
Network Working Group                                           B. Aboba
Internet-Draft                                     Microsoft Corporation
Obsoletes: 3748 (if approved)                                   L. Blunk
Intended status: Standards Track                      Merit Network, Inc
Expires: August 26, 2021                                   J. Vollbrecht
                                               Vollbrecht Consulting LLC
                                                              J. Carlson
                                                   Sun Microsystems, Inc
                                                            H. Levkowetz
                                                          ipUnplugged AB
                                                          J. Arkko (Ed.)
                                                       J. Mattsson (Ed.)
                                                                Ericsson
                                                       February 22, 2021

                Extensible Authentication Protocol (EAP)
                     draft-arkko-emu-rfc3748bis-00

Abstract

   This document defines the Extensible Authentication Protocol (EAP),
   an authentication framework which supports multiple authentication
   methods.  EAP typically runs directly over data link layers such as
   Point-to-Point Protocol (PPP), IEEE 802, or 3GPP 5G without requiring
   IP.  EAP provides its own support for duplicate elimination and
   retransmission, but is reliant on lower layer ordering guarantees.
   Fragmentation is not supported within EAP itself; however, individual
   EAP methods may support this.

   This document obsoletes RFC 3748, which in turn obsoleted RFC 2284.
   This document updates some of the security considerations, terms,
   references, the IANA considerations, and few other minor updates.  A
   summary of the changes between this document and RFC 3748 is in
   Appendix A, and the changes from RFC 2284 were listed in RFC 3748.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
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   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 26, 2021.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   This document defines the Extensible Authentication Protocol (EAP),
   an authentication framework which supports multiple authentication
   methods.  EAP typically runs directly over data link layers such as
   Point-to-Point Protocol (PPP),IEEE 802, or 3GPP 5G without requiring
   IP.  EAP provides its own support for duplicate elimination and
   retransmission, but is reliant on lower layer ordering guarantees.
   Fragmentation is not supported within EAP itself; however, individual
   EAP methods may support this.

   EAP may be used on dedicated links, as well as switched circuits, and
   wired as well as wireless links.  To date, EAP has been implemented
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   with hosts and routers that connect via switched circuits or dial-up
   lines using PPP [RFC1661].  It has also been implemented with
   switches and access points using IEEE 802 [IEEE-802].  EAP
   encapsulation on IEEE 802 wired media is described in [IEEE-802.1X],
   and encapsulation on IEEE wireless LANs in [IEEE-802.11i].  EAP can
   be used for authentication in all types of accesses in 3GPP 5G
   [TS.33.501].

   One of the advantages of the EAP architecture is its flexibility.
   EAP is used to select a specific authentication mechanism, typically
   after the authenticator requests more information in order to
   determine the specific authentication method to be used.  Rather than
   requiring the authenticator to be updated to support each new
   authentication method, EAP permits the use of a backend
   authentication server, which may implement some or all authentication
   methods, with the authenticator acting as a pass-through for some or
   all methods and peers.

   Within this document, authenticator requirements apply regardless of
   whether the authenticator is operating as a pass-through or not.
   Where the requirement is meant to apply to either the authenticator
   or backend authentication server, depending on where the EAP
   authentication is terminated, the term "EAP server" will be used.

   Other aspects of the EAP framework are discussed in companion
   documents, [RFC4137] discusses a possible state machine, [RFC5113]
   defines the network discovery and selection problem, [RFC5247]
   specifies the EAP key hierarchy, [RFC6677] and [RFC7029] explores
   man-in-the-middle attacks as well as defining how to implement
   channel bindings.

   While the authors believe that the update from RFC 3748 is useful, it
   is by no means something that absolute has to be done, but has been
   provided for the community’s consideration as part of an overall
   interest in maintaining the technology and its documentation.  If we
   care about a technology we should keep it up to date.  The authors
   believe that it is preferable to have ongoing maintenance that
   addresses issues when they are identified, rather than waiting for a
   larger but more infrequent update.  The specific changes are
   discussed in Appendix A, and the rationale for the terminology-
   related parts of the change is discussed in more detail in
   Appendix B.

   This update proposal is brought forward for discussion.  Discussion
   may find that the update is considered useful or unnecessary, or
   perhaps even a distracton or flawed in some of its definitions.  All
   feedback is welcome!
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1.1.  Specification of Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

1.2.  Terminology

   This document frequently uses the following terms:

   authenticator

      The end of the link initiating EAP authentication.  The term
      authenticator is used in [IEEE-802.1X], and has the same meaning
      in this document.

   peer

      The end of the link that responds to the authenticator.  In
      [IEEE-802.1X], this end is known as the Supplicant.

   Supplicant

      The end of the link that responds to the authenticator in
      [IEEE-802.1X].  In this document, this end of the link is called
      the peer.

   backend authentication server

      A backend authentication server is an entity that provides an
      authentication service to an authenticator.  When used, this
      server typically executes EAP methods for the authenticator.  This
      terminology is also used in [IEEE-802.1X].

   AAA

      Authentication, Authorization, and Accounting.  AAA protocols with
      EAP support include RADIUS [RFC3579] and Diameter [RFC4072].  In
      this document, the terms "AAA server" and "backend authentication
      server" are used interchangeably.

   Displayable Message

      This is interpreted to be a human readable string of characters.
      The message encoding MUST follow the UTF-8 transformation format
      [RFC3629].
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   EAP server

      The entity that terminates the EAP authentication method with the
      peer.  In the case where no backend authentication server is used,
      the EAP server is part of the authenticator.  In the case where
      the authenticator operates in pass-through mode, the EAP server is
      located on the backend authentication server.

   Silently Discard

      This means the implementation discards the packet without further
      processing.  The implementation SHOULD provide the capability of
      logging the event, including the contents of the silently
      discarded packet, and SHOULD record the event in a statistics
      counter.

   Successful Authentication

      In the context of this document, "successful authentication" is an
      exchange of EAP messages, as a result of which the authenticator
      decides to allow access by the peer, and the peer decides to use
      this access.  The authenticator’s decision typically involves both
      authentication and authorization aspects; the peer may
      successfully authenticate to the authenticator, but access may be
      denied by the authenticator due to policy reasons.

   Message Integrity Check (MIC)

      A keyed hash function used for authentication and integrity
      protection of data.  This is usually called a Message
      Authentication Code (MAC), but IEEE 802 specifications (and this
      document) use the acronym MIC to avoid confusion with Medium
      Access Control.

   Cryptographic Separation

      Two keys (x and y) are "cryptographically separate" if an
      adversary that knows all messages exchanged in the protocol cannot
      compute x from y or y from x without "breaking" some cryptographic
      assumption.  In particular, this definition allows that the
      adversary has the knowledge of all nonces sent in cleartext, as
      well as all predictable counter values used in the protocol.
      Breaking a cryptographic assumption would typically require
      inverting a one-way function or predicting the outcome of a
      cryptographic pseudo-random number generator without knowledge of
      the secret state.  In other words, if the keys are
      cryptographically separate, there is no shortcut to compute x from
      y or y from x, but the work an adversary must do to perform this
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      computation is equivalent to performing an exhaustive search for
      the secret state value.

   Main Session Key (MSK)

      Keying material that is derived between the EAP peer and server
      and exported by the EAP method.  The MSK is at least 64 octets in
      length.  In existing implementations, a AAA server acting as an
      EAP server transports the MSK to the authenticator.

   Extended Main Session Key (EMSK)

      Additional keying material derived between the EAP client and
      server that is exported by the EAP method.  The EMSK is at least
      64 octets in length.  The EMSK is not shared with the
      authenticator or any other third party.  The EMSK is reserved for
      future uses that are not defined yet.

   Result indications

      A method provides result indications if after the method’s last
      message is sent and received:

      1.  The peer is aware of whether it has authenticated the server,
          as well as whether the server has authenticated it.

      2.  The server is aware of whether it has authenticated the peer,
          as well as whether the peer has authenticated it.

   In the case where successful authentication is sufficient to
   authorize access, then the peer and authenticator will also know if
   the other party is willing to provide or accept access.  This may not
   always be the case.  An authenticated peer may be denied access due
   to lack of authorization (e.g., session limit) or other reasons.
   Since the EAP exchange is run between the peer and the server, other
   nodes (such as AAA proxies) may also affect the authorization
   decision.  This is discussed in more detail in Section 7.16.

1.3.  Applicability

   EAP was designed for use in network access authentication, where IP
   layer connectivity may not be available.  Use of EAP for other
   purposes, such as bulk data transport, is NOT RECOMMENDED.

   Since EAP does not require IP connectivity, it provides just enough
   support for the reliable transport of authentication protocols, and
   no more.
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   EAP is a lock-step protocol which only supports a single packet in
   flight.  As a result, EAP cannot efficiently transport bulk data,
   unlike transport protocols such as TCP [RFC0793] or SCTP [RFC4960].

   While EAP provides support for retransmission, it assumes ordering
   guarantees provided by the lower layer, so out of order reception is
   not supported.

   Since EAP does not support fragmentation and reassembly, EAP
   authentication methods generating payloads larger than the minimum
   EAP MTU need to provide fragmentation support.

   While authentication methods such as EAP-TLS
   [RFC5216][I-D.ietf-emu-eap-tls13] provide support for fragmentation
   and reassembly, the EAP methods defined in this document do not.  As
   a result, if the EAP packet size exceeds the EAP MTU of the link,
   these methods will encounter difficulties.

   EAP authentication is initiated by the server (authenticator),
   whereas many authentication protocols are initiated by the client
   (peer).  As a result, it may be necessary for an authentication
   algorithm to add one or two additional messages (at most one
   roundtrip) in order to run over EAP.

   Where certificate-based authentication is supported, the number of
   additional roundtrips may be much larger due to fragmentation of
   certificate chains.  In general, a fragmented EAP packet will require
   as many round-trips to send as there are fragments.  For example, a
   certificate chain 14960 octets in size would require ten round-trips
   to send with a 1496 octet EAP MTU.

   Where EAP runs over a lower layer in which significant packet loss is
   experienced, or where the connection between the authenticator and
   authentication server experiences significant packet loss, EAP
   methods requiring many round-trips can experience difficulties.  In
   these situations, use of EAP methods with fewer roundtrips is
   advisable.

2.  Extensible Authentication Protocol (EAP)

   The EAP authentication exchange proceeds as follows:

   1.  The authenticator sends a Request to authenticate the peer.  The
       Request has a Type field to indicate what is being requested.
       Examples of Request Types include Identity, MD5-challenge, etc.
       The MD5-challenge Type corresponds closely to the CHAP
       authentication protocol [RFC1994].  Typically, the authenticator
       will send an initial Identity Request; however, an initial
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       Identity Request is not required, and MAY be bypassed.  For
       example, the identity may not be required where it is determined
       by the port to which the peer has connected (leased lines,
       dedicated switch or dial-up ports), or where the identity is
       obtained in another fashion (via calling station identity or MAC
       address, in the Name field of the MD5-Challenge Response, etc.).

   2.  The peer sends a Response packet in reply to a valid Request.  As
       with the Request packet, the Response packet contains a Type
       field, which corresponds to the Type field of the Request.

   3.  The authenticator sends an additional Request packet, and the
       peer replies with a Response.  The sequence of Requests and
       Responses continues as long as needed.  EAP is a ’lock step’
       protocol, so that other than the initial Request, a new Request
       cannot be sent prior to receiving a valid Response.  The
       authenticator is responsible for retransmitting requests as
       described in Section 4.1.  After a suitable number of
       retransmissions, the authenticator SHOULD end the EAP
       conversation.  The authenticator MUST NOT send a Success or
       Failure packet when retransmitting or when it fails to get a
       response from the peer.

   4.  The conversation continues until the authenticator cannot
       authenticate the peer (unacceptable Responses to one or more
       Requests), in which case the authenticator implementation MUST
       transmit an EAP Failure (Code 4).  Alternatively, the
       authentication conversation can continue until the authenticator
       determines that successful authentication has occurred, in which
       case the authenticator MUST transmit an EAP Success (Code 3).

   Advantages:

   o  The EAP protocol can support multiple authentication mechanisms
      without having to pre-negotiate a particular one.

   o  Network Access Server (NAS) devices (e.g., a switch or access
      point) do not have to understand each authentication method and
      MAY act as a pass-through agent for a backend authentication
      server.  Support for pass-through is optional.  An authenticator
      MAY authenticate local peers, while at the same time acting as a
      pass-through for non-local peers and authentication methods it
      does not implement locally.

   o  Separation of the authenticator from the backend authentication
      server simplifies credentials management and policy decision
      making.
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   Disadvantages:

   o  For use in PPP, EAP requires the addition of a new authentication
      Type to PPP LCP and thus PPP implementations will need to be
      modified to use it.  It also strays from the previous PPP
      authentication model of negotiating a specific authentication
      mechanism during LCP.  Similarly, switch or access point
      implementations need to support [IEEE-802.1X] in order to use EAP.

   o  Where the authenticator is separate from the backend
      authentication server, this complicates the security analysis and,
      if needed, key distribution.

2.1.  Support for Sequences

   An EAP conversation MAY utilize a sequence of methods.  A common
   example of this is an Identity request followed by a single EAP
   authentication method such as an MD5-Challenge.  However, the peer
   and authenticator MUST utilize only one authentication method (Type 4
   or greater) within an EAP conversation, after which the authenticator
   MUST send a Success or Failure packet.

   Once a peer has sent a Response of the same Type as the initial
   Request, an authenticator MUST NOT send a Request of a different Type
   prior to completion of the final round of a given method (with the
   exception of a Notification-Request) and MUST NOT send a Request for
   an additional method of any Type after completion of the initial
   authentication method; a peer receiving such Requests MUST treat them
   as invalid, and silently discard them.  As a result, Identity Requery
   is not supported.

   A peer MUST NOT send a Nak (legacy or expanded) in reply to a Request
   after an initial non-Nak Response has been sent.  Since spoofed EAP
   Request packets may be sent by an attacker, an authenticator
   receiving an unexpected Nak SHOULD discard it and log the event.

   Multiple authentication methods within an EAP conversation are not
   supported due to their vulnerability to man-in-the-middle attacks
   (see Section 7.4) and incompatibility with existing implementations.

   Where a single EAP authentication method is utilized, but other
   methods are run within it (a "tunneled" method), the prohibition
   against multiple authentication methods does not apply.  Such
   "tunneled" methods appear as a single authentication method to EAP.
   Backward compatibility can be provided, since a peer not supporting a
   "tunneled" method can reply to the initial EAP-Request with a Nak
   (legacy or expanded).  To address security vulnerabilities,
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   "tunneled" methods MUST support protection against man-in-the-middle
   attacks.

2.2.  EAP Multiplexing Model

   Conceptually, EAP implementations consist of the following
   components:

   1.  Lower layer.  The lower layer is responsible for transmitting and
       receiving EAP frames between the peer and authenticator.  EAP has
       been run over a variety of lower layers including PPP, wired IEEE
       802 LANs [IEEE-802.1X], IEEE 802.11 wireless LANs [IEEE-802.11],
       UDP (L2TP [RFC2661] and IKEv2 [RFC7296]), TCP
       [I-D.ietf-ipsra-pic], and 3GPP 5G [TS.33.501].  Lower layer
       behavior is discussed in Section 3.

   2.  EAP layer.  The EAP layer receives and transmits EAP packets via
       the lower layer, implements duplicate detection and
       retransmission, and delivers and receives EAP messages to and
       from the EAP peer and authenticator layers.

   3.  EAP peer and authenticator layers.  Based on the Code field, the
       EAP layer demultiplexes incoming EAP packets to the EAP peer and
       authenticator layers.  Typically, an EAP implementation on a
       given host will support either peer or authenticator
       functionality, but it is possible for a host to act as both an
       EAP peer and authenticator.  In such an implementation both EAP
       peer and authenticator layers will be present.

   4.  EAP method layers.  EAP methods implement the authentication
       algorithms and receive and transmit EAP messages via the EAP peer
       and authenticator layers.  Since fragmentation support is not
       provided by EAP itself, this is the responsibility of EAP
       methods, which are discussed in Section 5.

   The EAP multiplexing model is illustrated in Figure 1 below.  Note
   that there is no requirement that an implementation conform to this
   model, as long as the on-the-wire behavior is consistent with it.

Aboba, et al.            Expires August 26, 2021               [Page 11]



Internet-Draft                     EAP                     February 2021

         +-+-+-+-+-+-+-+-+-+-+-+-+  +-+-+-+-+-+-+-+-+-+-+-+-+
         |           |           |  |           |           |
         | EAP method| EAP method|  | EAP method| EAP method|
         | Type = X  | Type = Y  |  | Type = X  | Type = Y  |
         |       V   |           |  |       ^   |           |
         +-+-+-+-!-+-+-+-+-+-+-+-+  +-+-+-+-!-+-+-+-+-+-+-+-+
         |       !               |  |       !               |
         |  EAP  ! Peer layer    |  |  EAP  ! Auth. layer   |
         |       !               |  |       !               |
         +-+-+-+-!-+-+-+-+-+-+-+-+  +-+-+-+-!-+-+-+-+-+-+-+-+
         |       !               |  |       !               |
         |  EAP  ! layer         |  |  EAP  ! layer         |
         |       !               |  |       !               |
         +-+-+-+-!-+-+-+-+-+-+-+-+  +-+-+-+-!-+-+-+-+-+-+-+-+
         |       !               |  |       !               |
         | Lower ! layer         |  | Lower ! layer         |
         |       !               |  |       !               |
         +-+-+-+-!-+-+-+-+-+-+-+-+  +-+-+-+-!-+-+-+-+-+-+-+-+
                 !                          !
                 !   Peer                   ! Authenticator
                 +------------>-------------+

                      Figure 1: EAP Multiplexing Model

   Within EAP, the Code field functions much like a protocol number in
   IP.  It is assumed that the EAP layer demultiplexes incoming EAP
   packets according to the Code field.  Received EAP packets with
   Code=1 (Request), 3 (Success), and 4 (Failure) are delivered by the
   EAP layer to the EAP peer layer, if implemented.  EAP packets with
   Code=2 (Response) are delivered to the EAP authenticator layer, if
   implemented.

   Within EAP, the Type field functions much like a port number in UDP
   or TCP.  It is assumed that the EAP peer and authenticator layers
   demultiplex incoming EAP packets according to their Type, and deliver
   them only to the EAP method corresponding to that Type.  An EAP
   method implementation on a host may register to receive packets from
   the peer or authenticator layers, or both, depending on which role(s)
   it supports.

   Since EAP authentication methods may wish to access the Identity,
   implementations SHOULD make the Identity Request and Response
   accessible to authentication methods (Types 4 or greater), in
   addition to the Identity method.  The Identity Type is discussed in
   Section 5.1.

   A Notification Response is only used as confirmation that the peer
   received the Notification Request, not that it has processed it, or
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   displayed the message to the user.  It cannot be assumed that the
   contents of the Notification Request or Response are available to
   another method.  The Notification Type is discussed in Section 5.2.

   Nak (Type 3) or Expanded Nak (Type 254) are utilized for the purposes
   of method negotiation.  Peers respond to an initial EAP Request for
   an unacceptable Type with a Nak Response (Type 3) or Expanded Nak
   Response (Type 254).  It cannot be assumed that the contents of the
   Nak Response(s) are available to another method.  The Nak Type(s) are
   discussed in Section 5.3.

   EAP packets with Codes of Success or Failure do not include a Type
   field, and are not delivered to an EAP method.  Success and Failure
   are discussed in Section 4.2.

   Given these considerations, the Success, Failure, Nak Response(s),
   and Notification Request/Response messages MUST NOT be used to carry
   data destined for delivery to other EAP methods.

2.3.  Pass-Through Behavior

   When operating as a "pass-through authenticator", an authenticator
   performs checks on the Code, Identifier, and Length fields as
   described in Section 4.1.  It forwards EAP packets received from the
   peer and destined to its authenticator layer to the backend
   authentication server; packets received from the backend
   authentication server destined to the peer are forwarded to it.

   A host receiving an EAP packet may only do one of three things with
   it: act on it, drop it, or forward it.  The forwarding decision is
   typically based only on examination of the Code, Identifier, and
   Length fields.  A pass-through authenticator implementation MUST be
   capable of forwarding EAP packets received from the peer with Code=2
   (Response) to the backend authentication server.  It also MUST be
   capable of receiving EAP packets from the backend authentication
   server and forwarding EAP packets of Code=1 (Request), Code=3
   (Success), and Code=4 (Failure) to the peer.

   Unless the authenticator implements one or more authentication
   methods locally which support the authenticator role, the EAP method
   layer header fields (Type, Type-Data) are not examined as part of the
   forwarding decision.  Where the authenticator supports local
   authentication methods, it MAY examine the Type field to determine
   whether to act on the packet itself or forward it.  Compliant pass-
   through authenticator implementations MUST by default forward EAP
   packets of any Type.
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   EAP packets received with Code=1 (Request), Code=3 (Success), and
   Code=4 (Failure) are demultiplexed by the EAP layer and delivered to
   the peer layer.  Therefore, unless a host implements an EAP peer
   layer, these packets will be silently discarded.  Similarly, EAP
   packets received with Code=2 (Response) are demultiplexed by the EAP
   layer and delivered to the authenticator layer.  Therefore, unless a
   host implements an EAP authenticator layer, these packets will be
   silently discarded.  The behavior of a "pass-through peer" is
   undefined within this specification, and is unsupported by AAA
   protocols such as RADIUS [RFC3579] and Diameter [RFC4072].

   The forwarding model is illustrated in Figure 2.

        Peer         Pass-through Authenticator   Authentication
                                                      Server

   +-+-+-+-+-+-+                                   +-+-+-+-+-+-+
   |           |                                   |           |
   |EAP method |                                   |EAP method |
   |     V     |                                   |     ^     |
   +-+-+-!-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-!-+-+-+
   |     !     |   |EAP  |  EAP  |             |   |     !     |
   |     !     |   |Peer |  Auth.| EAP Auth.   |   |     !     |
   |EAP  ! peer|   |     | +-----------+       |   |EAP  !Auth.|
   |     !     |   |     | !     |     !       |   |     !     |
   +-+-+-!-+-+-+   +-+-+-+-!-+-+-+-+-+-!-+-+-+-+   +-+-+-!-+-+-+
   |     !     |   |       !     |     !       |   |     !     |
   |EAP  !layer|   |   EAP !layer| EAP !layer  |   |EAP  !layer|
   |     !     |   |       !     |     !       |   |     !     |
   +-+-+-!-+-+-+   +-+-+-+-!-+-+-+-+-+-!-+-+-+-+   +-+-+-!-+-+-+
   |     !     |   |       !     |     !       |   |     !     |
   |Lower!layer|   |  Lower!layer| AAA ! /IP   |   | AAA ! /IP |
   |     !     |   |       !     |     !       |   |     !     |
   +-+-+-!-+-+-+   +-+-+-+-!-+-+-+-+-+-!-+-+-+-+   +-+-+-!-+-+-+
         !                 !           !                 !
         !                 !           !                 !
         +-------->--------+           +--------->-------+

                   Figure 2: Pass-through Authenticator

   For sessions in which the authenticator acts as a pass-through, it
   MUST determine the outcome of the authentication solely based on the
   Accept/Reject indication sent by the backend authentication server;
   the outcome MUST NOT be determined by the contents of an EAP packet
   sent along with the Accept/Reject indication, or the absence of such
   an encapsulated EAP packet.
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2.4.  Peer-to-Peer Operation

   Since EAP is a peer-to-peer protocol, an independent and simultaneous
   authentication may take place in the reverse direction (depending on
   the capabilities of the lower layer).  Both ends of the link may act
   as authenticators and peers at the same time.  In this case, it is
   necessary for both ends to implement EAP authenticator and peer
   layers.  In addition, the EAP method implementations on both peers
   must support both authenticator and peer functionality.

   Although EAP supports peer-to-peer operation, some EAP
   implementations, methods, AAA protocols, and link layers may not
   support this.  Some EAP methods may support asymmetric
   authentication, with one type of credential being required for the
   peer and another type for the authenticator.  Hosts supporting peer-
   to-peer operation with such a method would need to be provisioned
   with both types of credentials.

   For example, EAP-TLS [RFC5216][I-D.ietf-emu-eap-tls13] is a client-
   server protocol in which distinct certificate profiles are typically
   utilized for the client and server.  This implies that a host
   supporting peer-to-peer authentication with EAP-TLS would need to
   implement both the EAP peer and authenticator layers, support both
   peer and authenticator roles in the EAP-TLS implementation, and
   provision certificates appropriate for each role.

   AAA protocols such as RADIUS/EAP [RFC3579] and Diameter EAP [RFC4072]
   only support "pass-through authenticator" operation.  As noted in
   [RFC3579] Section 2.6.2, a RADIUS server responds to an Access-
   Request encapsulating an EAP-Request, Success, or Failure packet with
   an Access-Reject.  There is therefore no support for "pass-through
   peer" operation.

   Even where a method is used which supports mutual authentication and
   result indications, several considerations may dictate that two EAP
   authentications (one in each direction) are required.  These include:

   1.  Support for bi-directional session key derivation in the lower
       layer.  Lower layers such as IEEE 802.11 may only support uni-
       directional derivation and transport of transient session keys.
       For example, the group-key handshake defined in [IEEE-802.11i] is
       uni-directional, since in IEEE 802.11 infrastructure mode, only
       the Access Point (AP) sends multicast/broadcast traffic.  In IEEE
       802.11 ad hoc mode, where either peer may send multicast/
       broadcast traffic, two uni-directional group-key exchanges are
       required.  Due to limitations of the design, this also implies
       the need for unicast key derivations and EAP method exchanges to
       occur in each direction.
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   2.  Support for tie-breaking in the lower layer.  Lower layers such
       as IEEE 802.11 ad hoc do not support "tie breaking" wherein two
       hosts initiating authentication with each other will only go
       forward with a single authentication.  This implies that even if
       802.11 were to support a bi-directional group-key handshake, then
       two authentications, one in each direction, might still occur.

   3.  Peer policy satisfaction.  EAP methods may support result
       indications, enabling the peer to indicate to the EAP server
       within the method that it successfully authenticated the EAP
       server, as well as for the server to indicate that it has
       authenticated the peer.  However, a pass-through authenticator
       will not be aware that the peer has accepted the credentials
       offered by the EAP server, unless this information is provided to
       the authenticator via the AAA protocol.  The authenticator SHOULD
       interpret the receipt of a key attribute within an Accept packet
       as an indication that the peer has successfully authenticated the
       server.

   However, it is possible that the EAP peer’s access policy was not
   satisfied during the initial EAP exchange, even though mutual
   authentication occurred.  For example, the EAP authenticator may not
   have demonstrated authorization to act in both peer and authenticator
   roles.  As a result, the peer may require an additional
   authentication in the reverse direction, even if the peer provided an
   indication that the EAP server had successfully authenticated to it.

3.  Lower Layer Behavior

3.1.  Lower Layer Requirements

   EAP makes the following assumptions about lower layers:

   1.  Unreliable transport.  In EAP, the authenticator retransmits
       Requests that have not yet received Responses so that EAP does
       not assume that lower layers are reliable.  Since EAP defines its
       own retransmission behavior, it is possible (though undesirable)
       for retransmission to occur both in the lower layer and the EAP
       layer when EAP is run over a reliable lower layer.

       Note that EAP Success and Failure packets are not retransmitted.
       Without a reliable lower layer, and with a non-negligible error
       rate, these packets can be lost, resulting in timeouts.  It is
       therefore desirable for implementations to improve their
       resilience to loss of EAP Success or Failure packets, as
       described in Section 4.2.
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   2.  Lower layer error detection.  While EAP does not assume that the
       lower layer is reliable, it does rely on lower layer error
       detection (e.g., CRC, Checksum, MIC, etc.).  EAP methods may not
       include a MIC, or if they do, it may not be computed over all the
       fields in the EAP packet, such as the Code, Identifier, Length,
       or Type fields.  As a result, without lower layer error
       detection, undetected errors could creep into the EAP layer or
       EAP method layer header fields, resulting in authentication
       failures.

       For example, EAP TLS [RFC5216][I-D.ietf-emu-eap-tls13], which
       computes its MIC over the Type-Data field only, regards MIC
       validation failures as a fatal error.  Without lower layer error
       detection, this method, and others like it, will not perform
       reliably.

   3.  Lower layer security.  EAP does not require lower layers to
       provide security services such as per-packet confidentiality,
       authentication, integrity, and replay protection.  However, where
       these security services are available, EAP methods supporting Key
       Derivation (see Section 7.2.1) can be used to provide dynamic
       keying material.  This makes it possible to bind the EAP
       authentication to subsequent data and protect against data
       modification, spoofing, or replay.  See Section 7.1 for details.

   4.  Minimum MTU.  EAP is capable of functioning on lower layers that
       provide an EAP MTU size of 1020 octets or greater.

       EAP does not support path MTU discovery, and fragmentation and
       reassembly is not supported by EAP, nor by the methods defined in
       this specification: Identity (1), Notification (2), Nak Response
       (3), MD5-Challenge (4), One Time Password (5), Generic Token Card
       (6), and expanded Nak Response (254) Types.

       Typically, the EAP peer obtains information on the EAP MTU from
       the lower layers and sets the EAP frame size to an appropriate
       value.  Where the authenticator operates in pass-through mode,
       the authentication server does not have a direct way of
       determining the EAP MTU, and therefore relies on the
       authenticator to provide it with this information, such as via
       the Framed-MTU attribute, as described in [RFC3579], Section 2.4.

       While methods such as EAP-TLS [RFC5216][I-D.ietf-emu-eap-tls13]
       support fragmentation and reassembly, EAP methods originally
       designed for use within PPP where a 1500 octet MTU is guaranteed
       for control frames (see [RFC1661], Section 6.1) may lack
       fragmentation and reassembly features.
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       EAP methods can assume a minimum EAP MTU of 1020 octets in the
       absence of other information.  EAP methods SHOULD include support
       for fragmentation and reassembly if their payloads can be larger
       than this minimum EAP MTU.

       EAP is a lock-step protocol, which implies a certain inefficiency
       when handling fragmentation and reassembly.  Therefore, if the
       lower layer supports fragmentation and reassembly (such as where
       EAP is transported over IP), it may be preferable for
       fragmentation and reassembly to occur in the lower layer rather
       than in EAP.  This can be accomplished by providing an
       artificially large EAP MTU to EAP, causing fragmentation and
       reassembly to be handled within the lower layer.

   5.  Possible duplication.  Where the lower layer is reliable, it will
       provide the EAP layer with a non-duplicated stream of packets.
       However, while it is desirable that lower layers provide for non-
       duplication, this is not a requirement.  The Identifier field
       provides both the peer and authenticator with the ability to
       detect duplicates.

   6.  Ordering guarantees.  EAP does not require the Identifier to be
       monotonically increasing, and so is reliant on lower layer
       ordering guarantees for correct operation.  EAP was originally
       defined to run on PPP, and [RFC1661] Section 1 has an ordering
       requirement:

       "The Point-to-Point Protocol is designed for simple links which
       transport packets between two peers.  These links provide full-
       duplex simultaneous bi-directional operation, and are assumed to
       deliver packets in order."

       Lower layer transports for EAP MUST preserve ordering between a
       source and destination at a given priority level (the ordering
       guarantee provided by [IEEE-802]).

       Reordering, if it occurs, will typically result in an EAP
       authentication failure, causing EAP authentication to be re-run.
       In an environment in which reordering is likely, it is therefore
       expected that EAP authentication failures will be common.  It is
       RECOMMENDED that EAP only be run over lower layers that provide
       ordering guarantees; running EAP over raw IP or UDP transport is

       NOT RECOMMENDED.  Encapsulation of EAP within RADIUS [RFC3579]
       satisfies ordering requirements, since RADIUS is a "lockstep"
       protocol that delivers packets in order.
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3.2.  EAP Usage Within PPP

   In order to establish communications over a point-to-point link, each
   end of the PPP link first sends LCP packets to configure the data
   link during the Link Establishment phase.  After the link has been
   established, PPP provides for an optional Authentication phase before
   proceeding to the Network-Layer Protocol phase.

   By default, authentication is not mandatory.  If authentication of
   the link is desired, an implementation MUST specify the
   Authentication Protocol Configuration Option during the Link
   Establishment phase.

   If the identity of the peer has been established in the
   Authentication phase, the server can use that identity in the
   selection of options for the following network layer negotiations.

   When implemented within PPP, EAP does not select a specific
   authentication mechanism at the PPP Link Control Phase, but rather
   postpones this until the Authentication Phase.  This allows the
   authenticator to request more information before determining the
   specific authentication mechanism.  This also permits the use of a
   "backend" server which actually implements the various mechanisms
   while the PPP authenticator merely passes through the authentication
   exchange.  The PPP Link Establishment and Authentication phases, and
   the Authentication Protocol Configuration Option, are defined in The
   Point-to-Point Protocol (PPP) [RFC1661].

3.2.1.  PPP Configuration Option Format

   A summary of the PPP Authentication Protocol Configuration Option
   format to negotiate EAP follows.  The fields are transmitted from
   left to right.

   Exactly one EAP packet is encapsulated in the Information field of a
   PPP Data Link Layer frame where the protocol field indicates type hex
   C227 (PPP EAP).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |    Length     |     Authentication Protocol   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type

      3
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   Length

      4

   Authentication Protocol

      C227 (Hex) for Extensible Authentication Protocol (EAP)

3.3.  EAP Usage Within IEEE 802

   The encapsulation of EAP over IEEE 802 is defined in [IEEE-802.1X].
   The IEEE 802 encapsulation of EAP does not involve PPP, and IEEE
   802.1X does not include support for link or network layer
   negotiations.  As a result, within IEEE 802.1X, it is not possible to
   negotiate non-EAP authentication mechanisms, such as PAP or CHAP
   [RFC1994].

3.4.  Lower Layer Indications

   The reliability and security of lower layer indications is dependent
   on the lower layer.  Since EAP is media independent, the presence or
   absence of lower layer security is not taken into account in the
   processing of EAP messages.

   To improve reliability, if a peer receives a lower layer success
   indication as defined in Section 7.12, it MAY conclude that a Success
   packet has been lost, and behave as if it had actually received a
   Success packet.  This includes choosing to ignore the Success in some
   circumstances as described in Section 4.2.  See also protected result
   indications in Section 7.16.

   A discussion of some reliability and security issues with lower layer
   indications in PPP, IEEE 802 wired networks, and IEEE 802.11 wireless
   LANs can be found in the Security Considerations, Section 7.12.

   After EAP authentication is complete, the peer will typically
   transmit and receive data via the authenticator.  It is desirable to
   provide assurance that the entities transmitting data are the same
   ones that successfully completed EAP authentication.  To accomplish
   this, it is necessary for the lower layer to provide per-packet
   integrity, authentication and replay protection, and to bind these
   per-packet services to the keys derived during EAP authentication.
   Otherwise, it is possible for subsequent data traffic to be modified,
   spoofed, or replayed.

   Where keying material for the lower layer ciphersuite is itself
   provided by EAP, ciphersuite negotiation and key activation are
   controlled by the lower layer.  In PPP, ciphersuites are negotiated

Aboba, et al.            Expires August 26, 2021               [Page 20]



Internet-Draft                     EAP                     February 2021

   within ECP so that it is not possible to use keys derived from EAP
   authentication until the completion of ECP.  Therefore, an initial
   EAP exchange cannot be protected by a PPP ciphersuite, although EAP
   re-authentication can be protected.

   In IEEE 802 media, initial key activation also typically occurs after
   completion of EAP authentication.  Therefore an initial EAP exchange
   typically cannot be protected by the lower layer ciphersuite,
   although an EAP re-authentication or pre-authentication exchange can
   be protected.

4.  EAP Packet Format

   A summary of the EAP packet format is shown below.  The fields are
   transmitted from left to right.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Data ...
   +-+-+-+-+

   Code

      The Code field is one octet and identifies the Type of EAP packet.
      EAP Codes are assigned as follows:

         1       Request
         2       Response
         3       Success
         4       Failure

      Since EAP only defines Codes 1-4, EAP packets with other codes
      MUST be silently discarded by both authenticators and peers.

   Identifier

      The Identifier field is one octet and aids in matching Responses
      with Requests.

   Length
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      The Length field is two octets and indicates the length, in
      octets, of the EAP packet including the Code, Identifier, Length,
      and Data fields.  Octets outside the range of the Length field
      should be treated as Data Link Layer padding and MUST be ignored
      upon reception.  A message with the Length field set to a value
      larger than the number of received octets MUST be silently
      discarded.

   Data

      The Data field is zero or more octets.  The format of the Data
      field is determined by the Code field.

4.1.  Request and Response

   Description

      The Request packet (Code field set to 1) is sent by the
      authenticator to the peer.  Each Request has a Type field which
      serves to indicate what is being requested.  Additional Request
      packets MUST be sent until a valid Response packet is received, an
      optional retry counter expires, or a lower layer failure
      indication is received.

      Retransmitted Requests MUST be sent with the same Identifier value
      in order to distinguish them from new Requests.  The content of
      the data field is dependent on the Request Type.  The peer MUST
      send a Response packet in reply to a valid Request packet.
      Responses MUST only be sent in reply to a valid Request and never
      be retransmitted on a timer.

      If a peer receives a valid duplicate Request for which it has
      already sent a Response, it MUST resend its original Response
      without reprocessing the Request.  Requests MUST be processed in
      the order that they are received, and MUST be processed to their
      completion before inspecting the next Request.

   A summary of the Request and Response packet format follows.  The
   fields are transmitted from left to right.
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    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |  Type-Data ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

   Code

      1 for Request
      2 for Response

   Identifier

      The Identifier field is one octet.  The Identifier field MUST be
      the same if a Request packet is retransmitted due to a timeout
      while waiting for a Response.  Any new (non-retransmission)
      Requests MUST modify the Identifier field.

      The Identifier field of the Response MUST match that of the
      currently outstanding Request.  An authenticator receiving a
      Response whose Identifier value does not match that of the
      currently outstanding Request MUST silently discard the Response.

      In order to avoid confusion between new Requests and
      retransmissions, the Identifier value chosen for each new Request
      need only be different from the previous Request, but need not be
      unique within the conversation.  One way to achieve this is to
      start the Identifier at an initial value and increment it for each
      new Request.  Initializing the first Identifier with a random
      number rather than starting from zero is recommended, since it
      makes sequence attacks somewhat more difficult.

      Since the Identifier space is unique to each session,
      authenticators are not restricted to only 256 simultaneous
      authentication conversations.  Similarly, with re-authentication,
      an EAP conversation might continue over a long period of time, and
      is not limited to only 256 roundtrips.

      Implementation Note: The authenticator is responsible for
      retransmitting Request messages.  If the Request message is
      obtained from elsewhere (such as from a backend authentication
      server), then the authenticator will need to save a copy of the
      Request in order to accomplish this.  The peer is responsible for
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      detecting and handling duplicate Request messages before
      processing them in any way, including passing them on to an
      outside party.  The authenticator is also responsible for
      discarding Response messages with a non-matching Identifier value
      before acting on them in any way, including passing them on to the
      backend authentication server for verification.  Since the
      authenticator can retransmit before receiving a Response from the
      peer, the authenticator can receive multiple Responses, each with
      a matching Identifier.  Until a new Request is received by the
      authenticator, the Identifier value is not updated, so that the
      authenticator forwards Responses to the backend authentication
      server, one at a time.

   Length

      The Length field is two octets and indicates the length of the EAP
      packet including the Code, Identifier, Length, Type, and Type-Data
      fields.  Octets outside the range of the Length field should be
      treated as Data Link Layer padding and MUST be ignored upon
      reception.  A message with the Length field set to a value larger
      than the number of received octets MUST be silently discarded.

   Type

      The Type field is one octet.  This field indicates the Type of
      Request or Response.  A single Type MUST be specified for each EAP
      Request or Response.  An initial specification of Types follows in
      Section 5 of this document.

      The Type field of a Response MUST either match that of the
      Request, or correspond to a legacy or Expanded Nak (see
      Section 5.3) indicating that a Request Type is unacceptable to the
      peer.  A peer MUST NOT send a Nak (legacy or expanded) in response
      to a Request, after an initial non-Nak Response has been sent.  An
      EAP server receiving a Response not meeting these requirements
      MUST silently discard it.

   Type-Data

      The Type-Data field varies with the Type of Request and the
      associated Response.

4.2.  Success and Failure

   The Success packet is sent by the authenticator to the peer after
   completion of an EAP authentication method (Type 4 or greater) to
   indicate that the peer has authenticated successfully to the
   authenticator.  The authenticator MUST transmit an EAP packet with
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   the Code field set to 3 (Success).  If the authenticator cannot
   authenticate the peer (unacceptable Responses to one or more
   Requests), then after unsuccessful completion of the EAP method in
   progress, the implementation MUST transmit an EAP packet with the
   Code field set to 4 (Failure).  An authenticator MAY wish to issue
   multiple Requests before sending a Failure response in order to allow
   for human typing mistakes.  Success and Failure packets MUST NOT
   contain additional data.

   Success and Failure packets MUST NOT be sent by an EAP authenticator
   if the specification of the given method does not explicitly permit
   the method to finish at that point.  A peer EAP implementation
   receiving a Success or Failure packet where sending one is not
   explicitly permitted MUST silently discard it.  By default, an EAP
   peer MUST silently discard a "canned" Success packet (a Success
   packet sent immediately upon connection).  This ensures that a rogue
   authenticator will not be able to bypass mutual authentication by
   sending a Success packet prior to conclusion of the EAP method
   conversation.

   Implementation Note: Because the Success and Failure packets are not
   acknowledged, they are not retransmitted by the authenticator, and
   may be potentially lost.  A peer MUST allow for this circumstance as
   described in this note.  See also Section 3.4 for guidance on the
   processing of lower layer success and failure indications.

   As described in Section 2.1, only a single EAP authentication method
   is allowed within an EAP conversation.  EAP methods may implement
   result indications.  After the authenticator sends a failure result
   indication to the peer, regardless of the response from the peer, it
   MUST subsequently send a Failure packet.  After the authenticator
   sends a success result indication to the peer and receives a success
   result indication from the peer, it MUST subsequently send a Success
   packet.

   On the peer, once the method completes unsuccessfully (that is,
   either the authenticator sends a failure result indication, or the
   peer decides that it does not want to continue the conversation,
   possibly after sending a failure result indication), the peer MUST
   terminate the conversation and indicate failure to the lower layer.
   The peer MUST silently discard Success packets and MAY silently
   discard Failure packets.  As a result, loss of a Failure packet need
   not result in a timeout.

