
ASPA: IETF109
Alexander Azimov, Yandex

a.e.azimov@gmail.com

mailto:a.e.Azimov@gmail.com


ASPA Object Profile

• There MUST be single object for each (AS, AFI)!

• There SHOULD be single object for each (AS, AFI) per registry!

• All ASPA objects for an (AS, AFI) SHOULD be the same!



ASPA Pair Verification

• Retrieve all cryptographically valid ASPAs in a selected AFI with a 
customer value of AS1. The union of SPAS forms the set of "Candidate 
Providers."

• If the set of Candidate Providers is empty, then the procedure exits 
with an outcome of "Unknown."

• If AS2 is included in the Candidate Providers, then the procedure exits 
with an outcome of "Valid."

• Otherwise, the procedure exits with an outcome of "Invalid."



ASPA Verification Procedure

• Beautiful ASCII drawings;

• Python code for verification procedures;

• Improved wording (special thanks to Jay Borkenhagen);



Terms

• Line goes up – route is announced from customer to provider;

• Line goes down – route is announced from provider to customer;

• Line goes straight – route is announced from peer to peer;

• The arrow shows the order of the ASPA check, not the route 
advertisement!



Upstream Path: Example

1

2

3

(1, 2), (2,3), (3,4) are Valid
The path is Valid

(1, 2) is Valid, (2, 3) is Invalid
The path is Invalid

4

1

2

3

4

5

5



Upstream Path: Formal Procedure

1. If the AS_PATH has zero length, then procedure halts with the outcome "Invalid";

2. If the last segment in the AS_PATH has type AS_SEQUENCE and its value isn't equal to 
receiver's neighbor AS, then procedure halts with the outcome "Invalid";

3. If there exists I such that Seg(I-1).type and Seg(I).type equal to AS_SEQUENCE, 
Seg(I-1).value != Seg(I).value and customer-provider verification procedure with 
parameters (Seg(I-1).value, Seg(I).value, AFI) returns "Invalid" then the procedure also 
halts with the outcome "Invalid";

4. If the AS_PATH has at least one AS_SET segment, then procedure halts with the 
outcome "Unverifiable";

5. If there exists I such that Seg(I-1).type and Seg(I).type equal to AS_SEQUENCE, 
Seg(I-1).value != Seg(I).value and customer-provider verification procedure with 
parameters (Seg(I-1).value, Seg(I).value, AFI) returns "Unknown" then the procedure 
also halts with the outcome "Unknown";

6. Otherwise, the procedure halts with an outcome of "Valid".



Downstream Paths: Example

1

2

3

(1, 2), (2,3), (3,4) are Valid
(4,5) is Invalid, but it’s OK!
(6,5), (7,6) are Valid
The path is Valid

(1, 2), (2,3), (3,4) are Valid
(4,5) is Invalid, but it’s OK!
(6,5) is Valid, (7,6) is Invalid
The path is Invalid

4 5

6

7

8 1

2

3

4 5

6 8

7



Downstream Paths: Formal Procedure

1. If the AS_PATH has zero length, then procedure halts with the outcome "Invalid";

2. If a route is received from a provider and the last segment in the AS_PATH has type AS_SEQUENCE and its value isn't 
equal to receiver's neighbor AS, then the procedure halts with the outcome "Invalid";

3. Let's define I_MIN as the minimal index for which Seg(I-1).type and Seg(I).type equal to AS_SEQUENCE, its values aren't 
equal and the verification procedure for (Seg(I-1).value, Seg(I).value, AFI) returns "Invalid".

4. If I_MIN doesn't exist put the length of AS_PATH in I_MIN variable and jump to 5.

5. If there exists J > I_MIN such that both Seg(J-1).type, Seg(J).type equal to AS_SEQUENCE, Seg(J-1).value != Seg(J).value 
and the customer-provider verification procedure returns "Invalid" for (Seg(J).value, Seg(J-1).value, AFI), then the 
procedure halts with the outcome "Invalid";

6. If the AS_PATH has at least one AS_SET, segment then procedure halts with the outcome "Unverifiable";

7. If there exists J > I_MIN such that both Seg(J-1).type, Seg(J).type equal to AS_SEQUENCE, Seg(J-1).value != Seg(J).value 
and the customer-provider verification procedure returns "Unknown" for (Seg(J).value, Seg(J-1).value, AFI), then the 
procedure halts with the outcome "Unknown";

8. If there exists I_MIN > J such that both Seg(J-1).type, Seg(J).type equal to AS_SEQUENCE, Seg(J-1).value != Seg(J).value 
and the customer-provider verification procedure returns "Unknown" for (Seg(J-1).value, Seg(J).value, AFI), then the 
procedure halts with the outcome "Unknown";

9. Otherwise, the procedure halts with an outcome of "Valid".



Questions

• Is WG happy with ASPA algorithm?

• Is WG happy with its formal language?

• Does Python code improve readability?

• Is WG willing to start WGLC?


