
xBGP: When You Can’t Wait
for the IETF and Vendors
Thomas Wirtgen, Quentin De Coninck, Randy Bush, Laurent Vanbever and
Olivier Bonaventure

1

Routing protocols evolve regularly to address new requirements from operators

2

Problem #1: Networks evolve, as do routing protocols

3

The evolution is complex:
1. Standardization by the IETF (3.5 years in average for BGP)
2. Implementation on the vendor OS
3. Update routers of networks

Problem #2: Large networks use diverse routers

Vendors do not propose the same set of extensions on their routers

The configuration of these routers differs as well

4

Vendor A Vendor B

OS Vendor A OS Vendor B

routing-options {
 router-id 1.1.1.1;
 autonomous-system 65001;
}

protocols {
 bgp {
 group Session-to-R1 {
 type external;
 neighbor 1.1.1.2 {
 peer-as 65002;
 }
 }
}

router bgp 65001
 bgp router-id 1.1.1.1
 neighbor 1.1.1.2 remote-as 65002

Simple Juniper configuration file

Simple Cisco configuration file

How do we answer requests for protocol extensions ?

5

Agenda

● xBGP: a Paradigm Shift
● Adding a new feature with xBGP
● Uses Cases

6

xBGP: a paradigm shift

Each xBGP compliant router exposes a simple API that allows to
dynamically extend the protocol with platform-independent code that
we call plugins.

Network operators can program their routers directly using plugins.

7

AS 1
A plugin is injected for
each router of the
network

All xBGP routers expose the same API

Each router adds xBGP on top of its implementation

With xBGP, routers expose a common API.

8

Plugin

Vendor A Vendor B

OS Vendor A OS Vendor B
+ xBGP + xBGP

BGP workflow

9RFC 4271 BGP Workflow

BGP workflow

10RFC 4271 BGP Workflow

A plugin to support a geoloc attribute

11

Decoding GeoLoc

Locate nearest router

Serializing GeoLoc

My GeoLoc Plugin

RFC 4271 BGP Workflow

A plugin to support a geoloc attribute

12

Decoding GeoLoc

Locate nearest router

Serializing GeoLoc

My GeoLoc Plugin

RFC 4271 BGP Workflow

A plugin to support a geoloc attribute

13

Decoding GeoLoc

Locate nearest router

Serializing GeoLoc

My GeoLoc Plugin

libxBGP

RIB
BGP Neighbor Sessions
This router Geo
Coordinates
...

Internal data structure

RFC 4271 BGP Workflow

A plugin to support a geoloc attribute

14

Decoding GeoLoc

Locate nearest router

Serializing GeoLoc

My GeoLoc Plugin

libxBGP

RIB
BGP Neighbor Sessions
This router Geo
Coordinates
...

Internal data structure

RFC 4271 BGP Workflow

Agenda

● xBGP: a Paradigm Shift
● Adding a new feature with xBGP
● Uses Cases

15

Implementation effort for xBGP

xBGP requires a little adaptation on the host BGP implementation

We have adapted both FRRouting and BIRD to be xBGP compliant

16

FRRouting (LoC) BIRD Routing (LoC)

Modification to the codebase 30 10

Insertion Points 73 66

Plugin API 624 415

libxbgp 3004 + dependencies

User Space eBPF VM 2776

Use Cases

1. Re-implementation of route reflectors (295 LoC)
2. Expressive filters

● Route Origin Validation (126 LoC)
● Valley Free path check for datacenters (81 LoC)

3. GeoLoc attribute (261 LoC)

17

Conclusion

With xBGP, BGP implementations can become truly extensible

 T. Wirtgen, Q. De Coninck, L. Vanbever, R. Bush, O. Bonaventure, xBGP: When
 You Can’t Wait for the IETF and Vendors, Hotnets’20, Nov. 2020
 See https://www.pluginized-protocols.org/xbgp for running source code

Next steps

● Discuss with network operators to address other requirements
● Discuss with BGP implementors and IETF to precisely define the xBGP API
● Extend the approach to other routing protocols