   On the peer, after success result indications have been exchanged by
   both sides, a Failure packet MUST be silently discarded.  The peer
   MAY, in the event that an EAP Success is not received, conclude that
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   the EAP Success packet was lost and that authentication concluded
   successfully.

   If the authenticator has not sent a result indication, and the peer
   is willing to continue the conversation, the peer waits for a Success
   or Failure packet once the method completes, and MUST NOT silently
   discard either of them.  In the event that neither a Success nor
   Failure packet is received, the peer SHOULD terminate the
   conversation to avoid lengthy timeouts in case the lost packet was an
   EAP Failure.

   If the peer attempts to authenticate to the authenticator and fails
   to do so, the authenticator MUST send a Failure packet and MUST NOT
   grant access by sending a Success packet.  However, an authenticator
   MAY omit having the peer authenticate to it in situations where
   limited access is offered (e.g., guest access).  In this case, the
   authenticator MUST send a Success packet.

   Where the peer authenticates successfully to the authenticator, but
   the authenticator does not send a result indication, the
   authenticator MAY deny access by sending a Failure packet where the
   peer is not currently authorized for network access.

   A summary of the Success and Failure packet format is shown below.
   The fields are transmitted from left to right.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Code

      3 for Success
      4 for Failure

   Identifier

      The Identifier field is one octet and aids in matching replies to
      Responses.  The Identifier field MUST match the Identifier field
      of the Response packet that it is sent in response to.

   Length

Aboba, et al.            Expires August 26, 2021               [Page 26]



Internet-Draft                     EAP                     February 2021

      4

4.3.  Retransmission Behavior

   Because the authentication process will often involve user input,
   some care must be taken when deciding upon retransmission strategies
   and authentication timeouts.  By default, where EAP is run over an
   unreliable lower layer, the EAP retransmission timer SHOULD be
   dynamically estimated.  A maximum of 3-5 retransmissions is
   suggested.

   When run over a reliable lower layer (e.g., EAP over ISAKMP/TCP, as
   within [I-D.ietf-ipsra-pic]), the authenticator retransmission timer
   SHOULD be set to an infinite value, so that retransmissions do not
   occur at the EAP layer.  The peer may still maintain a timeout value
   so as to avoid waiting indefinitely for a Request.

   Where the authentication process requires user input, the measured
   round trip times may be determined by user responsiveness rather than
   network characteristics, so that dynamic RTO estimation may not be
   helpful.  Instead, the retransmission timer SHOULD be set so as to
   provide sufficient time for the user to respond, with longer timeouts
   required in certain cases, such as where Token Cards (see
   Section 5.6) are involved.

   In order to provide the EAP authenticator with guidance as to the
   appropriate timeout value, a hint can be communicated to the
   authenticator by the backend authentication server (such as via the
   RADIUS Session-Timeout attribute).

   In order to dynamically estimate the EAP retransmission timer, the
   algorithms for the estimation of SRTT, RTTVAR, and RTO described in
   [RFC6298] are RECOMMENDED, including use of Karn’s algorithm, with
   the following potential modifications:

   o  In order to avoid synchronization behaviors that can occur with
      fixed timers among distributed systems, the retransmission timer
      is calculated with a jitter by using the RTO value and randomly
      adding a value drawn between -RTOmin/2 and RTOmin/2.  Alternative
      calculations to create jitter MAY be used.  These MUST be pseudo-
      random.  For a discussion of pseudo-random number generation, see
      [RFC1750].

   o  When EAP is transported over a single link (as opposed to over the
      Internet), smaller values of RTOinitial, RTOmin, and RTOmax MAY be
      used.  Recommended values are RTOinitial=1 second, RTOmin=200ms,
      and RTOmax=20 seconds.
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   o  When EAP is transported over a single link (as opposed to over the
      Internet), estimates MAY be done on a per-authenticator basis,
      rather than a per-session basis.  This enables the retransmission
      estimate to make the most use of information on link-layer
      behavior.

   o  An EAP implementation MAY clear SRTT and RTTVAR after backing off
      the timer multiple times, as it is likely that the current SRTT
      and RTTVAR are bogus in this situation.  Once SRTT and RTTVAR are
      cleared, they should be initialized with the next RTT sample taken
      as described in [RFC6298] equation 2.2.

5.  Initial EAP Request/Response Types

   This section defines the initial set of EAP Types used in Request/
   Response exchanges.  More Types may be defined in future documents.
   The Type field is one octet and identifies the structure of an EAP
   Request or Response packet.  The first 3 Types are considered special
   case Types.

   The remaining Types define authentication exchanges.  Nak (Type 3) or
   Expanded Nak (Type 254) are valid only for Response packets, they
   MUST NOT be sent in a Request.

   All EAP implementations MUST support Types 1-4, which are defined in
   this document, and SHOULD support Type 254.  Implementations MAY
   support other Types defined here or in future RFCs.

             1       Identity
             2       Notification
             3       Nak (Response only)
             4       MD5-Challenge
             5       One Time Password (OTP)
             6       Generic Token Card (GTC)
           254       Expanded Types
           255       Experimental use

   EAP methods MAY support authentication based on shared secrets.  If
   the shared secret is a passphrase entered by the user,
   implementations MAY support entering passphrases with non-ASCII
   characters.  In this case, the input should be processed using an
   appropriate stringprep [RFC3454] profile, and encoded in octets using
   UTF-8 encoding [RFC3629].  A preliminary version of a possible
   stringprep profile is described in [RFC8265].
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5.1.  Identity

   Description

      The Identity Type is used to query the identity of the peer.
      Generally, the authenticator will issue this as the initial
      Request.  An optional displayable message MAY be included to
      prompt the peer in the case where there is an expectation of
      interaction with a user.  A Response of Type 1 (Identity) SHOULD
      be sent in Response to a Request with a Type of 1 (Identity).

      Some EAP implementations piggy-back various options into the
      Identity Request after a NUL-character.  By default, an EAP
      implementation SHOULD NOT assume that an Identity Request or
      Response can be larger than 1020 octets.

      It is RECOMMENDED that the Identity Response be used primarily for
      routing purposes and selecting which EAP method to use.  EAP
      Methods SHOULD include a method-specific mechanism for obtaining
      the identity, so that they do not have to rely on the Identity
      Response.  Identity Requests and Responses are sent in cleartext,
      so an attacker may snoop on the identity, or even modify or spoof
      identity exchanges.  To address these threats, it is preferable
      for an EAP method to include an identity exchange that supports
      per-packet authentication, integrity and replay protection, and
      confidentiality.  The Identity Response may not be the appropriate
      identity for the method; it may have been truncated or obfuscated
      so as to provide privacy, or it may have been decorated for
      routing purposes.  Where the peer is configured to only accept
      authentication methods supporting protected identity exchanges,
      the peer MAY provide an abbreviated Identity Response (such as
      omitting the peer-name portion of the NAI [RFC2486]).  For further
      discussion of identity protection, see Section 7.3.

      Implementation Note: The peer MAY obtain the Identity via user
      input.  It is suggested that the authenticator retry the Identity
      Request in the case of an invalid Identity or authentication
      failure to allow for potential typos on the part of the user.  It
      is suggested that the Identity Request be retried a minimum of 3
      times before terminating the authentication.  The Notification
      Request MAY be used to indicate an invalid authentication attempt
      prior to transmitting a new Identity Request (optionally, the
      failure MAY be indicated within the message of the new Identity
      Request itself).

   Type
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      1

   Type-Data

      This field MAY contain a displayable message in the Request,
      containing UTF-8 encoded ISO 10646 characters [RFC3629].  Where
      the Request contains a null, only the portion of the field prior
      to the null is displayed.  If the Identity is unknown, the
      Identity Response field should be zero bytes in length.  The
      Identity Response field MUST NOT be null terminated.  In all
      cases, the length of the Type-Data field is derived from the
      Length field of the Request/Response packet.

   Security Claims (see Section 7.2):

      Auth. mechanism:           None
      Ciphersuite negotiation:   No
      Mutual authentication:     No
      Integrity protection:      No
      Replay protection:         No
      Confidentiality:           No
      Key derivation:            No
      Key strength:              N/A
      Dictionary attack prot.:   N/A
      Fast reconnect:            No
      Crypt. binding:            N/A
      Session independence:      N/A
      Fragmentation:             No
      Channel binding:           No
      Perfect Forward Secrecy:   N/A

5.2.  Notification

   Description

      The Notification Type is optionally used to convey a displayable
      message from the authenticator to the peer.  An authenticator MAY
      send a Notification Request to the peer at any time when there is
      no outstanding Request, prior to completion of an EAP
      authentication method.  The peer MUST respond to a Notification
      Request with a Notification Response unless the EAP authentication
      method specification prohibits the use of Notification messages.
      In any case, a Nak Response MUST NOT be sent in response to a
      Notification Request.  Note that the default maximum length of a
      Notification Request is 1020 octets.  By default, this leaves at
      most 1015 octets for the human readable message.
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      An EAP method MAY indicate within its specification that
      Notification messages must not be sent during that method.  In
      this case, the peer MUST silently discard Notification Requests
      from the point where an initial Request for that Type is answered
      with a Response of the same Type.

      The peer SHOULD display this message to the user or log it if it
      cannot be displayed.  The Notification Type is intended to provide
      an acknowledged notification of some imperative nature, but it is
      not an error indication, and therefore does not change the state
      of the peer.  Examples include a password with an expiration time
      that is about to expire, an OTP sequence integer which is nearing
      0, an authentication failure warning, etc.  In most circumstances,
      Notification should not be required.

   Type

      2

   Type-Data

      The Type-Data field in the Request contains a displayable message
      greater than zero octets in length, containing UTF-8 encoded ISO
      10646 characters [RFC3629].  The length of the message is
      determined by the Length field of the Request packet.  The message
      MUST NOT be null terminated.  A Response MUST be sent in reply to
      the Request with a Type field of 2 (Notification).  The Type-Data
      field of the Response is zero octets in length.  The Response
      should be sent immediately (independent of how the message is
      displayed or logged).

   Security Claims (see Section 7.2):
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      Auth. mechanism:           None
      Ciphersuite negotiation:   No
      Mutual authentication:     No
      Integrity protection:      No
      Replay protection:         No
      Confidentiality:           No
      Key derivation:            No
      Key strength:              N/A
      Dictionary attack prot.:   N/A
      Fast reconnect:            No
      Crypt. binding:            N/A
      Session independence:      N/A
      Fragmentation:             No
      Channel binding:           No
      Perfect Forward Secrecy:   N/A

5.3.  Nak

5.3.1.  Legacy Nak

   Description

      The legacy Nak Type is valid only in Response messages.  It is
      sent in reply to a Request where the desired authentication Type
      is unacceptable.  Authentication Types are numbered 4 and above.
      The Response contains one or more authentication Types desired by
      the Peer.  Type zero (0) is used to indicate that the sender has
      no viable alternatives, and therefore the authenticator SHOULD NOT
      send another Request after receiving a Nak Response containing a
      zero value.

      Since the legacy Nak Type is valid only in Responses and has very
      limited functionality, it MUST NOT be used as a general purpose
      error indication, such as for communication of error messages, or
      negotiation of parameters specific to a particular EAP method.

   Code

      2 for Response.

   Identifier

      The Identifier field is one octet and aids in matching Responses
      with Requests.  The Identifier field of a legacy Nak Response MUST
      match the Identifier field of the Request packet that it is sent
      in response to.

   Length
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      >=6

   Type

      3

   Type-Data

      Where a peer receives a Request for an unacceptable authentication
      Type (4-253,255), or a peer lacking support for Expanded Types
      receives a Request for Type 254, a Nak Response (Type 3) MUST be
      sent.  The Type-Data field of the Nak Response (Type 3) MUST
      contain one or more octets indicating the desired authentication
      Type(s), one octet per Type, or the value zero (0) to indicate no
      proposed alternative.  A peer supporting Expanded Types that
      receives a Request for an unacceptable authentication Type (4-253,
      255) MAY include the value 254 in the Nak Response (Type 3) to
      indicate the desire for an Expanded authentication Type.  If the
      authenticator can accommodate this preference, it will respond
      with an Expanded Type Request (Type 254).

   Security Claims (see Section 7.2):

      Auth. mechanism:           None
      Ciphersuite negotiation:   No
      Mutual authentication:     No
      Integrity protection:      No
      Replay protection:         No
      Confidentiality:           No
      Key derivation:            No
      Key strength:              N/A
      Dictionary attack prot.:   N/A
      Fast reconnect:            No
      Crypt. binding:            N/A
      Session independence:      N/A
      Fragmentation:             No
      Channel binding:           No
      Perfect Forward Secrecy:   N/A

5.3.2.  Expanded Nak

   Description

      The Expanded Nak Type is valid only in Response messages.  It MUST
      be sent only in reply to a Request of Type 254 (Expanded Type)
      where the authentication Type is unacceptable.  The Expanded Nak
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      Type uses the Expanded Type format itself, and the Response
      contains one or more authentication Types desired by the peer, all
      in Expanded Type format.  Type zero (0) is used to indicate that
      the sender has no viable alternatives.  The general format of the
      Expanded Type is described in Section 5.7.

      Since the Expanded Nak Type is valid only in Responses and has
      very limited functionality, it MUST NOT be used as a general
      purpose error indication, such as for communication of error
      messages, or negotiation of parameters specific to a particular
      EAP method.

   Code

      2 for Response.

   Identifier

      The Identifier field is one octet and aids in matching Responses
      with Requests.  The Identifier field of an Expanded Nak Response
      MUST match the Identifier field of the Request packet that it is
      sent in response to.

   Length

      >=20

   Type

      254

   Vendor-Id

      0 (IETF)

   Vendor-Type

      3 (Nak)

   Vendor-Data

      The Expanded Nak Type is only sent when the Request contains an
      Expanded Type (254) as defined in Section 5.7.  The Vendor-Data
      field of the Nak Response MUST contain one or more authentication
      Types (4 or greater), all in expanded format, 8 octets per Type,
      or the value zero (0), also in Expanded Type format, to indicate
      no proposed alternative.  The desired authentication Types may
      include a mixture of Vendor-Specific and IETF Types.  For example,
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      an Expanded Nak Response indicating a preference for OTP (Type 5),
      and an MIT (Vendor-Id=20) Expanded Type of 6 would appear as
      follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     2         |  Identifier   |           Length=28           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type=254    |                0 (IETF)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                3 (Nak)                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type=254    |                0 (IETF)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                5 (OTP)                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type=254    |                20 (MIT)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                6                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      An Expanded Nak Response indicating a no desired alternative would
      appear as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     2         |  Identifier   |           Length=20           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type=254    |                0 (IETF)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                3 (Nak)                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Type=254    |                0 (IETF)                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                0 (No alternative)             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Security Claims (see Section 7.2):
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      Auth. mechanism:           None
      Ciphersuite negotiation:   No
      Mutual authentication:     No
      Integrity protection:      No
      Replay protection:         No
      Confidentiality:           No
      Key derivation:            No
      Key strength:              N/A
      Dictionary attack prot.:   N/A
      Fast reconnect:            No
      Crypt. binding:            N/A
      Session independence:      N/A
      Fragmentation:             No
      Channel binding:           No
      Perfect Forward Secrecy:   N/A

5.4.  MD5-Challenge

   Description

      The MD5-Challenge Type is analogous to the PPP CHAP protocol
      [RFC1994] (with MD5 as the specified algorithm).  The Request
      contains a "challenge" message to the peer.  A Response MUST be
      sent in reply to the Request.  The Response MAY be either of Type
      4 (MD5-Challenge), Nak (Type 3), or Expanded Nak (Type 254).  The
      Nak reply indicates the peer’s desired authentication Type(s).
      EAP peer and EAP server implementations MUST support the MD5-
      Challenge mechanism.  An authenticator that supports only pass-
      through MUST allow communication with a backend authentication
      server that is capable of supporting MD5-Challenge, although the
      EAP authenticator implementation need not support MD5-Challenge
      itself.  However, if the EAP authenticator can be configured to
      authenticate peers locally (e.g., not operate in pass-through),
      then the requirement for support of the MD5-Challenge mechanism
      applies.

      Note that the use of the Identifier field in the MD5-Challenge
      Type is different from that described in [RFC1994].  EAP allows
      for retransmission of MD5-Challenge Request packets, while
      [RFC1994] states that both the Identifier and Challenge fields
      MUST change each time a Challenge (the CHAP equivalent of the
      MD5-Challenge Request packet) is sent.

      Note 1.  MD5 algorithm has severe issues, particularly when used
      without HMAC (which is not used by CHAP or EAP-MD5).  For more
      information, refer to Section 7.11.1.
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      Note 2: [RFC1994] treats the shared secret as an octet string, and
      does not specify how it is entered into the system (or if it is
      handled by the user at all).  EAP MD5-Challenge implementations
      MAY support entering passphrases with non-ASCII characters.  See
      Section 5 for instructions how the input should be processed and
      encoded into octets.

   Type

      4

   Type-Data

      The contents of the Type-Data field is summarized below.  For
      reference on the use of these fields, see the PPP Challenge
      Handshake Authentication Protocol [RFC1994].

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Value-Size   |  Value ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Name ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Security Claims (see Section 7.2):

      Auth. mechanism:           Password or pre-shared key.
      Ciphersuite negotiation:   No
      Mutual authentication:     No
      Integrity protection:      No
      Replay protection:         No
      Confidentiality:           No
      Key derivation:            No
      Key strength:              N/A
      Dictionary attack prot.:   No
      Fast reconnect:            No
      Crypt. binding:            N/A
      Session independence:      N/A
      Fragmentation:             No
      Channel binding:           No
      Perfect Forward Secrecy:   N/A
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5.5.  One-Time Password (OTP)

   Description

      The One-Time Password system is defined in "A One-Time Password
      System" [RFC2289] and "OTP Extended Responses" [RFC2243].  The
      Request contains an OTP challenge in the format described in
      [RFC2289].  A Response MUST be sent in reply to the Request.  The
      Response MUST be of Type 5 (OTP), Nak (Type 3), or Expanded Nak
      (Type 254).  The Nak Response indicates the peer’s desired
      authentication Type(s).  The EAP OTP method is intended for use
      with the One-Time Password system only, and MUST NOT be used to
      provide support for cleartext passwords.

   Type

      5

   Type-Data

      The Type-Data field contains the OTP "challenge" as a displayable
      message in the Request.  In the Response, this field is used for
      the 6 words from the OTP dictionary [RFC2289].  The messages MUST
      NOT be null terminated.  The length of the field is derived from
      the Length field of the Request/Reply packet.

      Note: [RFC2289] does not specify how the secret pass-phrase is
      entered by the user, or how the pass-phrase is converted into
      octets.  EAP OTP implementations MAY support entering passphrases
      with non-ASCII characters.  See Section 5 for instructions on how
      the input should be processed and encoded into octets.

   Security Claims (see Section 7.2):
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      Auth. mechanism:           One-Time Password
      Ciphersuite negotiation:   No
      Mutual authentication:     No
      Integrity protection:      No
      Replay protection:         Yes
      Confidentiality:           No
      Key derivation:            No
      Key strength:              N/A
      Dictionary attack prot.:   No
      Fast reconnect:            No
      Crypt. binding:            N/A
      Session independence:      N/A
      Fragmentation:             No
      Channel binding:           No
      Perfect Forward Secrecy:   N/A

5.6.  Generic Token Card (GTC)

   Description

      The Generic Token Card Type is defined for use with various Token
      Card implementations which require user input.  The Request
      contains a displayable message and the Response contains the Token
      Card information necessary for authentication.  Typically, this
      would be information read by a user from the Token card device and
      entered as ASCII text.  A Response MUST be sent in reply to the
      Request.  The Response MUST be of Type 6 (GTC), Nak (Type 3), or
      Expanded Nak (Type 254).  The Nak Response indicates the peer’s
      desired authentication Type(s).  The EAP GTC method is intended
      for use with the Token Cards supporting challenge/response
      authentication and MUST NOT be used to provide support for
      cleartext passwords in the absence of a protected tunnel with
      server authentication.

   Type

      6

   Type-Data

      The Type-Data field in the Request contains a displayable message
      greater than zero octets in length.  The length of the message is
      determined by the Length field of the Request packet.  The message
      MUST NOT be null terminated.  A Response MUST be sent in reply to
      the Request with a Type field of 6 (Generic Token Card).  The
      Response contains data from the Token Card required for
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      authentication.  The length of the data is determined by the
      Length field of the Response packet.

      EAP GTC implementations MAY support entering a response with non-
      ASCII characters.  See Section 5 for instructions how the input
      should be processed and encoded into octets.

   Security Claims (see Section 7.2):

      Auth. mechanism:           Hardware token.
      Ciphersuite negotiation:   No
      Mutual authentication:     No
      Integrity protection:      No
      Replay protection:         No
      Confidentiality:           No
      Key derivation:            No
      Key strength:              N/A
      Dictionary attack prot.:   No
      Fast reconnect:            No
      Crypt. binding:            N/A
      Session independence:      N/A
      Fragmentation:             No
      Channel binding:           No
      Perfect Forward Secrecy:   N/A

5.7.  Expanded Types

   Description

      Since many of the existing uses of EAP are vendor-specific, the
      Expanded method Type is available to allow vendors to support
      their own Expanded Types not suitable for general usage.

      The Expanded Type is also used to expand the global Method Type
      space beyond the original 255 values.  A Vendor-Id of 0 maps the
      original 255 possible Types onto a space of 2^32-1 possible Types.
      (Type 0 is only used in a Nak Response to indicate no acceptable
      alternative).

