and III)

• SMR
 (1) If receive traffic for EID no longer in xTR
 (2) Send SMR to xTR
 (4) xTR updates map cache

• Away entry
 • Remember EIDs no longer in xTR
 • Forward traffic to new xTR (3)
Design – Avoid resolution delay (aka No First Packet Drop)

- Add default route in xTRs
- Points to PxTR (aka Border)
- Proxy has Pub/Sub functionality
- Forwards traffic on behalf of xTR
- Until more specific map cache is installed in the xTR
Design – Scalable L2 stretching

• Use cases:
 • Convert ARP broadcast to unicast
 • L2 protocols (eg. Apple Bonjour)
 • Legacy IoT devices (that do not use IP)
• Src. xTR encaps L2 frames to dst. xTR on VXLAN
• Resolve in Map Server missing info:
 • Use inner dst. MAC to locate dst. RLOC
 • For ARP: use MAC to EID mapping
• Forward ARP requests (instead of creating them) for coherence with IPv6 NDP
Evaluation
Data Plane State Reduction

• Count map cache entries in
 • PxTR
 • xTRs

• PxTR has all MS data due to Pub/Sub → fraction of mappings in xTRs

• Two different deployments:
 • Depl. A 150 hosts
 • Depl. B 450 hosts
 • Routers:
 • 1-2 PxTR
 • 7-6 xTR
 • 120 AP (20 per xTR)
Data Plane State Reduction

![Graph showing FIB entries over days with proxy and xTRs lines]

A

B

16
Data Plane State Reduction

A

B

50% reduction

80% reduction

proxy
xTRs

0

20

40

60

80

100

120

140

160

Mon Tue Wed Thu Fri Sat Sun

Day

FIB entries

proxy
xTRs

0

20

40

60

80

100

120

140

160

180

Mon Tue Wed Thu Fri Sat Sun

Day

FIB entries

80% reduction

50% reduction

proxy
xTRs

0

100

200

300

400

500

600

Mon Tue Wed Thu Fri Sat Sun

Day

FIB entries

proxy
xTRs

0

100

200

300

400

500

600

Mon Tue Wed Thu Fri Sat Sun

Day

FIB entries
Data Plane State Reduction

A

B

Always connected devices

24h map cache TTL

Pub/Sub follows day/night routine
Handover Delay

- Massive mobility events
 - Eg. warehouse with mobile robots
- Calculate handover delay
- Lab setup
- 3 physical routers
- 198 emulated xTR
- Simulate handovers with a traffic generator

Diagram:
- Traffic Generator
 - BGP / LISP
 - PxTR or Route Reflector
 - 800 moves/s
 - External traffic
 - 198x Emulated
Handover Delay

• Compare LISP and BGP control planes
• Difference of aprox. one order of magnitude
• Notify only affected routers vs. all of them
• Less variability
Conclusions

• Example of a LISP deployment in an enterprise setting
• Reduced data plane state
• Distributed mobility data plane, with centralized control
• Versus classical WLAN controllers:
 • Improved routing (no triangular routing)
 • More scalable
• Reduce mobility handover
Thanks for listening!

You can find the paper at: