SFrame
E2EE for Video Conferencing

IETF 109
eemadomara@google.com
Goals

- **Goals**
 - Security
 - Simplicity
 - Efficiency
 - Transport agnostic

- **Non Goals**
 - Signaling
 - Metadata payload format
 - Key exchange
Secure Frame

- A new protocol to end-to-end encrypt video conferences
- Encrypt the entire media frame instead of per packet encryption to reduce the overhead
- Transport agnostic as the encryption happens before packetization
- Simple to implement by the client and easy to adopt by existing media backends
- Compatible with existing packets fixing schemas like FEC
SFrame

- Mechanism to efficiently encrypt RTC traffic end to end
 - Encrypts the entire media frame rather than individual packets to minimize the overhead
 - Exposes only the metadata needed by the server to route the streams
 - Individual packets are still HBH encrypted
- SFrame keys are exchanged securely out of band between the endpoints
 - Each user has their own key to encrypt their outgoing traffic
 - Can be used with any KMS like Signal or MLS
 - Keys are exchanged via the signaling channel at the call setup and when the call participants changes
- The server can only access the media metadata but **can not access** the media contents
Wire Format

SFrame short header

SFrame long header

SFrame payload
Encryption Schema

- Each endpoint creates and securely exchange their master key.
- From the master key, SFrame derives 3 keys:
 - Encryption key to encrypt the media frame.
 - Authentication key to authenticate the encrypted frame. SFrame header and the media metadata.
 - Salt key to derive the IV.
- The entire payload is then split into smaller packets.
SFrame in WebRTC

- SFrame works with existing RTC frameworks like WebRTC
- The encryptor is injected after the frame is encoded and before it is packetized
- Media metadata are passed to the server using a special RTP header extension
- The server can construct the encrypted frame without access the contents
Open Issues
WebRTC Changes

- Changes needed from other WebRTC WG
 - Signaling SFrame
 - Signaling the use of SFrame in the SDP
 - RTP payload type
 - New RTP payload type for SFrame packets
 - Frame metadata RTP header extension
 - New RTP header extension to pass the frame metadata
Signature: Sign or not to Sign?

- To avoid impersonation by a malicious user, the frame needs to be signed
- Signature overhead is significant
- Proposals
 - Sign every N frame (Currently in the document)
 - Every N frame sends a signature over all hashes of the last N Frames
 - Sends the N hashes along the signature
 - Very complex
 - No Signature
 - Prefered
 - Update the document to remove the current signature schema
Partial Frames

- Some codecs like H264 uses smaller decodable units (NAL Units)
- The current specs supports only full frame
- Recipients won’t be able to decode the smaller unit until the entire frame is delivered and decrypted

Proposal
- Add support to encrypt partial frames
- Increase the overhead but adds more flexibility
Thank You!