      An implementation that supports the Expanded attribute MUST treat
      EAP Types that are less than 256 equivalently, whether they appear
      as a single octet or as the 32-bit Vendor-Type within an Expanded
      Type where Vendor-Id is 0.  Peers not equipped to interpret the
      Expanded Type MUST send a Nak as described in Section 5.3.1, and
      negotiate a more suitable authentication method.

      A summary of the Expanded Type format is shown below.  The fields
      are transmitted from left to right.

Aboba, et al.            Expires August 26, 2021               [Page 40]



Internet-Draft                     EAP                     February 2021

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |               Vendor-Id                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Vendor-Type                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Vendor data...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type

      254 for Expanded Type

   Vendor-Id

      The Vendor-Id is 3 octets and represents the SMI Network
      Management Private Enterprise Code of the Vendor in network byte
      order, as allocated by IANA.  A Vendor-Id of zero is reserved for
      use by the IETF in providing an expanded global EAP Type space.

   Vendor-Type

      The Vendor-Type field is four octets and represents the vendor-
      specific method Type.

      If the Vendor-Id is zero, the Vendor-Type field is an extension
      and superset of the existing namespace for EAP Types.  The first
      256 Types are reserved for compatibility with single-octet EAP
      Types that have already been assigned or may be assigned in the
      future.  Thus, EAP Types from 0 through 255 are semantically
      identical, whether they appear as single octet EAP Types or as
      Vendor-Types when Vendor-Id is zero.  There is one exception to
      this rule: Expanded Nak and Legacy Nak packets share the same
      Type, but must be treated differently because they have a
      different format.

   Vendor-Data

      The Vendor-Data field is defined by the vendor.  Where a Vendor-Id
      of zero is present, the Vendor-Data field will be used for
      transporting the contents of EAP methods of Types defined by the
      IETF.
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5.8.  Experimental

   Description

      The Experimental Type has no fixed format or content.  It is
      intended for use when experimenting with new EAP Types.  This Type
      is intended for experimental and testing purposes.  No guarantee
      is made for interoperability between peers using this Type, as
      outlined in [RFC3692].

   Type

      255

   Type-Data

      Undefined

6.  IANA Considerations

   This section provides guidance to the Internet Assigned Numbers
   Authority (IANA) regarding registration of values related to the EAP
   protocol, in accordance with BCP 26, [RFC8126].

   There are two name spaces in EAP that require registration: Packet
   Codes and method Types.

   EAP is not intended as a general-purpose protocol, and allocations
   SHOULD NOT be made for purposes unrelated to authentication.

   The following terms are used here with the meanings defined in BCP
   26: "name space", "assigned value", "registration".

   The following policies are used here with the meanings defined in BCP
   26: "Private Use", "First Come First Served", "Expert Review",
   "Specification Required", "IETF Review", "Standards Action".

   For registration requests where a Designated Expert should be
   consulted, the responsible IESG area director should appoint the
   Designated Expert.  The intention is that any allocation will be
   accompanied by a published RFC.  But in order to allow for the
   allocation of values prior to the RFC being approved for publication,
   the Designated Expert can approve allocations once it seems clear
   that an RFC will be published.  The Designated expert will post a
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   request to the EAP WG mailing list (or a successor designated by the
   Area Director) for comment and review, including an Internet-Draft.
   Before a period of 30 days has passed, the Designated Expert will
   either approve or deny the registration request and publish a notice
   of the decision to the EAP WG mailing list or its successor, as well
   as informing IANA.  A denial notice must be justified by an
   explanation, and in the cases where it is possible, concrete
   suggestions on how the request can be modified so as to become
   acceptable should be provided.

6.1.  Packet Codes

   Packet Codes have a range from 1 to 255, of which 1-4 have been
   allocated by this document and 5-6 by [RFC6696].  Because a new
   Packet Code has considerable impact on interoperability, a new Packet
   Code requires Standards Action, and should be allocated starting at
   5.

6.2.  Method Types

   The original EAP method Type space has a range from 1 to 255, and is
   the scarcest resource in EAP, and thus must be allocated with care.
   Method Type 0 is reserved.  Method Types 1-55 have been allocated,
   with 20 available for re-use.  Method Types 20 and 56-191 may be
   allocated through Expert Review, on the advice of a Designated
   Expert, with Specification Required.

   Allocation of blocks of method Types (more than one for a given
   purpose) should require IETF Review.  EAP Type Values 192-253 are
   reserved and allocation requires Standards Action.

   Method Type 254 is allocated for the Expanded Type.  Where the
   Vendor-Id field is non-zero, the Expanded Type is used for functions
   specific only to one vendor’s implementation of EAP, where no
   interoperability is deemed useful.  When used with a Vendor-Id of
   zero, method Type 254 can also be used to provide for an expanded
   IETF method Type space.  Method Type values 256-4294967295 may be
   allocated after Type values 1-191 have been allocated, on the advice
   of a Designated Expert, with Specification Required.

   Method Type 255 is allocated for Experimental use, such as testing of
   new EAP methods before a permanent Type is allocated.

7.  Security Considerations

   This section defines a generic threat model as well as the EAP method
   security claims mitigating those threats.
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   It is expected that the generic threat model and corresponding
   security claims will used to define EAP method requirements for use
   in specific environments.  An example of such a requirements analysis
   is provided in [IEEE-802.11i-req].  A security claims section is
   required in EAP method specifications, so that EAP methods can be
   evaluated against the requirements.

7.1.  Threat Model

   EAP was developed for use with PPP [RFC1661] and was later adapted
   for use in wired IEEE 802 networks [IEEE-802] in [IEEE-802.1X] and
   3GPP 5G [TS.33.501].  Subsequently, EAP has been proposed for use on
   wireless LAN networks and over the Internet.  In all these
   situations, it is possible for an attacker to gain access to links
   over which EAP packets are transmitted.  For example, attacks on
   telephone infrastructure are documented in [DECEPTION].

   An attacker with access to the link may carry out a number of
   attacks, including:

   1.   An attacker may try to discover user identities by snooping
        authentication traffic.

   2.   An attacker may try to modify or spoof EAP packets.

   3.   An attacker may launch denial of service attacks by spoofing
        lower layer indications or Success/Failure packets, by replaying
        EAP packets, or by generating packets with overlapping
        Identifiers.

   4.   An attacker may attempt to recover the pass-phrase by mounting
        an offline dictionary attack.

   5.   An attacker may attempt to convince the peer to connect to an
        untrusted network by mounting a man-in-the-middle attack.

   6.   An attacker may attempt to disrupt the EAP negotiation in order
        cause a weak authentication method to be selected.

   7.   An attacker may attempt to recover keys by taking advantage of
        weak key derivation techniques used within EAP methods.

   8.   An attacker may attempt to take advantage of weak ciphersuites
        subsequently used after the EAP conversation is complete.

   9.   An attacker may attempt to perform downgrading attacks on lower
        layer ciphersuite negotiation in order to ensure that a weaker
        ciphersuite is used subsequently to EAP authentication.
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   10.  An attacker acting as an authenticator may provide incorrect
        information to the EAP peer and/or server via out-of-band
        mechanisms (such as via a AAA or lower layer protocol).  This
        includes impersonating another authenticator, or providing
        inconsistent information to the peer and EAP server.

   Depending on the lower layer, these attacks may be carried out
   without requiring physical proximity.  Where EAP is used over
   wireless networks, EAP packets may be forwarded by authenticators
   (e.g., pre-authentication) so that the attacker need not be within
   the coverage area of an authenticator in order to carry out an attack
   on it or its peers.  Where EAP is used over the Internet, attacks may
   be carried out at an even greater distance.

7.2.  Security Claims

   In order to clearly articulate the security provided by an EAP
   method, EAP method specifications MUST include a Security Claims
   section, including the following declarations:

   o  Mechanism.  This is a statement of the authentication technology:
      certificates, pre-shared keys, passwords, token cards, etc.

   o  Security claims.  This is a statement of the claimed security
      properties of the method, using terms defined in Section 7.2.1:
      mutual authentication, integrity protection, replay protection,
      confidentiality, key derivation, key strength, dictionary attack
      resistance, fast reconnect, cryptographic binding, session
      independance, fragmentation, channel binding, perfect forward
      secrecy.  The Security Claims section of an EAP method
      specification SHOULD provide justification for the claims that are
      made.  This can be accomplished by including a proof in an
      Appendix, or including a reference to a proof.

   o  Key strength.  If the method derives keys, then the effective key
      strength MUST be estimated.  This estimate is meant for potential
      users of the method to determine if the keys produced are strong
      enough for the intended application.

      The effective key strength SHOULD be stated as a number of bits,
      defined as follows: If the effective key strength is N bits, the
      best currently known methods to recover the key (with non-
      negligible probability) require, on average, an effort comparable
      to 2^(N-1) operations of a typical block cipher.  The statement
      SHOULD be accompanied by a short rationale, explaining how this
      number was derived.  This explanation SHOULD include the
      parameters required to achieve the stated key strength based on
      current knowledge of the algorithms.
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      (Note: Although it is difficult to define what "comparable effort"
      and "typical block cipher" exactly mean, reasonable approximations
      are sufficient here.  Refer to e.g.  [SILVERMAN] for more
      discussion.)

      The key strength depends on the methods used to derive the keys.
      For instance, if keys are derived from a shared secret (such as a
      password or a long-term secret), and possibly some public
      information such as nonces, the effective key strength is limited
      by the strength of the long-term secret (assuming that the
      derivation procedure is computationally simple).  To take another
      example, when using public key algorithms, the strength of the
      symmetric key depends on the strength of the public keys used.

   o  Description of key hierarchy.  EAP methods deriving keys MUST
      either provide a reference to a key hierarchy specification, or
      describe how Master Session Keys (MSKs) and Extended Master
      Session Keys (EMSKs) are to be derived.

   o  Indication of vulnerabilities.  In addition to the security claims
      that are made, the specification MUST indicate which of the
      security claims detailed in Section 7.2.1 are NOT being made.

7.2.1.  Security Claims Terminology for EAP Methods

   These terms are used to describe the security properties of EAP
   methods:

   Protected ciphersuite negotiation

      This refers to the ability of an EAP method to negotiate the
      ciphersuite used to protect the EAP conversation, as well as to
      integrity protect the negotiation.  It does not refer to the
      ability to negotiate the ciphersuite used to protect data.

   Mutual authentication

      This refers to an EAP method in which, within an interlocked
      exchange, the authenticator authenticates the peer and the peer
      authenticates the authenticator.  Two independent one-way methods,
      running in opposite directions do not provide mutual
      authentication as defined here.

   Integrity protection

      This refers to providing data origin authentication and protection
      against unauthorized modification of information for EAP packets
      (including EAP Requests and Responses).  When making this claim, a
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      method specification MUST describe the EAP packets and fields
      within the EAP packet that are protected.

   Replay protection

      This refers to protection against replay of an EAP method or its
      messages, including success and failure result indications.

   Confidentiality

      This refers to encryption of EAP messages, including EAP Requests
      and Responses, and success and failure result indications.  A
      method making this claim MUST support identity protection (see
      Section 7.3).

   Key derivation

      This refers to the ability of the EAP method to derive exportable
      keying material, such as the Master Session Key (MSK), and
      Extended Master Session Key (EMSK).  The MSK is used only for
      further key derivation, not directly for protection of the EAP
      conversation or subsequent data.  Use of the EMSK is reserved.

   Key strength

      If the effective key strength is N bits, the best currently known
      methods to recover the key (with non-negligible probability)
      require, on average, an effort comparable to 2^(N-1) operations of
      a typical block cipher.

   Dictionary attack resistance

      Where password authentication is used, passwords are commonly
      selected from a small set (as compared to a set of N-bit keys),
      which raises a concern about dictionary attacks.  A method may be
      said to provide protection against dictionary attacks if, when it
      uses a password as a secret, the method does not allow an offline
      attack that has a work factor based on the number of passwords in
      an attacker’s dictionary.

   Fast reconnect

      The ability, in the case where a security association has been
      previously established, to create a new or refreshed security
      association more efficiently or in a smaller number of round-
      trips.

   Cryptographic binding
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      The demonstration of the EAP peer to the EAP server that a single
      entity has acted as the EAP peer for all methods executed within a
      tunnel method.  Binding MAY also imply that the EAP server
      demonstrates to the peer that a single entity has acted as the EAP
      server for all methods executed within a tunnel method.  If
      executed correctly, binding serves to mitigate man-in-the-middle
      vulnerabilities.

   Session independence

      The demonstration that passive attacks (such as capture of the EAP
      conversation) or active attacks (including compromise of the MSK
      or EMSK) does not enable compromise of subsequent or prior MSKs or
      EMSKs.

   Fragmentation

      This refers to whether an EAP method supports fragmentation and
      reassembly.  As noted in Section 3.1, EAP methods should support
      fragmentation and reassembly if EAP packets can exceed the minimum
      MTU of 1020 octets.

   Channel binding

      The communication within an EAP method of integrity-protected
      channel properties such as endpoint identifiers which can be
      compared to values communicated via out of band mechanisms (such
      as via a AAA or lower layer protocol).

   Perfect Forward Secrecy

      The demonstration that the derived keying material, such as the
      MSK and EMSK will not be compromised even if long-term secrets
      used in EAP conversation are compromised.

   Note: This list of security claims is not exhaustive.  Additional
   properties, such as additional denial-of-service protection, may be
   relevant as well.

7.3.  Identity Protection

   An Identity exchange is optional within the EAP conversation.
   Therefore, it is possible to omit the Identity exchange entirely, or
   to use a method-specific identity exchange once a protected channel
   has been established.

   However, where roaming is supported as described in [RFC2607], it may
   be necessary to locate the appropriate backend authentication server
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   before the authentication conversation can proceed.  The realm
   portion of the Network Access Identifier (NAI) [RFC2486] is typically
   included within the EAP-Response/Identity in order to enable the
   authentication exchange to be routed to the appropriate backend
   authentication server.  Therefore, while the peer-name portion of the
   NAI SHOULD be omitted in the EAP-Response/Identity where proxies or
   relays are present, the realm portion may be required.

   It is possible for the identity in the identity response to be
   different from the identity authenticated by the EAP method.  This
   may be intentional in the case of identity privacy.  An EAP method
   SHOULD use the authenticated identity when making access control
   decisions.

7.4.  Man-in-the-Middle Attacks

   Where EAP is tunneled within another protocol that omits peer
   authentication, there exists a potential vulnerability to a man-in-
   the-middle attack.  For details, see [I-D.puthenkulam-eap-binding]
   and [MITM].

   As noted in Section 2.1, EAP does not permit untunneled sequences of
   authentication methods.  Were a sequence of EAP authentication
   methods to be permitted, the peer might not have proof that a single
   entity has acted as the authenticator for all EAP methods within the
   sequence.  For example, an authenticator might terminate one EAP
   method, then forward the next method in the sequence to another party
   without the peer’s knowledge or consent.  Similarly, the
   authenticator might not have proof that a single entity has acted as
   the peer for all EAP methods within the sequence.

   Tunneling EAP within another protocol enables an attack by a rogue
   EAP authenticator tunneling EAP to a legitimate server.  Where the
   tunneling protocol is used for key establishment but does not require
   peer authentication, an attacker convincing a legitimate peer to
   connect to it will be able to tunnel EAP packets to a legitimate
   server, successfully authenticating and obtaining the key.  This
   allows the attacker to successfully establish itself as a man-in-
   the-middle, gaining access to the network, as well as the ability to
   decrypt data traffic between the legitimate peer and server.

   This attack may be mitigated by the following measures:

   1.  Requiring mutual authentication within EAP tunneling mechanisms.

   2.  Requiring cryptographic binding between the EAP tunneling
       protocol and the tunneled EAP methods.  Where cryptographic
       binding is supported, a mechanism is also needed to protect
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       against downgrade attacks that would bypass it.  For further
       details on cryptographic binding, see
       [I-D.puthenkulam-eap-binding].

   3.  Limiting the EAP methods authorized for use without protection,
       based on peer and authenticator policy.

   4.  Avoiding the use of tunnels when a single, strong method is
       available.

7.5.  Packet Modification Attacks

   While EAP methods may support per-packet data origin authentication,
   integrity, and replay protection, support is not provided within the
   EAP layer.

   Since the Identifier is only a single octet, it is easy to guess,
   allowing an attacker to successfully inject or replay EAP packets.
   An attacker may also modify EAP headers (Code, Identifier, Length,
   Type) within EAP packets where the header is unprotected.  This could
   cause packets to be inappropriately discarded or misinterpreted.

   To protect EAP packets against modification, spoofing, or replay,
   methods supporting protected ciphersuite negotiation, mutual
   authentication, and key derivation, as well as integrity and replay
   protection, are recommended.  See Section 7.2.1 for definitions of
   these security claims.

   Method-specific MICs may be used to provide protection.  If a per-
   packet MIC is employed within an EAP method, then peers,
   authentication servers, and authenticators not operating in pass-
   through mode MUST validate the MIC.  MIC validation failures SHOULD
   be logged.  Whether a MIC validation failure is considered a fatal
   error or not is determined by the EAP method specification.

   It is RECOMMENDED that methods providing integrity protection of EAP
   packets include coverage of all the EAP header fields, including the
   Code, Identifier, Length, Type, and Type-Data fields.

   Since EAP messages of Types Identity, Notification, and Nak do not
   include their own MIC, it may be desirable for the EAP method MIC to
   cover information contained within these messages, as well as the
   header of each EAP message.

   To provide protection, EAP also may be encapsulated within a
   protected channel created by protocols such as ISAKMP [RFC2408], as
   is done in [RFC7296] or within TLS [RFC2246].  However, as noted in
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   Section 7.4, EAP tunneling may result in a man-in-the-middle
   vulnerability.

   Existing EAP methods define message integrity checks (MICs) that
   cover more than one EAP packet.  For example, EAP-TLS
   [RFC5216][I-D.ietf-emu-eap-tls13] defines a MIC over a TLS record
   that could be split into multiple fragments; within the FINISHED
   message, the MIC is computed over previous messages.  Where the MIC
   covers more than one EAP packet, a MIC validation failure is
   typically considered a fatal error.

   Within EAP-TLS [RFC5216][I-D.ietf-emu-eap-tls13], a MIC validation
   failure is treated as a fatal error, since that is what is specified
   in TLS [RFC2246].  However, it is also possible to develop EAP
   methods that support per-packet MICs, and respond to verification
   failures by silently discarding the offending packet.

   In this document, descriptions of EAP message handling assume that
   per-packet MIC validation, where it occurs, is effectively performed
   as though it occurs before sending any responses or changing the
   state of the host which received the packet.

7.6.  Dictionary Attacks

   Password authentication algorithms such as EAP-MD5, MS-CHAPv1
   [RFC2433], and Kerberos V [RFC1510] are known to be vulnerable to
   dictionary attacks.  MS-CHAPv1 vulnerabilities are documented in
   [PPTPv1]; MS-CHAPv2 vulnerabilities are documented in [PPTPv2];
   Kerberos vulnerabilities are described in [KRBATTACK], [KRBLIM], and
   [KERB4WEAK].

   In order to protect against dictionary attacks, authentication
   methods resistant to dictionary attacks (as defined in Section 7.2.1)
   are recommended.

   If an authentication algorithm is used that is known to be vulnerable
   to dictionary attacks, then the conversation may be tunneled within a
   protected channel in order to provide additional protection.
   However, as noted in Section 7.4, EAP tunneling may result in a man-
   in-the-middle vulnerability, and therefore dictionary attack
   resistant methods are preferred.

7.7.  Connection to an Untrusted Network

   With EAP methods supporting one-way authentication, such as EAP-MD5,
   the peer does not authenticate the authenticator, making the peer
   vulnerable to attack by a rogue authenticator.  Methods supporting
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   mutual authentication (as defined in Section 7.2.1) address this
   vulnerability.

   In EAP there is no requirement that authentication be full duplex or
   that the same protocol be used in both directions.  It is perfectly
   acceptable for different protocols to be used in each direction.
   This will, of course, depend on the specific protocols negotiated.
   However, in general, completing a single unitary mutual
   authentication is preferable to two one-way authentications, one in
   each direction.  This is because separate authentications that are
   not bound cryptographically so as to demonstrate they are part of the
   same session are subject to man-in-the-middle attacks, as discussed
   in Section 7.4.

7.8.  Negotiation Attacks

   In a negotiation attack, the attacker attempts to convince the peer
   and authenticator to negotiate a less secure EAP method.  EAP does
   not provide protection for Nak Response packets, although it is
   possible for a method to include coverage of Nak Responses within a
   method-specific MIC.

   Within or associated with each authenticator, it is not anticipated
   that a particular named peer will support a choice of methods.  This
   would make the peer vulnerable to attacks that negotiate the least
   secure method from among a set.  Instead, for each named peer, there
   SHOULD be an indication of exactly one method used to authenticate
   that peer name.  If a peer needs to make use of different
   authentication methods under different circumstances, then distinct
   identities SHOULD be employed, each of which identifies exactly one
   authentication method.

7.9.  Implementation Idiosyncrasies

   The interaction of EAP with lower layers such as PPP and IEEE 802 are
   highly implementation dependent.

