ECN++: Adding ECN to TCP Control Packets
draft-ietf-tcpm-generalized-ecn-06

Bob Briscoe, Independent
Marcelo Bagnulo, UC3M

IETF 109 Nov 2020

- Refreshed 05 → 06
- Minor changes
- In holding pattern, waiting for AccECN
More Accurate ECN Feedback in TCP

draft-ietf-tcpm-accurate-ecn-13

Bob Briscoe, Independent
Mirja Kühlewind, Ericsson
Richard Scheffenegger, NetApp

IETF 109 Nov 2020
Problem (Recap)
Congestion Existence, not Extent

- Explicit Congestion Notification (ECN)
 - routers/switches mark more packets as load grows
 - RFC3168 added ECN to IP and TCP

<table>
<thead>
<tr>
<th>IP-ECN</th>
<th>Codepoint</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>not-ECT</td>
<td>No ECN</td>
</tr>
<tr>
<td>10</td>
<td>ECT(0)</td>
<td>ECN-Capable Transport</td>
</tr>
<tr>
<td>01</td>
<td>ECT(1)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>CE</td>
<td>Congestion Experienced</td>
</tr>
</tbody>
</table>

• Problem with RFC3168 ECN feedback:
 - only one TCP feedback per RTT
 - rcvr repeats ECE flag for reliability, until sender's CWR flag acks it
 - suited TCP at the time – one congestion response per RTT
Solution (recap)
Congestion extent, not just existence

- AccECN: Change to TCP wire protocol
 - Repeated count of CE packets (ACE) - essential
 - and CE bytes (AccECN Option) – supplementary

- Key to congestion control for low queuing delay
 - 0.5 ms (vs. 5-15 ms) over public Internet

- Applicability: (see spare slide)
Activity since last update (Apr’20 interim)

-11 to -12 (28 Oct ‘20):
 - Minor editorial fixes

-12 to -13 (2 Nov ‘20)
 - Changed how to declare field order in AccECN TCP Option
 - SHOULD disable ECN if solid CE marking for a few rounds
 - Deeper and clearer recommendations for Proxies, offload engines and other middleboxes
Field Order of AccECN TCP Option

• How to distinguish 2 different field orders in the AccECN Option

 ● ExxB = Echo Byte counter xx, where xx = E0, E1, CE (each 3 B)

<table>
<thead>
<tr>
<th>kind0</th>
<th>length</th>
<th>EE0B</th>
<th>[ECEB]</th>
<th>[EE1B]</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind1</td>
<td>length</td>
<td>EE1B</td>
<td>[ECEB]</td>
<td>[EE0B]</td>
</tr>
</tbody>
</table>

• At IETF-109, two alternatives:
 1) Two Option Kinds [MScharf]
 2) Add flags byte to option [Ilpo]
 ● No other proposals forthcoming

• Concern: Absence of a flags byte limits extensibility

 ● But can we afford to burn 1B of option space on most packets?
 ● Already ‘forward compatibility’ to add flags byte if needed
 ● If length unrecognized, implementations MUST use as many 3-octet fields as fit

• Only choose the flags byte alternative, if prospect of other uses
 ● Only one proposal, but logic for Ilpo’s proposed 2-bit Cnt field seemed circular

• Conclusion: Two Option Kinds selected and written up
Testing for IP-ECN Mangling (§3.2.2.4)

● Recommended additional test (paraphrased):
 ● For first 3 or 4 rounds, AccECN Data Sender SHOULD check whether every packet it sent was CE-marked
 ● If so, it SHOULD NOT send ECN-capable packets, but it MUST continue to feed back any ECN markings

● Already current practice for Classic ECN
 ● in IoS, Linux, FreeBSD, at least
Recommendations for Middleboxes

Divided up existing section:

• Proxies (no change)

• Normalizers (no change)

• ACK Filtering
 • Made “SHOULD NOT coalesce” conditional on
 "If AccECN packet and middlebox can ECN mark”
 • Considerable list discussion

• Segmentation Offload
 • Described incremental deployment strategy
 • From today’s “Eject segment if ECN flags change at all”
 • To “Allow ACE field to change, but eject before wrap”
ecn-l4s-id gives requirements for what L4S CC RFCs will have to say

“Support for the accurate ECN feedback requirements [RFC7560] (such as that provided by AccECN [I-D.ietf-tcpm-accurate-ecn]) by both ends is a prerequisite for scalable congestion control in TCP.”
Status & Next Steps
draft-ietf-tcpm-accurate-ecn-13

• Ready for WGLC
• draft-ietf-tcpm-generalized-ecn dependent on this
• April’20 tcpm interim:
 • WG resolved to wait a while for L4S, but go ahead soon if still waiting
AccECN

Q&A

spare slides
Where AccECN Fits

- Can only enable AccECN if both TCP endpoints support it (1)
 - but no dependency on network changes
- Extends the feedback part of TCP wire protocol
- Foundation for new sender-only changes (and for existing TCP), e.g.
 - congestion controls (TBA):
 - 'TCP Prague' for L4S (2)
 - BBR+ECN
 - Full benefit of ECN-capable TCP control packets (ECN++) (3)

(1) Backwards compatible handshake
- SYN: offer AccECN
 SYN-ACK can accept AccECN, ECN or non-ECN
(2) Low Latency Low Loss Scalable throughput [draft-ietf-tsvwg-l4s-arch]
(3) Without AccECN, benefit of ECN++ excluded from SYN [draft-ietf-tcpm-generalized-ecn]