18

https://www.pluginized-protocols.org/xbgp

Backup slides

19

Comparison with native code

20

Lower is better

Time xBGP - Time Native

Time Native
x 100

Comparison with native code

21

Lower is better

Time xBGP - Time Native

Time Native
x 100

Comparison with native code

22

Native code
uses a slower
data structure

Lower is better

Time xBGP - Time Native

Time Native
x 100

Valley Free path check

23

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2

Valley Free path check

24

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2

Valley Free path check

25

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2

Valley Free path check

26

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2

Valley Free path check

27

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2

Valley Free path check

28

S1

L10 L11

S2

L12 L13

T20 T21 T22 T23

Level 0

Level 1

Level 2

Valley Free path check

29

AS
001

AS
100

AS
100

AS
001

AS
100

AS
100

AS
200

AS
200

AS
200

AS
200

Level
0

Level
1

Level
2

MyRouterCli > show ip bgp

BGP Routing table information for VRF default
Router identifier 192.168.254.5, local AS number 1

 Network Next Hop Metric LocPref Weight Path
* >Ec 192.168.10.0/24 192.168.255.20 0 100 0 100 200 i
* ec 192.168.10.0/24 192.168.255.4 0 100 0 100 200 i
* >Ec 192.168.254.3/32 192.168.255.4 1 100 0 100 200 i
* ec 192.168.254.3/32 192.168.255.20 0 100 0 100 200 i
* >Ec 192.168.254.4/32 192.168.255.20 0 100 0 100 200 i

RFC7938 Use of BGP for Routing in Large-Scale Data Centers

Valley Free path check

30

AS
001

AS
100

AS
100

AS
001

AS
100

AS
100

AS
200

AS
200

AS
200

AS
200

Level
0

Level
1

Level
2

MyRouterCli > show ip bgp

BGP Routing table information for VRF default
Router identifier 192.168.254.5, local AS number 1

 Network Next Hop Metric LocPref Weight Path
* >Ec 192.168.10.0/24 192.168.255.20 0 100 0 100 200 i
* ec 192.168.10.0/24 192.168.255.4 0 100 0 100 200 i
* >Ec 192.168.254.3/32 192.168.255.4 1 100 0 100 200 i
* ec 192.168.254.3/32 192.168.255.20 0 100 0 100 200 i
* >Ec 192.168.254.4/32 192.168.255.20 0 100 0 100 200 i

Where are these routes
sourced from ?

RFC7938 Use of BGP for Routing in Large-Scale Data Centers

Valley Free path check with xBGP

31

One plugin + one topology manifest
for all routers !CFG+

(81 LoC)

AS
001

AS
101

AS
102

AS
002

AS
103

AS
104

AS
201

AS
202

AS
203

AS
204

Level 0

Level 1

Level 2

Valley Free path check with xBGP

32

AS
001

AS
101

AS
102

AS
002

AS
103

AS
104

AS
201

AS
202

AS
203

AS
204

Level
0

Level
1

Level
2

uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
 i++; /* omit segment type */
 segment_length = as_path[i++];
 for (j = 0; j < segment_length - 1; j++) {
 curr_as = get_u32(as_path + i);
 i += 4;
 if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
 }
 }
 next();
 return FAIL;
}

Valley Free path check with xBGP

33

AS
001

AS
101

AS
102

AS
002

AS
103

AS
104

AS
201

AS
202

AS
203

AS
204

Level
0

Level
1

Level
2

uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
 i++; /* omit segment type */
 segment_length = as_path[i++];
 for (j = 0; j < segment_length - 1; j++) {
 curr_as = get_u32(as_path + i);
 i += 4;
 if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
 }
 }
 next();
 return FAIL;
}

Retrieve data from the host implementation

Valley Free path check with xBGP

34

AS
001

AS
101

AS
102

AS
002

AS
103

AS
104

AS
201

AS
202

AS
203

AS
204

Level
0

Level
1

Level
2

uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
 i++; /* omit segment type */
 segment_length = as_path[i++];
 for (j = 0; j < segment_length - 1; j++) {
 curr_as = get_u32(as_path + i);
 i += 4;
 if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
 }
 }
 next();
 return FAIL;
}

Retrieve data from the host implementation

Main processing of the plugin

Valley Free path check with xBGP

35

AS
001

AS
101

AS
102

AS
002

AS
103

AS
104

AS
201

AS
202

AS
203

AS
204

Level
0

Level
1

Level
2

uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
 i++; /* omit segment type */
 segment_length = as_path[i++];
 for (j = 0; j < segment_length - 1; j++) {
 curr_as = get_u32(as_path + i);
 i += 4;
 if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
 }
 }
 next();
 return FAIL;
}

Retrieve data from the host implementation

Main processing of the plugin

The route is rejected if such a pair exists