   For example, upon failure of authentication, some PPP implementations
   do not terminate the link, instead limiting traffic in Network-Layer
   Protocols to a filtered subset, which in turn allows the peer the
   opportunity to update secrets or send mail to the network
   administrator indicating a problem.  Similarly, while an
   authentication failure will result in denied access to the controlled
   port in [IEEE-802.1X], limited traffic may be permitted on the
   uncontrolled port.

   In EAP there is no provision for retries of failed authentication.
   However, in PPP the LCP state machine can renegotiate the
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   authentication protocol at any time, thus allowing a new attempt.
   Similarly, in IEEE 802.1X the Supplicant or Authenticator can re-
   authenticate at any time.  It is recommended that any counters used
   for authentication failure not be reset until after successful
   authentication, or subsequent termination of the failed link.

7.10.  Key Derivation

   It is possible for the peer and EAP server to mutually authenticate
   and derive keys.  In order to provide keying material for use in a
   subsequently negotiated ciphersuite, an EAP method supporting key
   derivation MUST export a Master Session Key (MSK) of at least 64
   octets, and an Extended Master Session Key (EMSK) of at least 64
   octets.  EAP Methods deriving keys MUST provide for mutual
   authentication between the EAP peer and the EAP Server.

   The MSK and EMSK MUST NOT be used directly to protect data; however,
   they are of sufficient size to enable derivation of a AAA-Key
   subsequently used to derive Transient Session Keys (TSKs) for use
   with the selected ciphersuite.  Each ciphersuite is responsible for
   specifying how to derive the TSKs from the AAA-Key.

   The AAA-Key is derived from the keying material exported by the EAP
   method (MSK and EMSK).  This derivation occurs on the AAA server.  In
   many existing protocols that use EAP, the AAA-Key and MSK are
   equivalent, but more complicated mechanisms are possible (see
   [RFC5247] for details).

   EAP methods SHOULD ensure the freshness of the MSK and EMSK, even in
   cases where one party may not have a high quality random number
   generator.  A RECOMMENDED method is for each party to provide a nonce
   of at least 128 bits, used in the derivation of the MSK and EMSK.

   EAP methods export the MSK and EMSK, but not Transient Session Keys
   so as to allow EAP methods to be ciphersuite and media independent.
   Keying material exported by EAP methods MUST be independent of the
   ciphersuite negotiated to protect data.

   Depending on the lower layer, EAP methods may run before or after
   ciphersuite negotiation, so that the selected ciphersuite may not be
   known to the EAP method.  By providing keying material usable with
   any ciphersuite, EAP methods can used with a wide range of
   ciphersuites and media.

   In order to preserve algorithm independence, EAP methods deriving
   keys SHOULD support (and document) the protected negotiation of the
   ciphersuite used to protect the EAP conversation between the peer and
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   server.  This is distinct from the ciphersuite negotiated between the
   peer and authenticator, used to protect data.

   The strength of Transient Session Keys (TSKs) used to protect data is
   ultimately dependent on the strength of keys generated by the EAP
   method.  If an EAP method cannot produce keying material of
   sufficient strength, then the TSKs may be subject to a brute force
   attack.  In order to enable deployments requiring strong keys, EAP
   methods supporting key derivation SHOULD be capable of generating an
   MSK and EMSK, each with an effective key strength of at least 128
   bits.

   Methods supporting key derivation MUST demonstrate cryptographic
   separation between the MSK and EMSK branches of the EAP key
   hierarchy.  Without violating a fundamental cryptographic assumption
   (such as the non-invertibility of a one-way function), an attacker
   recovering the MSK or EMSK MUST NOT be able to recover the other
   quantity with a level of effort less than brute force.

   Non-overlapping substrings of the MSK MUST be cryptographically
   separate from each other, as defined in Section 7.2.1.  That is,
   knowledge of one substring MUST NOT help in recovering some other
   substring without breaking some hard cryptographic assumption.  This
   is required because some existing ciphersuites form TSKs by simply
   splitting the AAA-Key to pieces of appropriate length.  Likewise,
   non-overlapping substrings of the EMSK MUST be cryptographically
   separate from each other, and from substrings of the MSK.

   The EMSK is reserved for future use and MUST remain on the EAP peer
   and EAP server where it is derived; it MUST NOT be transported to, or
   shared with, additional parties, or used to derive any other keys.
   (This restriction will be relaxed in a future document that specifies
   how the EMSK can be used.)

   Since EAP does not provide for explicit key lifetime negotiation, EAP
   peers, authenticators, and authentication servers MUST be prepared
   for situations in which one of the parties discards the key state,
   which remains valid on another party.

   This specification does not provide detailed guidance on how EAP
   methods derive the MSK and EMSK, how the AAA-Key is derived from the
   MSK and/or EMSK, or how the TSKs are derived from the AAA-Key.

   The development and validation of key derivation algorithms is
   difficult, and as a result, EAP methods SHOULD re-use well
   established and analyzed mechanisms for key derivation (such as those
   specified in IKE [RFC2409] or TLS [RFC2246]), rather than inventing
   new ones.  EAP methods SHOULD also utilize well established and
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   analyzed mechanisms for MSK and EMSK derivation.  Further details on
   EAP Key Derivation are provided within [RFC5247].

7.11.  Weak Ciphersuites

   If after the initial EAP authentication, data packets are sent
   without per-packet authentication, integrity, and replay protection,
   an attacker with access to the media can inject packets, "flip bits"
   within existing packets, replay packets, or even hijack the session
   completely.  Without per-packet confidentiality, it is possible to
   snoop data packets.

   To protect against data modification, spoofing, or snooping, it is
   recommended that EAP methods supporting mutual authentication and key
   derivation (as defined by Section 7.2.1) be used, along with lower
   layers providing per-packet confidentiality, authentication,
   integrity, and replay protection.

   Additionally, if the lower layer performs ciphersuite negotiation, it
   should be understood that EAP does not provide by itself integrity
   protection of that negotiation.  Therefore, in order to avoid
   downgrading attacks which would lead to weaker ciphersuites being
   used, clients implementing lower layer ciphersuite negotiation SHOULD
   protect against negotiation downgrading.

   This can be done by enabling users to configure which ciphersuites
   are acceptable as a matter of security policy, or the ciphersuite
   negotiation MAY be authenticated using keying material derived from
   the EAP authentication and a MIC algorithm agreed upon in advance by
   lower-layer peers.

7.11.1.  Legacy Authentication Methods

   EAP has a long history, and the early authentication methods have
   severe issues.  For instance, the MD5-Challenge method uses an
   algorithm that has problems described in [RFC6151].  These problems
   are particularly pressing, given that MD5-Challenge does not employ a
   HMAC construction.  The use of MD5-Challenge is NOT RECOMMENDED, at
   least not outside an external, tunneled authentication method.

   Users and network administrators must be aware of the security issues
   in the authentication methods they choose to allow and use.  Modern
   use of EAP employes typically newer authentication methods such as
   Transport Layer Security (EAP-TLS) [I-D.ietf-emu-eap-tls13], Tunnel
   Extensible Authentication Protocol (TEAP) [RFC7170], or 3rd
   Generation Authentication and Key Agreement (EAP-AKA’)
   [I-D.ietf-emu-rfc5448bis].
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7.12.  Link Layer

   There are reliability and security issues with link layer indications
   in PPP, IEEE 802 LANs, and IEEE 802.11 wireless LANs:

   1.  PPP.  In PPP, link layer indications such as LCP-Terminate (a
       link failure indication) and NCP (a link success indication) are
       not authenticated or integrity protected.  They can therefore be
       spoofed by an attacker with access to the link.

   2.  IEEE 802.  IEEE 802.1X EAPOL-Start and EAPOL-Logoff frames are
       not authenticated or integrity protected.  They can therefore be
       spoofed by an attacker with access to the link.

   3.  IEEE 802.11.  In IEEE 802.11, link layer indications include
       Disassociate and Deauthenticate frames (link failure
       indications), and the first message of the 4-way handshake (link
       success indication).  These messages are not authenticated or
       integrity protected, and although they are not forwardable, they
       are spoofable by an attacker within range.

   In IEEE 802.11, IEEE 802.1X data frames may be sent as Class 3
   unicast data frames, and are therefore forwardable.  This implies
   that while EAPOL-Start and EAPOL-Logoff messages may be authenticated
   and integrity protected, they can be spoofed by an authenticated
   attacker far from the target when "pre-authentication" is enabled.

   In IEEE 802.11, a "link down" indication is an unreliable indication
   of link failure, since wireless signal strength can come and go and
   may be influenced by radio frequency interference generated by an
   attacker.  To avoid unnecessary resets, it is advisable to damp these
   indications, rather than passing them directly to the EAP.  Since EAP
   supports retransmission, it is robust against transient connectivity
   losses.

7.13.  Separation of Authenticator and Backend Authentication Server

   It is possible for the EAP peer and EAP server to mutually
   authenticate and derive a AAA-Key for a ciphersuite used to protect
   subsequent data traffic.  This does not present an issue on the peer,
   since the peer and EAP client reside on the same machine; all that is
   required is for the client to derive the AAA-Key from the MSK and
   EMSK exported by the EAP method, and to subsequently pass a Transient
   Session Key (TSK) to the ciphersuite module.

   However, in the case where the authenticator and authentication
   server reside on different machines, there are several implications
   for security.
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   1.  Authentication will occur between the peer and the authentication
       server, not between the peer and the authenticator.  This means
       that it is not possible for the peer to validate the identity of
       the authenticator that it is speaking to, using EAP alone.

   2.  As discussed in [RFC3579], the authenticator is dependent on the
       AAA protocol in order to know the outcome of an authentication
       conversation, and does not look at the encapsulated EAP packet
       (if one is present) to determine the outcome.  In practice, this
       implies that the AAA protocol spoken between the authenticator
       and authentication server MUST support per-packet authentication,
       integrity, and replay protection.

   3.  After completion of the EAP conversation, where lower layer
       security services such as per-packet confidentiality,
       authentication, integrity, and replay protection will be enabled,
       a secure association protocol SHOULD be run between the peer and
       authenticator in order to provide mutual authentication between
       the peer and authenticator, guarantee liveness of transient
       session keys, provide protected ciphersuite and capabilities
       negotiation for subsequent data, and synchronize key usage.

   4.  A AAA-Key derived from the MSK and/or EMSK negotiated between the
       peer and authentication server MAY be transmitted to the
       authenticator.  Therefore, a mechanism needs to be provided to
       transmit the AAA-Key from the authentication server to the
       authenticator that needs it.  The specification of the AAA-key
       derivation, transport, and wrapping mechanisms is outside the
       scope of this document.  Further details on AAA-Key Derivation
       are provided within [RFC5247].

7.14.  Cleartext Passwords

   This specification does not define a mechanism for cleartext password
   authentication.  The omission is intentional.  Use of cleartext
   passwords would allow the password to be captured by an attacker with
   access to a link over which EAP packets are transmitted.

   Since protocols encapsulating EAP, such as RADIUS [RFC3579], may not
   provide confidentiality, EAP packets may be subsequently encapsulated
   for transport over the Internet where they may be captured by an
   attacker.

   As a result, cleartext passwords cannot be securely used within EAP,
   except where encapsulated within a protected tunnel with server
   authentication.  Some of the same risks apply to EAP methods without
   dictionary attack resistance, as defined in Section 7.2.1.  For
   details, see Section 7.6.
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7.15.  Channel Binding

   It is possible for a compromised or poorly implemented EAP
   authenticator to communicate incorrect information to the EAP peer
   and/or server.  This may enable an authenticator to impersonate
   another authenticator or communicate incorrect information via out-
   of-band mechanisms (such as via a AAA or lower layer protocol).

   Where EAP is used in pass-through mode, the EAP peer typically does
   not verify the identity of the pass-through authenticator, it only
   verifies that the pass-through authenticator is trusted by the EAP
   server.  This creates a potential security vulnerability.

   Section 4.3.7 of [RFC3579] describes how an EAP pass-through
   authenticator acting as a AAA client can be detected if it attempts
   to impersonate another authenticator (such by sending incorrect NAS-
   Identifier [RFC2865], NAS-IP-Address [RFC2865] or NAS-IPv6-Address
   [RFC3162] attributes via the AAA protocol).  However, it is possible
   for a pass-through authenticator acting as a AAA client to provide
   correct information to the AAA server while communicating misleading
   information to the EAP peer via a lower layer protocol.

   For example, it is possible for a compromised authenticator to
   utilize another authenticator’s Called-Station-Id or NAS-Identifier
   in communicating with the EAP peer via a lower layer protocol, or for
   a pass-through authenticator acting as a AAA client to provide an
   incorrect peer Calling-Station-Id [RFC2865][RFC3580] to the AAA
   server via the AAA protocol.

   In order to address this vulnerability, EAP methods may support a
   protected exchange of channel properties such as endpoint
   identifiers, including (but not limited to): Called-Station-Id
   [RFC2865][RFC3580], Calling-Station-Id [RFC2865][RFC3580], NAS-
   Identifier [RFC2865], NAS-IP-Address [RFC2865], and NAS-IPv6-Address
   [RFC3162].

   Using such a protected exchange, it is possible to match the channel
   properties provided by the authenticator via out-of-band mechanisms
   against those exchanged within the EAP method.  Where discrepancies
   are found, these SHOULD be logged; additional actions MAY also be
   taken, such as denying access.

7.16.  Protected Result Indications

   Within EAP, Success and Failure packets are neither acknowledged nor
   integrity protected.  Result indications improve resilience to loss
   of Success and Failure packets when EAP is run over lower layers
   which do not support retransmission or synchronization of the
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   authentication state.  In media such as IEEE 802.11, which provides
   for retransmission, as well as synchronization of authentication
   state via the 4-way handshake defined in [IEEE-802.11i], additional
   resilience is typically of marginal benefit.

   Depending on the method and circumstances, result indications can be
   spoofable by an attacker.  A method is said to provide protected
   result indications if it supports result indications, as well as the
   "integrity protection" and "replay protection" claims.  A method
   supporting protected result indications MUST indicate which result
   indications are protected, and which are not.

   Protected result indications are not required to protect against
   rogue authenticators.  Within a mutually authenticating method,
   requiring that the server authenticate to the peer before the peer
   will accept a Success packet prevents an attacker from acting as a
   rogue authenticator.

   However, it is possible for an attacker to forge a Success packet
   after the server has authenticated to the peer, but before the peer
   has authenticated to the server.  If the peer were to accept the
   forged Success packet and attempt to access the network when it had
   not yet successfully authenticated to the server, a denial of service
   attack could be mounted against the peer.  After such an attack, if
   the lower layer supports failure indications, the authenticator can
   synchronize state with the peer by providing a lower layer failure
   indication.  See Section 7.12 for details.

   If a server were to authenticate the peer and send a Success packet
   prior to determining whether the peer has authenticated the
   authenticator, an idle timeout can occur if the authenticator is not
   authenticated by the peer.  Where supported by the lower layer, an
   authenticator sensing the absence of the peer can free resources.

   In a method supporting result indications, a peer that has
   authenticated the server does not consider the authentication
   successful until it receives an indication that the server
   successfully authenticated it.  Similarly, a server that has
   successfully authenticated the peer does not consider the
   authentication successful until it receives an indication that the
   peer has authenticated the server.

   In order to avoid synchronization problems, prior to sending a
   success result indication, it is desirable for the sender to verify
   that sufficient authorization exists for granting access, though, as
   discussed below, this is not always possible.
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   While result indications may enable synchronization of the
   authentication result between the peer and server, this does not
   guarantee that the peer and authenticator will be synchronized in
   terms of their authorization or that timeouts will not occur.  For
   example, the EAP server may not be aware of an authorization decision
   made by a AAA proxy; the AAA server may check authorization only
   after authentication has completed successfully, to discover that
   authorization cannot be granted, or the AAA server may grant access
   but the authenticator may be unable to provide it due to a temporary
   lack of resources.  In these situations, synchronization may only be
   achieved via lower layer result indications.

   Success indications may be explicit or implicit.  For example, where
   a method supports error messages, an implicit success indication may
   be defined as the reception of a specific message without a preceding
   error message.  Failures are typically indicated explicitly.  As
   described in Section 4.2, a peer silently discards a Failure packet
   received at a point where the method does not explicitly permit this
   to be sent.  For example, a method providing its own error messages
   might require the peer to receive an error message prior to accepting
   a Failure packet.

   Per-packet authentication, integrity, and replay protection of result
   indications protects against spoofing.  Since protected result
   indications require use of a key for per-packet authentication and
   integrity protection, methods supporting protected result indications
   MUST also support the "key derivation", "mutual authentication",
   "integrity protection", and "replay protection" claims.

   Protected result indications address some denial-of-service
   vulnerabilities due to spoofing of Success and Failure packets,
   though not all.  EAP methods can typically provide protected result
   indications only in some circumstances.  For example, errors can
   occur prior to key derivation, and so it may not be possible to
   protect all failure indications.  It is also possible that result
   indications may not be supported in both directions or that
   synchronization may not be achieved in all modes of operation.

   For example, within EAP-TLS [RFC5216][I-D.ietf-emu-eap-tls13], in the
   client authentication handshake, the server authenticates the peer,
   but does not receive a protected indication of whether the peer has
   authenticated it.  In contrast, the peer authenticates the server and
   is aware of whether the server has authenticated it.  In the session
   resumption handshake, the peer authenticates the server, but does not
   receive a protected indication of whether the server has
   authenticated it.  In this mode, the server authenticates the peer
   and is aware of whether the peer has authenticated it.
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Appendix A.  Changes from RFC 3748

   There are no changes with related to interoperability.  Minor
   changes, including style, grammar, spelling, and editorial changes
   are not mentioned here.  The only changes are the following:

   o  The names of the MSK and EMSK terms used to discuss and specify
      the protocol have been changed.

   o  The security considerations note the deficiencies in legacy EAP
      methods such as MD5-Challenge in Section 7.11.1, and recommend the
      use of more modern authentication methods.

   o  Ivo Sedlacek’s errata on a reference to Section 7.12 rather than
      Section 7.2 from Section 3.4 has been adopted.

   o  IANA rules have been updated to comply with RFC 8126 and current
      allocations.

   o  References have been updated to their most recent versions.

   o  The security claim perfect forward secrecy has been added.

   o  References to 3GPP 5G has been added.

   o  The peer-name portion of the NAI SHOULD be omitted in the EAP-
      Response/Identity.

   o  Since the publication of RFC3748, several documents related to the
      core EAP document have been published: [RFC4137] offers a proposed
      state machine [RFC5113] defines the network discovery and
      selection problem, [RFC5247] specifies the EAP key hierarchy,
      [RFC6677] [RFC7029] explores man-in-the-middle attacks and defines
      how to implement channel bindings.  References to RFC 4137, RFC
      5113, RFC 5247, RFC 6677, and RFC 7029 3GPP have been added.

   There are still some open questions, however:

   o  RFC 3748 referred to an early version of the SASLPREP document,
      which turned into [RFC4013], then [RFC7613], and is currently
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      [RFC8265].  Does this still apply?  Has something been learned in
      the meanwhile about internationalization and passwords?

   o  Is there a need to update security considerations beyond what was
      done already?  The is likly more to say about privacy, identity
      protection, pervasive monitoring and perfect forward secrecy.

   o  IEEE references need to be updated to newer ones.  Some aspects of
      IEEE have changed since 2004

   o  IEEE links are discussed a lot in the document, and some of 3GPP
      link technologies and related EAP methods.  Should the document
      say something more about 3GPP and 5G?

   o  Could some sections be replaced by links to RFC 4137, RFC 5113,
      RFC 5247, RFC 6677, and RFC 7029?  Should the document say more
      about RFC 4137, RFC 5113, RFC 5247, RFC 6677, and RFC 7029?

   o  What other issues have been discussed since since 2004, but not
      recorded in errata?

   A summary of the changes between RFC 3748 and RFC 2284 were listed in
   Appendix A of RFC 3748 [RFC3748] [RFC2284].

Appendix B.  Rationale

   In 2020, the Internet Engineering Steering Group (IESG) noted that
   terminology used in IETF documents is important [IESG].  When the
   objective of an organization is to be inclusive and respectful,
   terminology can also have an effect.  There are obvious challenges
   for creating good terminology for the parts of Internet technology
   currently under development, both in a technical sense and in our
   ability to agree what terms are inclusive.  There are also difficult
   tradeoffs related to changing terminology for existing technology, or
   for spending valuable effort on terminology vs. other things.

   This update is both a refresh of the RFC in general, bringing in the
   noted errata, updates to referred documents, but also an update of
   the terminology.

   With regards to terminology, the authors have worked for a long time
   with EAP technology, and continue to make contributions in this
   space.  In the authors’ view, while there is no need for a change,
   some of the terms that are used when referring to various parts of
   the overall EAP technology could be improved.  As a result, the
   authors wanted to make a modest proposal for a change that would
   improve the terms without changing the associated acronyms, and
   enable better use of the terms in future documents.
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   It should be noted that the issues with EAP terms are minor, compared
   many other terminology or other problems with Internet technology.
   The authors do not wish to start a big debate; if the WG finds this
   useful, we can perhaps make an update and move on.  If not, we can
   simply move on without making a change.

   The specific change that is suggested in this document relates to the
   use of the word "master" in various EAP terms.  This word is rather
   benign when compared to the use of master/slave or black/whitelists,
   and other similar terms.  Indeed, "master" is commonly used in a
   large number of everyday terms.  Given this, some authors and
   organizations have chosen to make updates only with the most
   egregious terms, such as master/slave.

