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Routing protocols evolve regularly to address new requirements from operators
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Problem #1: Networks evolve, as do routing protocols
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The evolution is complex:
1. Standardization by the IETF (3.5 years in average for BGP)
2. Implementation on the vendor OS
3. Update routers of networks



Problem #2: Large networks use diverse routers

Vendors do not propose the same set of extensions on their routers

The configuration of these routers differs as well
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Vendor A Vendor B

OS Vendor A OS Vendor B

routing-options {
  router-id 1.1.1.1;
  autonomous-system 65001;
}

protocols {
  bgp {
    group Session-to-R1 {
      type external;
      neighbor 1.1.1.2 {
      peer-as 65002;
    }
  }
}

router bgp 65001
  bgp router-id 1.1.1.1
  neighbor 1.1.1.2 remote-as 65002
  

Simple Juniper configuration file

Simple Cisco configuration file



How do we answer requests for protocol extensions ?
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Agenda

● xBGP: a Paradigm Shift
● Adding a new feature with xBGP
● Uses Cases
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xBGP: a paradigm shift

Each xBGP compliant router exposes a simple API that allows to 
dynamically extend the protocol with platform-independent code that 
we call plugins.

Network operators can program their routers directly using plugins.

7

AS 1
A plugin is injected for 
each router of the 
network 



All xBGP  routers expose the same API

Each router adds xBGP on top of its implementation

With xBGP, routers expose a common API.
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Plugin

Vendor A Vendor B

OS Vendor A OS Vendor B
+ xBGP + xBGP



BGP workflow

9RFC 4271 BGP Workflow



BGP workflow
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A plugin to support a geoloc attribute
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Decoding GeoLoc

Locate  nearest router

Serializing GeoLoc

My GeoLoc Plugin

RFC 4271 BGP Workflow
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A plugin to support a geoloc attribute
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Decoding GeoLoc

Locate nearest router

Serializing GeoLoc

My GeoLoc Plugin

libxBGP

RIB
BGP Neighbor Sessions
This router Geo 
Coordinates
...

Internal data structure

RFC 4271 BGP Workflow



A plugin to support a geoloc attribute
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Agenda

● xBGP: a Paradigm Shift
● Adding a new feature with xBGP
● Uses Cases
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Implementation effort for xBGP

xBGP requires a little adaptation on the host BGP implementation

We have adapted both FRRouting and BIRD to be xBGP compliant
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FRRouting (LoC) BIRD Routing (LoC)

Modification to the codebase 30 10

Insertion Points 73 66

Plugin API 624 415

libxbgp 3004 + dependencies

User Space eBPF VM 2776



Use Cases

1. Re-implementation of route reflectors (295 LoC)
2. Expressive filters

● Route Origin Validation (126 LoC)
● Valley Free path check for datacenters (81 LoC)

3. GeoLoc attribute (261 LoC)
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Conclusion

With xBGP, BGP implementations can become truly extensible

    T. Wirtgen, Q. De Coninck, L. Vanbever, R. Bush, O. Bonaventure, xBGP: When
    You Can’t Wait for the IETF and Vendors, Hotnets’20, Nov. 2020
    See https://www.pluginized-protocols.org/xbgp for running source code

Next steps

● Discuss with network operators to address other requirements
● Discuss with BGP implementors and IETF to precisely define the xBGP API 
● Extend the approach to other routing protocols 
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https://www.pluginized-protocols.org/xbgp


Backup slides
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Comparison with native code
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Lower is better

Time xBGP - Time Native

Time Native
x 100
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Comparison with native code
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Native code 
uses a slower 
data structure

Lower is better

Time xBGP - Time Native

Time Native
x 100



Valley Free path check
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Valley Free path check
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MyRouterCli > show ip bgp

BGP Routing table information for VRF default
Router identifier 192.168.254.5, local AS number 1

  Network           Next Hop         Metric    LocPref  Weight    Path
* >Ec 192.168.10.0/24   192.168.255.20   0   100  0  100 200 i
*  ec  192.168.10.0/24   192.168.255.4    0   100  0  100 200 i
* >Ec 192.168.254.3/32  192.168.255.4    1   100  0  100 200 i
*  ec  192.168.254.3/32  192.168.255.20   0   100  0  100 200 i
* >Ec 192.168.254.4/32  192.168.255.20   0   100  0  100 200 i 

RFC7938 Use of BGP for Routing in Large-Scale Data Centers



Valley Free path check
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MyRouterCli > show ip bgp

BGP Routing table information for VRF default
Router identifier 192.168.254.5, local AS number 1

  Network           Next Hop         Metric    LocPref  Weight    Path
* >Ec 192.168.10.0/24   192.168.255.20   0   100  0  100 200 i
*  ec  192.168.10.0/24   192.168.255.4    0   100  0  100 200 i
* >Ec 192.168.254.3/32  192.168.255.4    1   100  0  100 200 i
*  ec  192.168.254.3/32  192.168.255.20   0   100  0  100 200 i
* >Ec 192.168.254.4/32  192.168.255.20   0   100  0  100 200 i 

Where are these routes 
sourced from ?

RFC7938 Use of BGP for Routing in Large-Scale Data Centers



Valley Free path check with xBGP

31

One plugin + one topology manifest 
for all routers !CFG+

(81 LoC)
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Valley Free path check with xBGP
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uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted  */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
   i++; /* omit segment type  */
   segment_length = as_path[i++];
   for (j = 0; j < segment_length - 1; j++) {
     curr_as = get_u32(as_path + i);
     i += 4;
     if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
   }
 }
 next();
 return FAIL;
}



Valley Free path check with xBGP
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uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted  */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
   i++; /* omit segment type  */
   segment_length = as_path[i++];
   for (j = 0; j < segment_length - 1; j++) {
     curr_as = get_u32(as_path + i);
     i += 4;
     if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
   }
 }
 next();
 return FAIL;
}

Retrieve data from the  host implementation



Valley Free path check with xBGP
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 as_path = attr->data;
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Retrieve data from the  host implementation

Main processing of the plugin



Valley Free path check with xBGP
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uint64_t valley_free_check(args_t *args UNUSED) {
 /* variable declaration omitted  */
 attr = get_attr_from_code(AS_PATH_ATTR_CODE);
 peer = get_src_peer_info();
 if (!attr || !peer) return FAIL;

 my_as = peer->local_bgp_session->as;
 as_path = attr->data;
 as_path_len = attr->len;

 while (i < as_path_len) {
   i++; /* omit segment type  */
   segment_length = as_path[i++];
   for (j = 0; j < segment_length - 1; j++) {
     curr_as = get_u32(as_path + i);
     i += 4;
     if (!valley_check(next_as, curr_as)) return PLUGIN_FILTER_REJECT;
   }
 }
 next();
 return FAIL;
}

Retrieve data from the  host implementation

Main processing of the plugin

The route is rejected if such a pair exists


