Encryption for content

protection in streaming

SFrame WG - IETF 110
Dr Alex. Gouaillard

Two use cases - Two trust models

- Video Conference
- Client trusted (special case of web apps, see youenn slides)

- KMS trusted
|
o ——— - | R +
| Endpoint | | | Call Processing |
R - | R T +
|
|
Fomm e ——— - | B T
| Key Distributor| | | Media Distributor
e - | B e
|
Trusted | Untrusted
Entities | Entities
|

Figure 1: Trusted and Untrusted Entities in PERC

Two use cases - Two trust models

- Streaming

- Clients trusted (special case of webapp, see next slide)
- KMS trusted

- Ingest link trusted
- Media platform trusted (need raw access for transcoding)

- Only delivery is encrypted (DRM)
- Encryption is media transport protocol specific.

Encrypted Medla Extensions

W3C draft for playback protected

content using the HTMLMediaElement.

The standard doesn't specify the DRM
subsystem itself but provides a API to
interface/select a DRM subsystem.

Supported by almost all browsers using
various DRM platforms: Widewine,
Adobe DRM, PlayReady

License Server
1
A g § A ¢
Web Server may handle requests or g | §:
send them directly to License Server 5— ‘é Web Sewer 1
: ik
1
Y PR
......... Application
0 - T
Z‘ E‘ Y 3 4 g f | Dashed lines
e =Y S) | show an optional
-) o - c 1 [~
Opfiones : § 2 & 3 § A 1 3 R additional session
s -~ a § 5 Z 1 § ! g— (includes dotted
2 § . g ‘g = g S :C lines) or additional
. 3 . S ¢ B : | round trip.
: s o -
| —— MediaKeySession MeduaKeySeSSIon
Ne ia
L ‘_ {3‘
e L) . & M) =t
Browser g g 3 %’ 13 '3 |g: COM
3 < . 13 . .)
3 |8 § :3 .8 & 3 [’"":1';’;%'2:’,‘,’"&
Legend > |2 5 Y 47 n: 3 decrypted
g - - § - 1 § 3. ° ecryple
s - LS LIS S S L oo
Y= \ 4 | A A4 , A s
- Encrypted Key .
B Content Decryption Module (CDM) .
Command/Event ' CDM may use or defer P
5 G to platform capabilities \ 4 .
- - tional Eiasasannanall c oo
I Platform h ro @
2B

connect
(ST R B

Using PlayReady and/or Widevine DRM Dynamic Common Encryption

= "o
PlayReady

Viewers

Storage Stl'eamlng and/or
: ASH
=g Enpomt Dy Widevine
gl ' nor
‘_ VOD / Live —» IS ES HLS + and/or
FairPlay

' Smooth +PlayReady ¥

Q—Request DRM license —
DRM license —»

44— Authenticate —
—— |ssue token —p

Using PlayReady and/or Widevine DRM Dynamic Common Encryption

'-‘— VOD / Live ——» S

TRUSTED

Storage
E==- g

Streaming
Endpoint

EX

=

v

PlayReady
and/or
Widevine
PlayReady
andfor
FairPlay

Smooth +PlayReady —*

DASH +
/_

HLS +

— Request DRM license ——
DRM license —»

. 4—— Authenticate —

.-—— Issue token —p

UKD

Two use cases - Two trust models

- Streaming

- Ingest link trusted
=> this is changing, many social platforms have moved to RTMPS. It still requires that you
trust the platform.

- Media platform trusted (need raw access for transcoding)
=> many real-time platforms have a no-transcoding main path, and use simulcast or SVC
codecs for adaptation.

Question 1: What if | do not trust the platform, and want to use my own keys?

Question 2: What if | want to use current DRM infrastructures with a different
media transport, like webrtc?

gatgtgf Streamin PEVEr

i |

encoding IngeSt —» Storage —») g 5| Decrypt,

L Transc. endpoint decode,

p

encryption, oonde

streaming play
L KMS (I

Studio _

Capture, | t Streaming Player

encoding, [™ nges E— endpoint | Decrypt,

encryption, proxy oroxy dlgcggil,(

streaming play

A

Y

KMS

A

A

From the sender
perspective, with the
current system, the
platform must be trusted.

In the real time case,
where ABR is done
sender side, reusing the
proposed SFrame +
insertable frame + Native
Key Management
proposed by Apple
would achieve the same
content protection (as far
as delivery is concerned)
without needing to trust
the platform.

Devil is in the detall

It's likely more complicated than it seems.
There is the question of secure playback.
But there is something doable, and we will spend some time investigate anyway.

If anybody is interested, please join the effort.