   Nevertheless, at least the authors of this document feel that he
   would use another word if a different word or term was available.  It
   should be noted that:

   o  The slavery-related meaning comes up in any dictionary search for
      the word "master".

   o  The word "master" and some suggested alternatives (such as "main")
      are listed in [Terminology].

   o  Several organisations have recommended changing the word "master"
      in various aspects of their documentation or software.  Others are
      considering changes.  See, for instance, [W3C] [RedHat] [GitLab]
      [Mozilla].

   In any case, as noted, this proposal is for the working group to
   discuss.  Discussion may find that the proposal is considered useful,
   unnecessary, or flawed in some fashion.
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1.  Introduction

   The Extensible Authentication Protocol (EAP), defined in [RFC3748],
   provides a standard mechanism for support of multiple authentication
   methods.  EAP-Transport Layer Security (EAP-TLS) [RFC5216] specifies
   an EAP authentication method with certificate-based mutual
   authentication utilizing the TLS handshake protocol for cryptographic
   algorithms and protocol version negotiation and establishment of
   shared secret keying material.  EAP-TLS is widely supported for
   authentication and key establishment in IEEE 802.11 [IEEE-802.11]
   (Wi-Fi) and IEEE 802.1AE [IEEE-802.1AE] (MACsec) networks using IEEE
   802.1X [IEEE-802.1X] and it’s the default mechanism for certificate
   based authentication in 3GPP 5G [TS.33.501] and MulteFire [MulteFire]
   networks.  Many other EAP methods such as EAP-FAST [RFC4851], EAP-
   TTLS [RFC5281], TEAP [RFC7170], and PEAP [PEAP] depend on TLS and
   EAP-TLS.

   EAP-TLS [RFC5216] references TLS 1.0 [RFC2246] and TLS 1.1 [RFC4346],
   but can also work with TLS 1.2 [RFC5246].  TLS 1.0 and 1.1 are
   formally deprecated and prohibited to negotiate and use [RFC8996].
   Weaknesses found in TLS 1.2, as well as new requirements for
   security, privacy, and reduced latency have led to the specification
   of TLS 1.3 [RFC8446], which obsoletes TLS 1.2 [RFC5246].  TLS 1.3 is
   in large parts a complete remodeling of the TLS handshake protocol
   including a different message flow, different handshake messages,
   different key schedule, different cipher suites, different
   resumption, different privacy protection, and different record
   padding.  This means that significant parts of the normative text in
   the previous EAP-TLS specification [RFC5216] are not applicable to
   EAP-TLS with TLS 1.3.  Therefore, aspects such as resumption, privacy
   handling, and key derivation need to be appropriately addressed for
   EAP-TLS with TLS 1.3.

   This document defines how to use EAP-TLS with TLS 1.3 and does not
   change how EAP-TLS is used with older versions of TLS.  It does
   however provide additional guidance on authorization and resumption
   for EAP-TLS in general (regardless of the underlying TLS version
   used).  While this document updates EAP-TLS [RFC5216], it remains
   backwards compatible with it and existing implementations of EAP-TLS.
   This document only describes differences compared to [RFC5216].  All
   message flow are example message flows specific to TLS 1.3 and do not
   apply to TLS 1.2.  Since EAP-TLS couples the TLS handshake state
   machine with the EAP state machine it is possible that new versions
   of TLS will cause incompatibilities that introduce failures or
   security issues if they are not carefully integrated into the EAP-TLS
   protocol.  Therefore, implementations MUST limit the maximum TLS
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   version they use to 1.3, unless later versions are explicitly enabled
   by the administrator.

   This document specifies EAP-TLS 1.3 and does not specify how other
   TLS-based EAP methods use TLS 1.3.  The specification for how other
   TLS-based EAP methods use TLS 1.3 is left to other documents such as
   [I-D.ietf-emu-tls-eap-types].

   In addition to the improved security and privacy offered by TLS 1.3,
   there are other significant benefits of using EAP-TLS with TLS 1.3.
   Privacy, which in EAP-TLS means that the peer username is not
   disclosed, is mandatory and achieved without any additional round-
   trips.  Revocation checking is mandatory and simplified with OCSP
   stapling, and TLS 1.3 introduces more possibilities to reduce
   fragmentation when compared to earlier versions of TLS.

1.1.  Requirements and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   Readers are expected to be familiar with the terms and concepts used
   in EAP-TLS [RFC5216] and TLS [RFC8446].  The term EAP-TLS peer is
   used for the entity acting as EAP peer and TLS client.  The term EAP-
   TLS server is used for the entity acting as EAP server and TLS
   server.

2.  Protocol Overview

2.1.  Overview of the EAP-TLS Conversation

   This section updates Section 2.1 of [RFC5216].

   TLS 1.3 changes both the message flow and the handshake messages
   compared to earlier versions of TLS.  Therefore, much of Section 2.1
   of [RFC5216] does not apply for TLS 1.3.

   After receiving an EAP-Request packet with EAP-Type=EAP-TLS as
   described in [RFC5216] the conversation will continue with the TLS
   handshake protocol encapsulated in the data fields of EAP-Response
   and EAP-Request packets.  When EAP-TLS is used with TLS version 1.3,
   the formatting and processing of the TLS handshake SHALL be done as
   specified in version 1.3 of TLS.  This document only lists additional
   and different requirements, restrictions, and processing compared to
   [RFC8446] and [RFC5216].

Mattsson & Sethi        Expires November 5, 2021                [Page 4]



Internet-Draft            EAP-TLS with TLS 1.3                  May 2021

2.1.1.  Authentication

   This section updates Section 2.1.1 of [RFC5216].

   The EAP-TLS server MUST authenticate with a certificate and SHOULD
   require the EAP-TLS peer to authenticate with a certificate.
   Certificates can be of any type supported by TLS including raw public
   keys.  Pre-Shared Key (PSK) authentication SHALL NOT be used except
   for resumption.  The full handshake in EAP-TLS with TLS 1.3 always
   provide forward secrecy by exchange of ephemeral "key_share"
   extensions in the ClientHello and ServerHello (e.g. containing
   ephemeral ECDHE public keys).  SessionID is deprecated in TLS 1.3,
   see Sections 4.1.2 and 4.1.3 of [RFC8446].  TLS 1.3 introduced early
   application data which like all other application data is not used in
   EAP-TLS, see Section 4.2.10 of [RFC8446] for additional information
   of the "early_data" extension.  Resumption is handled as described in
   Section 2.1.3.  TLS 1.3 introduced the Post-Handshake KeyUpdate
   message which is not useful and not expected in EAP-TLS.  As a
   protected success indication [RFC3748] the EAP-TLS server always
   sends TLS application data 0x00, see Section 2.5.  Note that a TLS
   implementation MAY not allow the EAP-TLS layer to control in which
   order things are sent and the application data MAY therefore be sent
   before a NewSessionTicket.  TLS application data 0x00 is therefore to
   be interpreted as success after the EAP-Request that contains TLS
   application data 0x00.  After the EAP-TLS server has received an
   empty EAP-Response to the EAP-Request containing the TLS application
   data 0x00, the EAP-TLS server sends EAP-Success.

   Figure 1 shows an example message flow for a successful EAP-TLS full
   handshake with mutual authentication (and neither HelloRetryRequest
   nor Post-Handshake messages are sent).
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    EAP-TLS Peer                                      EAP-TLS Server

                                                         EAP-Request/
                                 <--------                  Identity
    EAP-Response/
    Identity (Privacy-Friendly)  -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <--------                (TLS Start)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS ClientHello)             -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                                    (TLS ServerHello,
                                             TLS EncryptedExtensions,
                                              TLS CertificateRequest,
                                                     TLS Certificate,
                                               TLS CertificateVerify,
                                 <--------              TLS Finished)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS Certificate,
    TLS CertificateVerify,
    TLS Finished)                -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <-------- TLS Application Data 0x00)
    EAP-Response/
    EAP-Type=EAP-TLS             -------->
                                 <--------               EAP-Success

                  Figure 1: EAP-TLS mutual authentication

2.1.2.  Ticket Establishment

   This is a new section when compared to [RFC5216].

   To enable resumption when using EAP-TLS with TLS 1.3, the EAP-TLS
   server MUST send one or more Post-Handshake NewSessionTicket messages
   (each associated with a PSK, a PSK identity, a ticket lifetime, and
   other parameters) in the initial authentication.  Note that TLS 1.3
   [RFC8446] limits the ticket lifetime to a maximum of 604800 seconds
   (7 days) and EAP-TLS servers MUST respect this upper limit when
   issuing tickets.  The NewSessionTicket is sent after the EAP-TLS
   server has received the client Finished message in the initial
   authentication.  The NewSessionTicket can be sent in the same flight
   as the TLS server Finished or later.  The PSK associated with the
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   ticket depends on the client Finished and cannot be pre-computed in
   handshakes with client authentication.  The NewSessionTicket message
   MUST NOT include an "early_data" extension.  If the "early_data"
   extension is received then it MUST be ignored.  Servers should take
   into account that fewer NewSessionTickets will likely be needed in
   EAP-TLS than in the usual HTTPS connection scenario.  In most cases a
   single NewSessionTicket will be sufficient.  A mechanism by which
   clients can specify the desired number of tickets needed for future
   connections is defined in [I-D.ietf-tls-ticketrequests].

   Figure 2 shows an example message flow for a successful EAP-TLS full
   handshake with mutual authentication and ticket establishment of a
   single ticket.

    EAP-TLS Peer                                      EAP-TLS Server

                                                         EAP-Request/
                                 <--------                  Identity
    EAP-Response/
    Identity (Privacy-Friendly)  -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <--------                (TLS Start)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS ClientHello)             -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                                    (TLS ServerHello,
                                             TLS EncryptedExtensions,
                                              TLS CertificateRequest,
                                                     TLS Certificate,
                                               TLS CertificateVerify,
                                 <--------              TLS Finished)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS Certificate,
    TLS CertificateVerify,
    TLS Finished)                -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                               (TLS NewSessionTicket,
                                 <-------- TLS Application Data 0x00)
    EAP-Response/
    EAP-Type=EAP-TLS             -------->
                                 <--------               EAP-Success

                  Figure 2: EAP-TLS ticket establishment

Mattsson & Sethi        Expires November 5, 2021                [Page 7]



Internet-Draft            EAP-TLS with TLS 1.3                  May 2021

2.1.3.  Resumption

   This section updates Section 2.1.2 of [RFC5216].

   EAP-TLS is typically used with client authentication and typically
   fragments the TLS flights into a large number of EAP requests and EAP
   responses.  Resumption significantly reduces the number of round-
   trips and enables the EAP-TLS server to omit database lookups needed
   during a full handshake with client authentication.  TLS 1.3 replaces
   the session resumption mechanisms in earlier versions of TLS with a
   new PSK exchange.  When EAP-TLS is used with TLS version 1.3, EAP-TLS
   SHALL use a resumption mechanism compatible with version 1.3 of TLS.

   For TLS 1.3, resumption is described in Section 2.2 of [RFC8446].  If
   the client has received a NewSessionTicket message from the EAP-TLS
   server, the client can use the PSK identity associated with the
   ticket to negotiate the use of the associated PSK.  If the EAP-TLS
   server accepts it, then the security context of the new connection is
   tied to the original connection and the key derived from the initial
   handshake is used to bootstrap the cryptographic state instead of a
   full handshake.  It is up to the EAP-TLS peer to use resumption, but
   it is RECOMMENDED that the EAP-TLS peer use resumption if it has a
   valid ticket that has not been used before.  It is left to the EAP-
   TLS server whether to accept resumption, but it is RECOMMENDED that
   the EAP-TLS server accept resumption if the ticket which was issued
   is still valid.  However, the EAP-TLS server MAY choose to require a
   full handshake.  As in a full handshake, sending a NewSessionTicket
   during resumption is optional.  As described in Appendix C.4 of
   [RFC8446], reuse of a ticket allows passive observers to correlate
   different connections.  EAP-TLS peers and EAP-TLS servers SHOULD
   follow the client tracking preventions in Appendix C.4 of [RFC8446].

   It is RECOMMENDED to use a Network Access Identifiers (NAIs) with the
   same realm during resumption and the original full handshake.  This
   requirement allows EAP packets to be routed to the same destination
   as the original full handshake.  If this recommendation is not
   followed, resumption is likely impossible.  When NAI reuse can be
   done without privacy implications, it is RECOMMENDED to use the same
   NAI in the resumption, as was used in the original full handshake
   [RFC7542].  For example, the NAI @realm can safely be reused since it
   does not provide any specific information to associate a user’s
   resumption attempt with the original full handshake.  However,
   reusing the NAI P2ZIM2F+OEVAO21nNWg2bVpgNnU=@realm enables an on-path
   attacker to associate a resumption attempt with the original full
   handshake.  The TLS PSK identity is typically derived by the TLS
   implementation and may be an opaque blob without a routable realm.
   The TLS PSK identity on its own is therefore unsuitable as a NAI in
   the Identity Response.
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   Figure 3 shows an example message flow for a subsequent successful
   EAP-TLS resumption handshake where both sides authenticate via a PSK
   provisioned via an earlier NewSessionTicket and where the server
   provisions a single new ticket.

    EAP-TLS Peer                                      EAP-TLS Server

                                                         EAP-Request/
                                 <--------                  Identity
    EAP-Response/
    Identity (Privacy-Friendly)  -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <--------                (TLS Start)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS ClientHello)             -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                                    (TLS ServerHello,
                                             TLS EncryptedExtensions,
                                 <--------              TLS Finished,
                                                TLS NewSessionTicket)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS Finished)                -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <-------- TLS Application Data 0x00)
    EAP-Response/
    EAP-Type=EAP-TLS             -------->
                                 <--------               EAP-Success

                       Figure 3: EAP-TLS resumption

   As specified in Section 2.2 of [RFC8446], the EAP-TLS peer SHOULD
   supply a "key_share" extension when attempting resumption, which
   allows the EAP-TLS server to potentially decline resumption and fall
   back to a full handshake.  If the EAP-TLS peer did not supply a
   "key_share" extension when attempting resumption, the EAP-TLS server
   needs to send HelloRetryRequest to signal that additional information
   is needed to complete the handshake, and the EAP-TLS peer needs to
   send a second ClientHello containing that information.  Providing a
   "key_share" and using the "psk_dhe_ke" pre-shared key exchange mode
   is also important in order to limit the impact of a key compromise.
   When using "psk_dhe_ke", TLS 1.3 provides forward secrecy meaning
   that key leakage does not compromise any earlier connections.  It is
   RECOMMMENDED to use "psk_dhe_ke" for resumption.
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2.1.4.  Termination

   This section updates Section 2.1.3 of [RFC5216].

   TLS 1.3 changes both the message flow and the handshake messages
   compared to earlier versions of TLS.  Therefore, some normative text
   in Section 2.1.3 of [RFC5216] does not apply for TLS 1.3.  The two
   paragraphs below replaces the corresponding paragraphs in
   Section 2.1.3 of [RFC5216] when EAP-TLS is used with TLS 1.3.  The
   other paragraphs in Section 2.1.3 of [RFC5216] still apply with the
   exception that SessionID is deprecated.

      If the EAP-TLS peer authenticates successfully, the EAP-TLS server
      MUST send an EAP-Request packet with EAP-Type=EAP-TLS containing
      TLS records conforming to the version of TLS used.  The message
      flow ends with the EAP-TLS server sending an EAP-Success message.

      If the EAP-TLS server authenticates successfully, the EAP-TLS peer
      MUST send an EAP-Response message with EAP-Type=EAP-TLS containing
      TLS records conforming to the version of TLS used.

   Figures 4, 5, and 6 illustrate message flows in several cases where
   the EAP-TLS peer or EAP-TLS server sends a TLS Error alert message.
   In earlier versions of TLS, error alerts could be warnings or fatal.
   In TLS 1.3, error alerts are always fatal and the only alerts sent at
   warning level are "close_notify" and "user_cancelled", both of which
   indicate that the connection is not going to continue normally, see
   [RFC8446].

   In TLS 1.3 [RFC8446], error alerts are not mandatory to send after a
   fatal error condition.  Failure to send TLS Error alerts means that
   the peer or server would have no way of determining what went wrong.
   EAP-TLS 1.3 strengthen this requirement.  Whenever an implementation
   encounters a fatal error condition, it MUST send an appropriate TLS
   Error alert.

   Figure 4 shows an example message flow where the EAP-TLS server
   rejects the ClientHello with an error alert.  The EAP-TLS server can
   also partly reject the ClientHello with a HelloRetryRequest, see
   Section 2.1.6.
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    EAP-TLS Peer                                      EAP-TLS Server

                                                         EAP-Request/
                                 <--------                  Identity
    EAP-Response/
    Identity (Privacy-Friendly)  -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <--------                (TLS Start)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS ClientHello)             -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <--------          (TLS Error Alert)
    EAP-Response/
    EAP-Type=EAP-TLS             -------->
                                 <--------               EAP-Failure

             Figure 4: EAP-TLS server rejection of ClientHello

   Figure 5 shows an example message flow where EAP-TLS server
   authentication is unsuccessful and the EAP-TLS peer sends a TLS Error
   alert.
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    EAP-TLS Peer                                      EAP-TLS Server

                                                         EAP-Request/
                                 <--------                  Identity
    EAP-Response/
    Identity (Privacy-Friendly)  -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <--------                (TLS Start)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS ClientHello)             -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                                    (TLS ServerHello,
                                             TLS EncryptedExtensions,
                                              TLS CertificateRequest,
                                                     TLS Certificate,
                                               TLS CertificateVerify,
                                 <--------              TLS Finished)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS Error Alert)
                                 -------->
                                 <--------               EAP-Failure

       Figure 5: EAP-TLS unsuccessful EAP-TLS server authentication

   Figure 6 shows an example message flow where the EAP-TLS server
   authenticates to the EAP-TLS peer successfully, but the EAP-TLS peer
   fails to authenticate to the EAP-TLS server and sends a TLS Error
   alert.
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    EAP-TLS Peer                                      EAP-TLS Server

                                                         EAP-Request/
                                 <--------                  Identity
    EAP-Response/
    Identity (Privacy-Friendly)  -------->

                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <--------                (TLS Start)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS ClientHello)             -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                                    (TLS ServerHello,
                                             TLS EncryptedExtensions,
                                              TLS CertificateRequest,
                                                     TLS Certificate,
                                               TLS CertificateVerify,
                                 <--------              TLS Finished)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS Certificate,
    TLS CertificateVerify,
    TLS Finished)                -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <--------          (TLS Error Alert)
    EAP-Response/
    EAP-Type=EAP-TLS             -------->
                                 <--------               EAP-Failure

           Figure 6: EAP-TLS unsuccessful client authentication

2.1.5.  No Peer Authentication

   This is a new section when compared to [RFC5216].

   Figure 7 shows an example message flow for a successful EAP-TLS full
   handshake without peer authentication (e.g., emergency services, as
   described in [RFC7406]).

Mattsson & Sethi        Expires November 5, 2021               [Page 13]



Internet-Draft            EAP-TLS with TLS 1.3                  May 2021

    EAP-TLS Peer                                      EAP-TLS Server

                                                         EAP-Request/
                                 <--------                  Identity
    EAP-Response/
    Identity (Privacy-Friendly)  -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <--------                (TLS Start)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS ClientHello)             -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                                    (TLS ServerHello,
                                             TLS EncryptedExtensions,
                                                     TLS Certificate,
                                               TLS CertificateVerify,
                                 <--------              TLS Finished)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS Finished)                -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <-------- TLS Application Data 0x00)
    EAP-Response/
    EAP-Type=EAP-TLS             -------->
                                 <--------               EAP-Success

               Figure 7: EAP-TLS without peer authentication

2.1.6.  Hello Retry Request

   This is a new section when compared to [RFC5216].

   As defined in TLS 1.3 [RFC8446], EAP-TLS servers can send a
   HelloRetryRequest message in response to a ClientHello if the EAP-TLS
   server finds an acceptable set of parameters but the initial
   ClientHello does not contain all the needed information to continue
   the handshake.  One use case is if the EAP-TLS server does not
   support the groups in the "key_share" extension (or there is no
   "key_share" extension), but supports one of the groups in the
   "supported_groups" extension.  In this case the client should send a
   new ClientHello with a "key_share" that the EAP-TLS server supports.

   Figure 8 shows an example message flow for a successful EAP-TLS full
   handshake with mutual authentication and HelloRetryRequest.  Note the
   extra round-trip as a result of the HelloRetryRequest.
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    EAP-TLS Peer                                      EAP-TLS Server

                                                         EAP-Request/
                                 <--------                  Identity
    EAP-Response/
    Identity (Privacy-Friendly)  -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <--------                (TLS Start)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS ClientHello)             -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                              (TLS HelloRetryRequest)
                                 <--------
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS ClientHello)             -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                                    (TLS ServerHello,
                                             TLS EncryptedExtensions,
                                              TLS CertificateRequest,
                                                     TLS Certificate,
                                               TLS CertificateVerify,
                                                        TLS Finished)
    EAP-Response/
    EAP-Type=EAP-TLS
   (TLS Certificate,
    TLS CertificateVerify,
    TLS Finished)                -------->
                                                         EAP-Request/
                                                    EAP-Type=EAP-TLS
                                 <-------- TLS Application Data 0x00)
    EAP-Response/
    EAP-Type=EAP-TLS             -------->
                                 <--------               EAP-Success

                Figure 8: EAP-TLS with Hello Retry Request

2.1.7.  Identity

   This is a new section when compared to [RFC5216].

