FIDO IoT and RATS/EAT

Giri Mandyam, FIDO IoT Working Group Chair
Overview

- The Fast Identity Online (FIDO) Alliance is a standards/certification body focused on passwordless authentication
 - Several standards enabling user authentication (incl. biometrics)
 - Security and functional certification programs
- Recent standards effort on IoT secure onboarding
- First specification released in August 2020
What Does Onboarding Entail?

- 3 primary steps
 1. OEM completes manufacturing of device and ships
 2. End user purchases device, installs it, and powers it up for first time
 3. End user establishes ownership relationship with device
- “Zero-touch” onboarding is a goal for most manufacturers
 - User powers up device for the first time – is able to establish ownership with minimal intervention
- Common approaches could entail
 1. Installing an app on a personal device (tablet, smartphone)
 2. App connects to cloud – user authenticates to onboarding service
 3. App connects to IoT device
 4. Ownership established via cloud service
Attestation in Onboarding

What is attestation?

- Describes the process by which software executing on a device provides an assertion to a relying party about the integrity of its platform
 - *Relying party* is any service provider that consumes the attestation produced by a device, usually as part of some transaction
 - In the case of IoT device onboarding, both the Rendezvous Server and Device Owner can be Relying Parties
- The attestation can be based on several criteria, including
 - An assessment of the operating system kernel
 - Enumeration of 3rd-party applications installed on device
 - Suspicious events such as protected memory access
- Attestation data is formed by combining indications of such payload into a compact data structure that can be sent to a relying party
 - Attestation data is used to form an attestation statement, which is the actual message sent to the relying party
 - Attestation statement should be cryptographically-verifiable (signed and/or encrypted)
FIDO IoT System Architecture

IoT Onboard Device

Local Connectivity

IP Connected

Gateway

Rendezvous Service

Onboard Owner
Protocols

• Device Initialization (DI)
 • Provisioning IoT device with security-related information during manufacture
• Transfer Ownership Protocol 0 (TO0)
 • Device Owner seeds information in the Rendezvous Server about the IoT device to be onboarded (unique ID, i.e. GUID) and owner’s IP address
 • **Attestable**
• TO1
 • Device contacts and identifies itself to rendezvous server
 • Upon first power up after manufacture or after a factory reset
 • **Attestable**
• TO2
 • Device contacts owner. Owner takes over device management.
 • **Attestable**
EAT Dependencies

- T01 and T02 leverage EAT
- Minimum required claims
 - Nonce
 - UEID
- FIDO intends to complete standard and launch interop/certification program
- What is the issue?
 - EAT standard is not complete
 - EAT-proposed claims are not registered
 - FIDO cannot complete standard and launch interop/certification program using CWT private space
 - See https://www.iana.org/assignments/cwt/cwt.xhtml
 - Certification must be done on finished product
 - Vendors will prefer to productize with registered claims, not private space
Request

- EAT spec not ready for Last Call as of IETF 109
- FIDO requests accelerating that IETF register a minimal subset of the claims outlined in the current EAT draft with IANA
 - Register claims prior to RFC publication
- Determine minimum set of claims and complete registration no later than IETF 110