DANE for IoT

Shumon Huque, Ash Wilson
November 16th 2020
IETF 109; SecDispatch Working Group
Topics

● Background: DANE for client authentication (IOT, SMTP etc)
 ○ Pointers to drafts, ongoing/prior discussions; prior engagement with existing WGs
 ○ Pointers to other background material
 ○ Summarize who would want to advance this work (us, NIST, ICANN, LoRa)

● Current & Planned work:
 ○ Refresh and revise DANE TLS client authentication drafts
 ○ Interfaces for IoT applications
 ○ Planned upcoming work: expand scope to include IOT object security & cert discovery

● Desired outcome
 ○ Gauge interest, recruit more collaborators
 ○ Identify IETF venues for this work
DANE for TLS Client Authentication

● Original drafts developed in mid 2015
 ○ TLS Client Authentication via DANE TLSA Records:
 ○ TLS Extension to convey DANE Client Identity:

● Target use cases: IOT & SMTP Transport Security

● Presented at IETF93, July 2015, Prague, DANE Working Group
 ○ https://datatracker.ietf.org/meeting/93/materials/slides-93-dane-0
 ○ Subsequent discussion on list
 ○ DANE working group shutdown without recharter for new work; Authors did not have energy or
time to continue working on it (at that time)
 ○ Every now & then, we are approached by misc parties about reviving this work.
Protocol Summary

- **Client has a DNS domain name identity**
 - A public/private keypair a certificate binding the public key to the domain name
 - Corresponding DANE TLSA record published in DNS

- **(D)TLS server**
 - Sends Certificate Request message in handshake; extracts client identity from presented certificate, constructs TLSA record; queries, and validates DANE TLSA response

- **New TLS extension for conveying client’s identity**
 - For signaling support for DANE TLS client authentication (empty extension if signal only)
 - For conveying client DNS identity when used with TLS raw public key auth (RFC 7250)
 - Protect extension with ECH (Encrypted Client Hello) for privacy
Revising & Expanding the work

● Draft Revisions
 ○ Simplify SAN fields: dNSName & SRVname -> dNSName only
 ○ Record owner format changes; less prescriptive; more formats

● Object security applications of DANE
 ○ Neither TLSA or SMIMEA in their currently defined forms are ideally suited to this
 ○ TLSA is defined for TLS channel authentication
 ○ SMIMEA is object security for email applications. Its record format is defined in terms of email addresses, not necessarily ideally suited as an IOT identifier, etc.
 ○ New RRtype? Longer development and adoption lifecycle
 ○ Desired outcome: expand the scope of TLSA to cover object security

● DANE for Certificate Discovery
 ○ More on this later
Who wants to advance this work?

- Authors (of course)
- Colleagues at NIST, ICANN, LoRA Alliance and more ..
- DNSSEC and DANE proponents
Detailed Motivation

- **Identity:**
 - A name
 - A way to prove ownership of the name.

- **Value of an identity system:**
 - How widely-recognized is the name?
 - How resistant is the proof-of-identity to impersonation?

- **IoT challenges:**
 - Discovery of public key for message authentication/encryption -> proprietary APIs
 - Subjective entity names -> namespace collisions across CAs
 - Mfr to Enterprise PKI bootstrapping -> costly and time-consuming.
 - Constrained platforms, decoupled architecture
 - certdata.txt: 1.2MB Espressif ESP32 SOC: 4MB flash
DANE for IoT

DNS is the most widely-recognized namespace on the Internet

Public-key authentication is extremely resilient to impersonation

DANE binds **DNS** names to **public keys**.

- Eliminates naming collisions across CAs
- SDK for certificate discovery is already in the OS
- Attribution to responsible party via DNS hierarchy
- Current public key is always in DNS: **simplify certificate rotation**
- No need to distribute CA certs to devices: **discovery > distribution**
DANE for IoT: Implementation

- **DNS labels**
 - _device for organization/delegation point
 - a1b2c3._device.example.com
 - Similar to how _smimecert label ([RFC 8162](https://tools.ietf.org/html/rfc8162)) organizes email identities.
 - Does not carry [RFC 8162](https://tools.ietf.org/html/rfc8162)’s complexity for hashing email local part for DNS name.
 - Multiple sub-identities represented by left-hand labels (see [BCP 222](https://tools.ietf.org/html/bcp222))
 - Underscore challenge: disallowed for publicly trusted certificates.

- **Record type**
 - TLSA: Allows a variety of representations for certs.
 - No changes in record required for client certificates.

- **Not exclusively an IoT protocol**
 - This could also simplify B2B, microservices commsec (think _service label)
DANE for IoT: Simplification

Network authentication:
 802.1x, EAP-TLS

Transport authentication:
 Mutual TLS authentication
 DNS-SD/mDNS companion

Message authentication:
 Public key discovery

Authz Policy:
 Permitted communication can be described as simply as network ACLs
DANE for IoT: Network Authentication

- **Simplify RADIUS config/management**
 - Allow list is just a list of permitted entity DNS names
 - No CA certificate management
 - Less need to re-key to enterprise PKI

- **Simplify support for raw public keys:**
 - RFC 7250 - TLS with raw public keys
DANE for IoT: Transport Authentication

- **Traverse signing authorities**
 - DNS names are not bound to CA namespace guarantee
 - Any two devices with public keys in DNS may mutually authenticate

- **Complement existing discovery capabilities**
 - mDNS indicates services available and entity’s DANE id
 - DNS/DANE used to authenticate

- **Simplify configuration**
 - Permitted Interactions can be represented as simply as a L3ACL
 - `{CLIENT}` may authenticate to `{SERVER}`
DANE for IoT: Object Security

● Simplify object authentication
 ○ Message bears signer’s DNS name
 ○ Signer’s DNS name used to retrieve public key
 ○ No need to sync cert store with CA API

● Simplify object encryption
 ○ Sender uses recipient’s DNS name to retrieve public key
 ○ End-to-end encryption w/ DNS as public key discovery mechanism

● Simplify configuration
 ○ Permitted interaction patterns are simplified:
 ■ ${SENDER} may use ${MIDDLEWARE} to reach ${RECIPIENT}
DANE for IoT: Life with DANE

● **Identity suppliers**
 ○ Attribution via DNS hierarchy.
 ○ Owner can repudiate identity by deleting record.
 ○ Secure hardware can ship with immediately-usable DANE identity.

● **Implementers**
 ○ Describe interactions within applications using DNS names.
 ○ Reduce time to implement.

● **Application owners**
 ○ Authentication mechanism is not proprietary.
 ○ Pick best-of-breed components, based on standardized protocols.
 ○ Simplify application component lifecycle.
Current Work

DANE for Client Identity, Dane ClientID extension for TLS

Immediate protocol benefits:
- mTLS
- Oauth2 mTLS (RFC 8705)
- EAP-TLS: Use mfr-issued PKI for network authentication
Upcoming Work

DANE for certificate discovery

- DANE-lite: use TLSA for certificate discovery, PKIX authenticated cert
- Proposal: add a new Cert Usage mode (4: PKIX-CD)
- Ultimate goal is to use DNSSEC authenticated TLSA everywhere
- But as we know, DNSSEC is today very sparsely deployed, and this presents a significant challenge to DANE adoption
- Narrow use case allows initial adoption of DANE w/o DNSSEC
- Incentive to gradually realize DNSSEC benefits later

Immediate benefits: JOSE/COSE/OSCORE
How should the work continue?

Working group placement:

- TLS might be a good choice, given the mutual auth use case + extension
- UTA?
- DNSOP?
- A new working group?
- [Something else]
Discussion