   It is RECOMMENDED to use anonymous NAIs [RFC7542] in the Identity
   Response as such identities are routable and privacy-friendly.  While
   opaque blobs are allowed by [RFC3748], such identities are NOT
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   RECOMMENDED as they are not routable and should only be considered in
   local deployments where the EAP-TLS peer, EAP authenticator, and EAP-
   TLS server all belong to the same network.  Many client certificates
   contain an identity such as an email address, which is already in NAI
   format.  When the client certificate contains a NAI as subject name
   or alternative subject name, an anonymous NAI SHOULD be derived from
   the NAI in the certificate, see Section 2.1.8.  More details on
   identities are described in Sections 2.1.3, 2.1.8, 2.2, and 5.8.

2.1.8.  Privacy

   This section updates Section 2.1.4 of [RFC5216].

   TLS 1.3 significantly improves privacy when compared to earlier
   versions of TLS by forbidding cipher suites without confidentiality
   and encrypting large parts of the TLS handshake including the
   certificate messages.

   EAP-TLS peer and server implementations supporting TLS 1.3 MUST
   support anonymous Network Access Identifiers (NAIs) (Section 2.4 in
   [RFC7542]) and a client supporting TLS 1.3 MUST NOT send its username
   in cleartext in the Identity Response.  Following [RFC7542], it is
   RECOMMENDED to omit the username (i.e., the NAI is @realm), but other
   constructions such as a fixed username (e.g. anonymous@realm) or an
   encrypted username (e.g.,
   xCZINCPTK5+7y81CrSYbPg+RKPE3OTrYLn4AQc4AC2U=@realm) are allowed.
   Note that the NAI MUST be a UTF-8 string as defined by the grammar in
   Section 2.2 of [RFC7542].

   As the certificate messages in TLS 1.3 are encrypted, there is no
   need to send an empty certificate_list and perform a second handshake
   for privacy (as needed by EAP-TLS with earlier versions of TLS).
   When EAP-TLS is used with TLS version 1.3 the EAP-TLS peer and EAP-
   TLS server SHALL follow the processing specified by version 1.3 of
   TLS.  This means that the EAP-TLS peer only sends an empty
   certificate_list if it does not have an appropriate certificate to
   send, and the EAP-TLS server MAY treat an empty certificate_list as a
   terminal condition.

   EAP-TLS with TLS 1.3 is always used with privacy.  This does not add
   any extra round-trips and the message flow with privacy is just the
   normal message flow as shown in Figure 1.

2.1.9.  Fragmentation

   This section updates Section 2.1.5 of [RFC5216].
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   Including ContentType (1 byte), ProtocolVersion (2 bytes), and length
   (2 bytes) headers a single TLS record may be up to 16645 octets in
   length.  EAP-TLS fragmentation support is provided through addition
   of a flags octet within the EAP-Response and EAP-Request packets, as
   well as a TLS Message Length field of four octets.  Implementations
   MUST NOT set the L bit in unfragmented messages, but MUST accept
   unfragmented messages with and without the L bit set.

   Some EAP implementations and access networks may limit the number of
   EAP packet exchanges that can be handled.  To avoid fragmentation, it
   is RECOMMENDED to keep the sizes of EAP-TLS peer, EAP-TLS server, and
   trust anchor certificates small and the length of the certificate
   chains short.  In addition, it is RECOMMENDED to use mechanisms that
   reduce the sizes of Certificate messages.  For a detailed discussion
   on reducing message sizes to prevent fragmentation, see
   [I-D.ietf-emu-eaptlscert].

2.2.  Identity Verification

   This section updates Section 2.2 of [RFC5216].

   The EAP peer identity provided in the EAP-Response/Identity is not
   authenticated by EAP-TLS.  Unauthenticated information SHALL NOT be
   used for accounting purposes or to give authorization.  The
   authenticator and the EAP-TLS server MAY examine the identity
   presented in EAP-Response/Identity for purposes such as routing and
   EAP method selection.  EAP-TLS servers MAY reject conversations if
   the identity does not match their policy.  Note that this also
   applies to resumption, see Sections 2.1.3, 5.6, and 5.7.

   The EAP server identity in the TLS server certificate is typically a
   fully qualified domain name (FQDN).  EAP peer implementations SHOULD
   allow users to configuring a unique trust root (CA certificate) and a
   server name to authenticate the server certificate and match the
   subjectAlternativeName (SAN) extension in the server certificate with
   the configured server name.  In the absence of a user-configured root
   CA certificate, implementations MAY rely on system-wide root CA
   certificate bundles for authenticating the server certificate.  If
   server name matching is not used, then peers may end up trusting
   servers for EAP authentication that are not intended to be EAP
   servers for the network.  If name matching is not used with a public
   CA bundle, then effectively any server can obtain a certificate which
   will be trusted for EAP authentication by the Peer.

   The process of configuring a root CA certificate and a server name is
   non-trivial and therefore automated methods of provisioning are
   RECOMMENDED.  For example, the eduroam federation [RFC7593] provides
   a Configuration Assistant Tool (CAT) to automate the configuration
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   process.  In the absence of a trusted root CA certificate (user
   configured or system-wide), EAP peers MAY implement a trust on first
   use (TOFU) mechanism where the peer trusts and stores the server
   certificate during the first connection attempt.  The EAP peer
   ensures that the server presents the same stored certificate on
   subsequent interactions.  Use of TOFU mechanism does not allow for
   the server certificate to change without out-of-band validation of
   the certificate and is therefore not suitable for many deployments.

2.3.  Key Hierarchy

   This section updates Section 2.3 of [RFC5216].

   TLS 1.3 replaces the TLS pseudorandom function (PRF) used in earlier
   versions of TLS with HKDF and completely changes the Key Schedule.
   The key hierarchies shown in Section 2.3 of [RFC5216] are therefore
   not correct when EAP-TLS is used with TLS version 1.3.  For TLS 1.3
   the key schedule is described in Section 7.1 of [RFC8446].

   When EAP-TLS is used with TLS version 1.3 the Key_Material, IV, and
   Method-Id SHALL be derived from the exporter_secret using the TLS
   exporter interface [RFC5705] (for TLS 1.3 this is defined in
   Section 7.5 of [RFC8446]).

   Type-Code  = 0x0D
   MSK        = TLS-Exporter("EXPORTER_EAP_TLS_MSK",Type-Code,64)
   EMSK       = TLS-Exporter("EXPORTER_EAP_TLS_EMSK",Type-Code,64)
   Method-Id  = TLS-Exporter("EXPORTER_EAP_TLS_Method-Id",Type-Code,64)
   Session-Id = Type-Code || Method-Id

   Other TLS based EAP methods can use the TLS exporter in a similar
   fashion, see [I-D.ietf-emu-tls-eap-types].

   [RFC5247] deprecates the use of IV.  Thus, RECV-IV and SEND-IV are
   not exported in EAP-TLS with TLS 1.3.  As noted in [RFC5247], lower
   layers use the MSK in a lower-layer dependent manner.  EAP-TLS with
   TLS 1.3 exports the MSK and does not specify how it used by lower
   layers.

   Note that the key derivation MUST use the length values given above.
   While in TLS 1.2 and earlier it was possible to truncate the output
   by requesting less data from the TLS-Exporter function, this practice
   is not possible with TLS 1.3.  If an implementation intends to use
   only a part of the output of the TLS-Exporter function, then it MUST
   ask for the full output and then only use the desired part.  Failure
   to do so will result in incorrect values being calculated for the
   above keying material.
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   By using the TLS exporter, EAP-TLS can use any TLS 1.3 implementation
   without having to extract the Main Secret, ClientHello.random, and
   ServerHello.random in a non-standard way.

2.4.  Parameter Negotiation and Compliance Requirements

   This section updates Section 2.4 of [RFC5216].

   TLS 1.3 cipher suites are defined differently than in earlier
   versions of TLS (see Section B.4 of [RFC8446]), and the cipher suites
   discussed in Section 2.4 of [RFC5216] can therefore not be used when
   EAP-TLS is used with TLS version 1.3.

   When EAP-TLS is used with TLS version 1.3, the EAP-TLS peers and EAP-
   TLS servers MUST comply with the compliance requirements (mandatory-
   to-implement cipher suites, signature algorithms, key exchange
   algorithms, extensions, etc.) for the TLS version used.  For TLS 1.3
   the compliance requirements are defined in Section 9 of [RFC8446].
   In EAP-TLS with TLS 1.3, only cipher suites with confidentiality
   SHALL be supported.

   While EAP-TLS does not protect any application data except for the
   Commitment Message, the negotiated cipher suites and algorithms MAY
   be used to secure data as done in other TLS-based EAP methods.

2.5.  EAP State Machines

   This is a new section when compared to [RFC5216] and only applies to
   TLS 1.3.  [RFC4137] offers a proposed state machine for EAP.

   TLS 1.3 [RFC8446] introduces Post-Handshake messages.  These Post-
   Handshake messages use the handshake content type and can be sent
   after the main handshake.  Examples of Post-Handshake messages are
   NewSessionTicket, which is used for resumption and KeyUpdate, which
   is not useful and not expected in EAP-TLS.  After sending TLS
   Finished, the EAP-TLS server may send any number of Post-Handshake
   messages in separate EAP-Requests.

   To provide a protected success result indication and to decrease the
   uncertainty for the EAP-TLS peer, the following procedure MUST be
   followed:

   When an EAP-TLS server has successfully processed the TLS client
   Finished and sent its last handshake message (Finished or a Post-
   Handshake), it commits to not sending any more handshake messages by
   sending an encrypted TLS record with application data 0x00.  The
   encrypted TLS record with application data 0x00 is a protected
   success result indication, as defined in [RFC3748].  After sending an
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   encrypted TLS record with application data 0x00, the EAP-TLS server
   may only send an EAP-Success.  The EAP-TLS server MUST NOT send an
   encrypted TLS record with application data 0x00 alert before it has
   successfully processed the client finished and sent its last
   handshake message.

   TLS Error alerts SHOULD be considered a failure result indication, as
   defined in [RFC3748].  Implementations following [RFC4137] sets the
   alternate indication of failure variable altReject after sending or
   receiving an error alert.  After sending or receiving a TLS Error
   alert, the EAP-TLS server may only send an EAP-Failure.  Protected
   TLS Error alerts are protected failure result indications,
   unprotected TLS Error alerts are not.

   The keying material can be derived after the TLS server Finished has
   been sent or received.  Implementations following [RFC4137] can then
   set the eapKeyData and aaaEapKeyData variables.

   The keying material can be made available to lower layers and the
   authenticator after the authenticated success result indication has
   been sent or received.  Implementations following [RFC4137] can set
   the eapKeyAvailable and aaaEapKeyAvailable variables.

3.  Detailed Description of the EAP-TLS Protocol

   No updates to Section 3 of [RFC5216].

4.  IANA considerations

   This section provides guidance to the Internet Assigned Numbers
   Authority (IANA) regarding registration of values related to the EAP-
   TLS 1.3 protocol in accordance with [RFC8126].

   This document requires IANA to add the following labels to the TLS
   Exporter Label Registry defined by [RFC5705].  These labels are used
   in derivation of Key_Material, IV and Method-Id as defined in
   Section 2.3:
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       +----------------------------+---------+-------------+------+
       | Value                      | DTLS-OK | Recommended | Note |
       +----------------------------+---------+-------------+------+
       | EXPORTER_EAP_TLS_MSK       | N       | Y           |      |
       |                            |         |             |      |
       | EXPORTER_EAP_TLS_EMSK      | N       | Y           |      |
       |                            |         |             |      |
       | EXPORTER_EAP_TLS_Method-Id | N       | Y           |      |
       +----------------------------+---------+-------------+------+

                   Table 1: TLS Exporter Label Registry

5.  Security Considerations

5.1.  Security Claims

   Using EAP-TLS with TLS 1.3 does not change the security claims for
   EAP-TLS as given in Section 5.1 of [RFC5216].  However, it
   strengthens several of the claims as described in the following
   updates to the notes given in Section 5.1 of [RFC5216].

   [1] Mutual authentication: By mandating revocation checking of
   certificates, the authentication in EAP-TLS with TLS 1.3 is stronger
   as authentication with revoked certificates will always fail.

   [2] Confidentiality: The TLS 1.3 handshake offers much better
   confidentiality than earlier versions of TLS.  EAP-TLS with TLS 1.3
   mandates use of cipher suites that ensure confidentiality.  TLS 1.3
   also encrypts certificates and some of the extensions.  When using
   EAP-TLS with TLS 1.3, the use of privacy is mandatory and does not
   cause any additional round-trips.

   [3] Cryptographic strength: TLS 1.3 only defines strong algorithms
   without major weaknesses and EAP-TLS with TLS 1.3 always provides
   forward secrecy, see [RFC8446].  Weak algorithms such as 3DES, CBC
   mode, RC4, SHA-1, MD5, P-192, and RSA-1024 cannot be negotiated.

   [4] Cryptographic Negotiation: TLS 1.3 increases the number of
   cryptographic parameters that are negotiated in the handshake.  When
   EAP-TLS is used with TLS 1.3, EAP-TLS inherits the cryptographic
   negotiation of AEAD algorithm, HKDF hash algorithm, key exchange
   groups, and signature algorithm, see Section 4.1.1 of [RFC8446].

5.2.  Peer and Server Identities

   No updates to section 5.2 of [RFC5216].
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5.3.  Certificate Validation

   No updates to section 5.3 of [RFC5216].

5.4.  Certificate Revocation

   This section updates Section 5.4 of [RFC5216].

   While certificates may have long validity periods, there are a number
   of reasons (e.g., key compromise, CA compromise, privilege withdrawn,
   etc.) why EAP-TLS peer, EAP-TLS server, or sub-CA certificates have
   to be revoked before their expiry date.  Revocation of the EAP-TLS
   server’s certificate is complicated by the fact that the EAP-TLS peer
   may not have Internet connectivity until authentication completes.

   When EAP-TLS is used with TLS 1.3, the revocation status of all the
   certificates in the certificate chains MUST be checked (except the
   trust anchor).  An implementation may use Certificate Revocation List
   (CRL), Online Certificate Status Protocol (OSCP), or other
   standardized/proprietary methods for revocation checking.  Examples
   of proprietary methods are non-standard formats for distribution of
   revocation lists as well as certificates with very short lifetime.

   EAP-TLS servers supporting TLS 1.3 MUST implement Certificate Status
   Requests (OCSP stapling) as specified in [RFC6066] and
   Section 4.4.2.1 of [RFC8446].  It is RECOMMENDED that EAP-TLS peers
   and EAP-TLS servers use OCSP stapling for verifying the status of the
   EAP-TLS server’s certificate chain.  When an EAP-TLS peer uses
   Certificate Status Requests to check the revocation status of the
   EAP-TLS server’s certificate chain it MUST treat a CertificateEntry
   (except the trust anchor) without a valid CertificateStatus extension
   as invalid and abort the handshake with an appropriate alert.  The
   OCSP status handling in TLS 1.3 is different from earlier versions of
   TLS, see Section 4.4.2.1 of [RFC8446].  In TLS 1.3 the OCSP
   information is carried in the CertificateEntry containing the
   associated certificate instead of a separate CertificateStatus
   message as in [RFC6066].  This enables sending OCSP information for
   all certificates in the certificate chain (except the trust anchor).

   To enable revocation checking in situations where EAP-TLS peers do
   not implement or use OCSP stapling, and where network connectivity is
   not available prior to authentication completion, EAP-TLS peer
   implementations MUST also support checking for certificate revocation
   after authentication completes and network connectivity is available.
   An EAP peer implementation SHOULD NOT trust the network (and any
   services) until it has verified the revocation status of the server
   certificate after receiving network connectivity.  An EAP peer MUST
   use a secure transport to verify the revocation status of the server
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   certificate.  An EAP peer SHOULD NOT send any other traffic before
   revocation checking for the server certificate is complete.

5.5.  Packet Modification Attacks

   This section updates Section 5.5 of [RFC5216].

   As described in [RFC3748] and Section 5.5 of [RFC5216], the only
   information that is integrity and replay protected in EAP-TLS are the
   parts of the TLS Data that TLS protects.  All other information in
   the EAP-TLS message exchange including EAP-Request and EAP-Response
   headers, the identity in the identity response, EAP-TLS packet header
   fields, Type, and Flags, EAP-Success, and EAP-Failure can be
   modified, spoofed, or replayed.

   Protected TLS Error alerts are protected failure result indications
   and enables the EAP-TLS peer and EAP-TLS server to determine that the
   failure result was not spoofed by an attacker.  Protected failure
   result indications provide integrity and replay protection but MAY be
   unauthenticated.  Protected failure results do not significantly
   improve availability as TLS 1.3 treats most malformed data as a fatal
   error.

5.6.  Authorization

   This is a new section when compared to [RFC5216].  The guidance in
   this section is relevant for EAP-TLS in general (regardless of the
   underlying TLS version used).

   EAP servers will usually require the EAP peer to provide a valid
   certificate and will fail the connection if one is not provided.
   Some deployments may permit no peer authentication for some or all
   connections.  When peer authentication is not used, implementations
   MUST take care to limit network access appropriately for
   unauthenticated peers and implementations MUST use resumption with
   caution to ensure that a resumed session is not granted more
   privilege than was intended for the original session.

   EAP-TLS is typically encapsulated in other protocols, such as PPP
   [RFC1661], RADIUS [RFC2865], Diameter [RFC6733], or PANA [RFC5191].
   The encapsulating protocols can also provide additional, non-EAP
   information to an EAP-TLS server.  This information can include, but
   is not limited to, information about the authenticator, information
   about the EAP-TLS peer, or information about the protocol layers
   above or below EAP (MAC addresses, IP addresses, port numbers, WiFi
   SSID, etc.).  EAP-TLS servers implementing EAP-TLS inside those
   protocols can make policy decisions and enforce authorization based
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   on a combination of information from the EAP-TLS exchange and non-EAP
   information.

   As noted in Section 2.2, the identity presented in EAP-Response/
   Identity is not authenticated by EAP-TLS and is therefore trivial for
   an attacker to forge, modify, or replay.  Authorization and
   accounting MUST be based on authenticated information such as
   information in the certificate or the PSK identity and cached data
   provisioned for resumption as described in Section 5.7.  Note that
   the requirements for Network Access Identifiers (NAIs) specified in
   Section 4 of [RFC7542] still apply and MUST be followed.

   EAP-TLS servers MAY reject conversations based on non-EAP information
   provided by the encapsulating protocol, for example, if the MAC
   address of the authenticator does not match the expected policy.

5.7.  Resumption

   This is a new section when compared to [RFC5216].  The guidance in
   this section is relevant for EAP-TLS in general (regardless of the
   underlying TLS version used).

   There are a number of security issues related to resumption that are
   not described in [RFC5216].  The problems, guidelines, and
   requirements in this section therefore applies to all version of TLS.

   When resumption occurs, it is based on cached information at the TLS
   layer.  To perform resumption in a secure way, the EAP-TLS peer and
   EAP-TLS server need to be able to securely retrieve authorization
   information such as certificate chains from the initial full
   handshake.  We use the term "cached data" to describe such
   information.  Authorization during resumption MUST be based on such
   cached data.  The EAP-TLS peer and EAP-TLS server MAY perform fresh
   revocation checks on the cached certificate data.  Any security
   policies for authorization MUST be followed also for resumption.  The
   certificates may have been revoked since the initial full handshake
   and the authorizations of the other party may have reduced.  If the
   cached revocation data is not sufficiently current, the EAP-TLS peer
   or EAP-TLS server MAY force a full TLS handshake.

   There are two ways to retrieve the cached data from the original full
   handshake.  The first method is that the EAP-TLS server and client
   cache the information locally.  The cached information is identified
   by an identifier.  For TLS versions before 1.3, the identifier can be
   the session ID, for TLS 1.3, the identifier is the PSK identity.  The
   second method for retrieving cached information is via [RFC5077] or
   [RFC8446], where the EAP-TLS server avoids storing information
   locally and instead encapsulates the information into a ticket or PSK
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   which is sent to the client for storage.  This ticket or PSK is
   encrypted using a key that only the EAP-TLS server knows.  Note that
   the client still needs to cache the original handshake information
   locally and will use the session ID or PSK identity to lookup this
   information during resumption.  However, the EAP-TLS server is able
   to decrypt the ticket or PSK to obtain the original handshake
   information.

   If the EAP-TLS server or EAP client do not apply any authorization
   policies, they MAY allow resumption where no cached data is
   available.  In all other cases, they MUST cache data during the
   initial full handshake to enable resumption.  The cached data MUST be
   sufficient to make authorization decisions during resumption.  If
   cached data cannot be retrieved in a secure way, resumption MUST NOT
   be done.

   The above requirements also apply if the EAP-TLS server expects some
   system to perform accounting for the session.  Since accounting must
   be tied to an authenticated identity, and resumption does not supply
   such an identity, accounting is impossible without access to cached
   data.  Therefore systems which expect to perform accounting for the
   session SHOULD cache an identifier which can be used in subsequent
   accounting.

   As suggested in [RFC8446], EAP-TLS peers MUST NOT store resumption
   PSKs or tickets (and associated cached data) for longer than 7 days,
   regardless of the PSK or ticket lifetime.  The EAP-TLS peer MAY
   delete them earlier based on local policy.  The cached data MAY also
   be removed on the EAP-TLS server or EAP-TLS peer if any certificate
   in the certificate chain has been revoked or has expired.  In all
   such cases, an attempt at resumption results in a full TLS handshake
   instead.

   Information from the EAP-TLS exchange (e.g., the identity provided in
   EAP-Response/Identity) as well as non-EAP information (e.g., IP
   addresses) may change between the initial full handshake and
   resumption.  This change creates a "time-of-check time-of-use"
   (TOCTOU) security vulnerability.  A malicious or compromised user
   could supply one set of data during the initial authentication, and a
   different set of data during resumption, potentially allowing them to
   obtain access that they should not have.

   If any authorization, accounting, or policy decisions were made with
   information that has changed between the initial full handshake and
   resumption, and if change may lead to a different decision, such
   decisions MUST be reevaluated.  It is RECOMMENDED that authorization,
   accounting, and policy decisions are reevaluated based on the
   information given in the resumption.  EAP-TLS servers MAY reject
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   resumption where the information supplied during resumption does not
   match the information supplied during the original authentication.
   If a safe decision is not possible, EAP-TLS servers SHOULD reject the
   resumption and continue with a full handshake.

   Section 2.2 and 4.2.11 of [RFC8446] provides security considerations
   for TLS 1.3 resumption.

5.8.  Privacy Considerations

   This is a new section when compared to [RFC5216].

   TLS 1.3 offers much better privacy than earlier versions of TLS as
   discussed in Section 2.1.8.  In this section, we only discuss the
   privacy properties of EAP-TLS with TLS 1.3.  For privacy properties
   of TLS 1.3 itself, see [RFC8446].

   EAP-TLS sends the standard TLS 1.3 handshake messages encapsulated in
   EAP packets.  Additionally, the EAP-TLS peer sends an identity in the
   first EAP-Response.  The other fields in the EAP-TLS Request and the
   EAP-TLS Response packets do not contain any cleartext privacy
   sensitive information.

   Tracking of users by eavesdropping on identity responses or
   certificates is a well-known problem in many EAP methods.  When EAP-
   TLS is used with TLS 1.3, all certificates are encrypted, and the
   username part of the identity response is not revealed (e.g., using
   anonymous NAIs).  Note that even though all certificates are
   encrypted, the server’s identity is only protected against passive
   attackers while client’s identity is protected against both passive
   and active attackers.  As with other EAP methods, even when privacy-
   friendly identifiers or EAP tunneling is used, the domain name (i.e.,
   the realm) in the NAI is still typically visible.  How much privacy
   sensitive information the domain name leaks is highly dependent on
   how many other users are using the same domain name in the particular
   access network.  If all EAP-TLS peers have the same domain, no
   additional information is leaked.  If a domain name is used by a
   small subset of the EAP-TLS peers, it may aid an attacker in tracking
   or identifying the user.

   Without padding, information about the size of the client certificate
   is leaked from the size of the EAP-TLS packets.  The EAP-TLS packets
   sizes may therefore leak information that can be used to track or
   identify the user.  If all client certificates have the same length,
   no information is leaked.  EAP-TLS peers SHOULD use record padding,
   see Section 5.4 of [RFC8446] to reduce information leakage of
   certificate sizes.
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   If anonymous NAIs are not used, the privacy-friendly identifiers need
   to be generated with care.  The identities MUST be generated in a
   cryptographically secure way so that that it is computationally
   infeasible for an attacker to differentiate two identities belonging
   to the same user from two identities belonging to different users in
   the same realm.  This can be achieved, for instance, by using random
   or pseudo-random usernames such as random byte strings or ciphertexts
   and only using the pseudo-random usernames a single time.  Note that
   the privacy-friendly usernames also MUST NOT include substrings that
   can be used to relate the identity to a specific user.  Similarly,
   privacy-friendly username MUST NOT be formed by a fixed mapping that
   stays the same across multiple different authentications.

   An EAP-TLS peer with a policy allowing communication with EAP-TLS
   servers supporting only TLS 1.2 without privacy and with a static RSA
   key exchange is vulnerable to disclosure of the EAP-TLS peer
   username.  An active attacker can in this case make the EAP-TLS peer
   believe that an EAP-TLS server supporting TLS 1.3 only supports TLS
   1.2 without privacy.  The attacker can simply impersonate the EAP-TLS
   server and negotiate TLS 1.2 with static RSA key exchange and send an
   TLS alert message when the EAP-TLS peer tries to use privacy by
   sending an empty certificate message.  Since the attacker
   (impersonating the EAP-TLS server) does not provide a proof-of-
   possession of the private key until the Finished message when a
   static RSA key exchange is used, an EAP-TLS peer may inadvertently
   disclose its identity (username) to an attacker.  Therefore, it is
   RECOMMENDED for EAP-TLS peers to not use EAP-TLS with TLS 1.2 and
   static RSA based cipher suites without privacy.  This implies that an
   EAP-TLS peer SHOULD NOT continue the handshake if a TLS 1.2 EAP-TLS
   server sends an EAP-TLS/Request with a TLS alert message in response
   to an empty certificate message from the peer.

5.9.  Pervasive Monitoring

   This is a new section when compared to [RFC5216].

   Pervasive monitoring refers to widespread surveillance of users.  In
   the context of EAP-TLS, pervasive monitoring attacks can target EAP-
   TLS peer devices for tracking them (and their users) as and when they
   join a network.  By encrypting more information, mandating the use of
   privacy, and always providing forward secrecy, EAP-TLS with TLS 1.3
   offers much better protection against pervasive monitoring.  In
   addition to the privacy attacks discussed above, surveillance on a
   large scale may enable tracking of a user over a wide geographical
   area and across different access networks.  Using information from
   EAP-TLS together with information gathered from other protocols
   increases the risk of identifying individual users.
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5.10.  Discovered Vulnerabilities

   This is a new section when compared to [RFC5216].

   Over the years, there have been several serious attacks on earlier
   versions of Transport Layer Security (TLS), including attacks on its
   most commonly used ciphers and modes of operation.  [RFC7457]
   summarizes the attacks that were known at the time of publishing and
   BCP 195 [RFC7525] provides recommendations for improving the security
   of deployed services that use TLS.  However, many of the attacks are
   less serious for EAP-TLS as EAP-TLS only uses the TLS handshake and
   does not protect any application data.  EAP-TLS implementations MUST
   mitigate known attacks.  EAP-TLS implementations need to monitor and
   follow new EAP and TLS related security guidance and requirements
   such as [RFC8447], [RFC8996], [I-D.ietf-tls-md5-sha1-deprecate].
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Appendix A.  Updated references

   All the following references in [RFC5216] are updated as specified
   below when EAP-TLS is used with TLS 1.3.

   All references to [RFC2560] are updated with [RFC6960].

   All references to [RFC3280] are updated with [RFC5280].

   All references to [RFC4282] are updated with [RFC7542].
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Abstract

   EAP-TLS [RFC5216] is being updated for TLS 1.3 in [EAPTLS].  Many
   other EAP [RFC3748] and [RFC5247] types also depend on TLS, such as
   FAST [RFC4851], TTLS [RFC5281], TEAP [RFC7170], and possibly many
   vendor specific EAP methods.  This document updates those methods in
   order to use the new key derivation methods available in TLS 1.3.
   Additional changes necessitated by TLS 1.3 are also discussed.

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on January 29, 2021.
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1.  Introduction

   EAP-TLS is being updated for TLS 1.3 in [EAPTLS].  Many other EAP
   types also depend on TLS, such as FAST [RFC4851], TTLS [RFC5281],
   TEAP [RFC7170], and possibly many vendor specific EAP methods.  All
   of these methods use key derivation functions which rely on the
   information which is no longer available in TLS 1.3.  As such, all of
   those methods are incompatible with TLS 1.3.

   We wish to enable the use of TLS 1.3 in the wider Internet community.
   As such, it is necessary to update the above EAP types.  These
   changes involve defining new key derivation functions.  We also
   discuss implementation issues in order to highlight differences
   between TLS 1.3 and earlier versions of TLS.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.
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2.  Using TLS-based EAP methods with TLS 1.3

   In general, all of the requirements of [EAPTLS] apply to other EAP
   methods that wish to use TLS 1.3.  Unless otherwise discusses herein,
   implementations of EAP methods that wish to use TLS 1.3 MUST follow
   the guidelines in [EAPTLS].

   There remain some differences between EAP-TLS and other TLS-based EAP
   methods which necessitates this document.  The main difference is
   that [EAPTLS] uses the EAP-TLS type ID (0x0D) in a number of
   calculations, whereas other method types will use their own type ID
   instead of the EAP-TLS type ID.  This topic is discussed further
   below in Section 2.

   An additional difference is that the [EAPTLS] Section 2.5 requires a
   Commitment Message to be sent once the EAP-TLS handshake has
   completed.  Other TLS-based EAP methods also use the Commitment
   Message, but only during resumption.  When the other TLS-based EAP
   methods send application data inside of the TLS tunnel, the
   Commitment Message is not used.  This topic is explained in more
   detail below, in Section 3.

   Finally, the document includes clarifications on how various TLS-
   based parameters are calculated when using TLS 1.3.  These parameters
   are different for each EAP method, so they are discussed separately.

2.1.  Key Derivation

   The key derivation for TLS-based EAP methods depends on the value of
   the Type-Code as defined by [IANA].  The most important definition is
   of the Type-Code:

      Type-Code  = EAP Method type

   The Type-Code is defined to be 1 octet for values smaller than 255.
   Where expanded EAP Type Codes are used, the Type-Code is defined to
   be the Expanded Type Code (including the Type, Vendor-Id (in network
   byte order) and Vendor-Type fields (in network byte order) defined in
   [RFC3748] Section 5.7).

      Type-Code  = 0xFE || Vendor-Id || Vendor-Type

   Unless otherwise discussed below, the key derivation functions for
   all TLS-based EAP types are defined as follows:

      Key_Material = TLS-Exporter("EXPORTER_EAP_TLS_Key_Material",
                                   Type-Code, 128)
      IV           = TLS-Exporter("EXPORTER_EAP_TLS_IV", Type-Code, 64)

DeKok, Alan                 Proposed Standard                   [Page 5]



INTERNET-DRAFT       TLS-based EAP types and TLS 1.3    21 February 2021

      Method-Id    = TLS-Exporter("EXPORTER_EAP_TLS_Method-Id",
                                   Type-Code, 64)
      Session-Id   = Type-Code || Method-Id
      MSK          = Key_Material(0, 63)
      EMSK         = Key_Material(64, 127)
      Enc-RECV-Key = MSK(0, 31)
      Enc-SEND-Key = MSK(32, 63)
      RECV-IV      = IV(0, 31)
      SEND-IV      = IV(32, 63)

   We note that these definitions re-use the EAP-TLS exporter labels,
   and change the derivation only by adding a dependency on Type-Code.
   The reason for this change is simplicity.  There does not appear to
   be compelling reasons to make the labels method-specific, when they
   can just include the Type-Code in the key derivation.

   These definitions apply in their entirety to TTLS [RFC5281] and PEAP
   as defined in [PEAP] and [MSPEAP].  Some definitions apply to FAST
   and TEAP, with exceptions as noted below.

   It is RECOMMENDED that vendor-defined TLS-based EAP methods use the
   above definitions for TLS 1.3.  There is insufficient reason to use
   different definitions.

2.2.  TEAP

   [RFC7170] Section 5.2 gives a definition for the Inner Method Session
   Key (IMSK), which depends on the TLS-PRF.  We update that definition
   for TLS 1.3 as:

      IMSK = TLS-Exporter("TEAPbindkey@ietf.org", EMSK, 32)

   For MSK and EMSK, TEAP [RFC7170] uses an inner tunnel EMSK to
   calculate the outer EMSK.  As such, those key derivations cannot use
   the above derivation.

   The other key derivations for TEAP are given here.  All derivations
   not given here are the same as given above in the previous section.
   These derivations are also used for FAST, but using the FAST Type-
   Code.

      session_key_seed = TLS-Exporter("EXPORTER: session key seed",
      Type-Code, 40)

      S-IMCK[0] = session_key_seed
        For j = 1 to n-1 do
             IMCK[j] = TLS-Exporter("EXPORTER: Inner Methods Compound
      Keys", S-IMCK[j-1] | IMSK[j], 60)
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             S-IMCK[j] = first 40 octets of IMCK[j]
             CMK[j] = last 20 octets of IMCK[j]

   Where | denotes concatenation.  MSK and EMSK are then derived from
   the above definitions, as:

      MSK  = TLS-Exporter("EXPORTER: Session Key Generating Function",
      S-IMCK[j], 64)

      EMSK = TLS-Exporter("EXPORTER: Extended Session Key Generating
      Function", S-IMCK[j], 64)

   The TEAP Compound MAC defined in [RFC7170] Section 5.3 is updated to
   use the definition of CMK[j] given above, which then leads to the
   following definition

      CMK = CMK[j]

      Compound-MAC = MAC( CMK, BUFFER )

   where j is the number of the last successfully executed inner EAP
   method.  For TLS 1.3, the hash function used is the same as the
   ciphersuite hash function negotiated for HKDF in the key schedule, as
   per section 7.1 of RFC 8446.  The definition of BUFFER is unchanged
   from [RFC7170] Section 5.3

2.3.  FAST

   For FAST, the session_key_seed is also used as the key_block, as
   defined in [RFC4851] Section 5.1.

   The definition of S-IMCK[n], MSK, and EMSK are the same as given
   above for TEAP.  We reiterate that the EAP-FAST Type-Code must be
   used when deriving the session_key_seed, and not the TEAP Type-Code.

   Unlike [RFC4851] Section 5.2, the definition of IMCK[j] places the
   reference to S-IMCK after the textual label, and the concatenates the
   IMSK instead of MSK.

   EAP-FAST previously used a PAC, which is a type of pre-shared key
   (PSK).  Such uses are deprecated in TLS 1.3.  As such, PAC
   provisioning is no longer part of EAP-FAST when TLS 1.3 is used.

   The T-PRF given in [RFC4851] Section 5.5 is not used for TLS 1.3.
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2.4.  TTLS

   [RFC5281] Section 11.1 defines an implicit challenge when the inner
   methods of CHAP [RFC1994], MS-CHAP [RFC2433], or MS-CHAPv2 [RFC2759]
   are used.  The derivation for TLS 1.3 is instead given as

   EAP-TTLS_challenge = TLS-Exporter("ttls challenge",, n)

   There no "context_value" ([RFC8446] Section 7.5) passed to the TLS-
   Exporter function.  The value "n" given here is the length of the
   challenge required, which varies according to the challenge.

   Note that unlike TLS 1.2 and earlier, the calculation of TLS-Exporter
   depends on the length passed to it.  Implementations therefore MUST
   pass the correct length, instead of passing a large length and
   truncating the output.  Any truncated output will be different from
   the output calculated using the correct length.

2.5.  PEAP

   When PEAP uses crypto binding, it uses a different key calculation
   defined in [PEAP-MPPE] which consumes inner method keying material.
   The pseudo-random function (PRF) used here is not taken from the TLS
   exporter, but is instead calculated via a different method which is
   given in [PEAP-PRF].  That derivation remains unchanged in this
   specification.

   However, the key calculation uses a PEAP Tunnel Key [PEAP-TK] which
   is defined as:

       ... the TK is the first 60 octets of the Key_Material, as
      specified in [RFC5216]: TLS-PRF-128 (master secret, "client EAP
      encryption", client.random || server.random).

   We note that this text does not define Key_Material.  Instead, it
   defines TK as the first octets of Key_Material, and gives a
   definition of Key_Material which is appropriate for TLS versions
   before TLS 1.3.

   For TLS 1.3, the TK should instead be derived from the Key_Material
   defined above in Section 2.1.

3.  Application Data

   Unlike previous TLS versions, TLS 1.3 can continue negotiation after
   the TLS session has been initialized.  Some implementations use the
   TLS "Finished" state as a signal that application data is now
   available, and an "inner tunnel" session can now be negotiated.  As
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   noted in [RFC8446], TLS 1.3 may include one or more
   "NewSessionTicket" messages after the "Finished" state.  This change
   can cause many implementations to fail.

   In order to correct this failure, if the underlying TLS connection is
   still performing negotiations, then implementations MUST NOT send, or
   expect to receive application data in the TLS session.
   Implementations MUST delay processing of application data until such
   time as the TLS negotiation has finished.  If the TLS negotiation is
   successful, then the application data can be examined.  If the TLS
   negotiation is unsuccessful, then the application data is untrusted,
   and therefore MUST be discarded without being examined.

   [EAPTLS] Section 2.5 requires a Commitment message which indicates
   that TLS negotiation has finished.  Methods which use "inner tunnel"
   methods MUST instead begin their "inner tunnel" negotiation by
   sending type-specific application data.

4.  Resumption

   [EAPTLS] Section 2.1.3 defines the process for resumption.  This
   process is the same for all TLS-based EAP types.  The only practical
   difference is that the type code is different.

   All TLS-based EAP methods support resumption.  All EAP servers and
   peers MUST support resumption.  We note that EAP servers and peers
   can still choose to not resume any particular session.  For example,
   EAP servers may forbid resumption for administrative, or other policy
   reasons.

   It is RECOMMENDED that EAP servers and peers enable resumption, and
   use it where possible.  The use of resumption decreases the number of
   round trips used for authentication.  This decrease leads to faster
   authentications, and less load on the EAP server.

   EAP servers peers MUST NOT resume sessions across different EAP
   types, and EAP servers MUST reject resumptions in which the EAP Type
   code is different from the original authentication.

   As the packet flows for resumption are essentially identical across
   all TLS-based EAP types, it is technically possible to authenticate
   using EAP-TLS (EAP Type code 13), and then perform resumption using
   another EAP type, just as EAP-TTLS (EAP Type code 21).  However,
   there is no practical benefit to doing so.  It is also not clear what
   this behavior would mean, or what (if any) security issues there may
   be with it.  As a result, this behavior is forbidden.
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5.  Security Considerations

   [EAPTLS] Section 5 is included here by reference.

   Updating the above EAP methods to use TLS 1.3 is of high importance
   for the Internet Community.  Using the most recent security protocols
   can significantly improve security and privace of a network.

   In some cases, client certificates are not used for TLS-based EAP
   methods.  In those cases, the user is authenticated only after
   successful completion of the inner tunnel authentication.  However,
   the TLS protocol may send one or more NewSessionTicket after
   receiving the TLS Finished message from the client, and therefore
   before the user is authenticated.

   This separation of data allows for a "time of use, time of check"
   security issue.  Malicious clients can begin a session and receive
   the NewSessionTicket.  Then prior to authentication, the malicious
   client can abort the authentication session.  The malicious client
   can then use the obtained NewSessionTicket to "resume" the previous
   session.

   As a result, EAP servers MUST NOT permit sessions to be resumed until
   after authentication has successfully completed.  This requirement
   may be met in a number of ways.  For example, by not caching the
   session ticket until after authentication has completed, or by
   marking up the cached session ticket with a flag stating whether or
   not authentication has completed.

   For PEAP, some derivation use HMAC-SHA1 [PEAP-MPPE].  There are no
   known security issues with HMAC-SHA1.  In the interests of
   interoperability and minimal changes, we do not change that
   definition here.

5.1.  Protected Success and Failure indicators

   [EAPTLS] provides for protected success and failure indicators as
   discussed in Section 4.1.1 of [RFC4137].  These indicators are
   provided for both full authentication, and for resumption.

   Other TLS-based EAP methods provide these indicators only for
   resumption.

   For full authenticaton, the other TLS-based EAP methods do not
   provide for protected success and failure indicators as part of the
   outer TLS exchange.  That is, the Commitment Message is not used, and
   there is no TLS-layer alert sent when the inner authentication fails.
   Instead, there is simple either an EAP-Success or EAP-Failure sent.
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   This behavior is the same as for previous TLS versions, and therefore
   introduces no new security issues.

   We note that most TLS-based EAP methods provide for success and
   failure indicators as part of the authentication exchange performed
   inside of the TLS tunnel.  These indicators are therefore protected,
   as they cannot be modified or forged.

   When the inner authentication protocol indicates that authentication
   has failed, then implementations MUST fail authentication for the
   entire session.  There MAY be additional protocol exchanges in order
   to exchange more detailed failure indicates, but the final result
   MUST be a failed authentication.

   Similarly, when the inner authentication protocol indicates that
   authentication has succeeed, then implementations SHOULD cause
   authentication to succeed for the entire session.  There MAY be
   additional protocol exchanges in order which could cause other
   failures, so success is not required here.

   In both of these cases, the EAP server MUST send an EAP-Failure or
   EAP-Success message, as indicated by Section 2 item 4 of [RFC3748].
   Even though both parties have already determined the final
   authentication status, the full EAP state machine must still be
   followed.

6.  IANA Considerations

   This section provides guidance to the Internet Assigned Numbers
   Authority (IANA) regarding registration of values related to the TLS-
   based EAP methods for TLS 1.3 protocol in accordance with [RFC8126].

   This memo requires IANA to add the following labels to the TLS
   Exporter Label Registry defined by [RFC5705].  These labels are used
   in derivation of Key_Material, IV and Method-Id as defined above in
   Section 2.

   The labels above need to be added to the "TLS Exporter Labels"
   registry.

   * EXPORTER: session key seed * EXPORTER: Inner Methods Compound Keys
   * EXPORTER: Session Key Generating Function * EXPORTER: Extended
   Session Key Generating Function * TEAPbindkey@ietf.org
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