
Network Working Group B. Aboba
Internet-Draft Microsoft Corporation
Obsoletes: 3748 (if approved) L. Blunk
Intended status: Standards Track Merit Network, Inc
Expires: August 26, 2021 J. Vollbrecht
 Vollbrecht Consulting LLC
 J. Carlson
 Sun Microsystems, Inc
 H. Levkowetz
 ipUnplugged AB
 J. Arkko (Ed.)
 J. Mattsson (Ed.)
 Ericsson
 February 22, 2021

 Extensible Authentication Protocol (EAP)
 draft-arkko-emu-rfc3748bis-00

Abstract

 This document defines the Extensible Authentication Protocol (EAP),
 an authentication framework which supports multiple authentication
 methods. EAP typically runs directly over data link layers such as
 Point-to-Point Protocol (PPP), IEEE 802, or 3GPP 5G without requiring
 IP. EAP provides its own support for duplicate elimination and
 retransmission, but is reliant on lower layer ordering guarantees.
 Fragmentation is not supported within EAP itself; however, individual
 EAP methods may support this.

 This document obsoletes RFC 3748, which in turn obsoleted RFC 2284.
 This document updates some of the security considerations, terms,
 references, the IANA considerations, and few other minor updates. A
 summary of the changes between this document and RFC 3748 is in
 Appendix A, and the changes from RFC 2284 were listed in RFC 3748.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Aboba, et al. Expires August 26, 2021 [Page 1]

Internet-Draft EAP February 2021

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 26, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Specification of Requirements 5
 1.2. Terminology . 5
 1.3. Applicability . 7
 2. Extensible Authentication Protocol (EAP) 8
 2.1. Support for Sequences 10
 2.2. EAP Multiplexing Model 11
 2.3. Pass-Through Behavior 13
 2.4. Peer-to-Peer Operation 15
 3. Lower Layer Behavior . 16
 3.1. Lower Layer Requirements 16
 3.2. EAP Usage Within PPP 19
 3.2.1. PPP Configuration Option Format 19
 3.3. EAP Usage Within IEEE 802 20
 3.4. Lower Layer Indications 20
 4. EAP Packet Format . 21
 4.1. Request and Response 22
 4.2. Success and Failure 24
 4.3. Retransmission Behavior 27
 5. Initial EAP Request/Response Types 28
 5.1. Identity . 29
 5.2. Notification . 30
 5.3. Nak . 32
 5.3.1. Legacy Nak . 32
 5.3.2. Expanded Nak . 33
 5.4. MD5-Challenge . 36

Aboba, et al. Expires August 26, 2021 [Page 2]

Internet-Draft EAP February 2021

 5.5. One-Time Password (OTP) 38
 5.6. Generic Token Card (GTC) 39
 5.7. Expanded Types . 40
 5.8. Experimental . 42
 6. IANA Considerations . 42
 6.1. Packet Codes . 43
 6.2. Method Types . 43
 7. Security Considerations 43
 7.1. Threat Model . 44
 7.2. Security Claims . 45
 7.2.1. Security Claims Terminology for EAP Methods 46
 7.3. Identity Protection 48
 7.4. Man-in-the-Middle Attacks 49
 7.5. Packet Modification Attacks 50
 7.6. Dictionary Attacks 51
 7.7. Connection to an Untrusted Network 51
 7.8. Negotiation Attacks 52
 7.9. Implementation Idiosyncrasies 52
 7.10. Key Derivation . 53
 7.11. Weak Ciphersuites . 55
 7.11.1. Legacy Authentication Methods 55
 7.12. Link Layer . 56
 7.13. Separation of Authenticator and Backend Authentication
 Server . 56
 7.14. Cleartext Passwords 57
 7.15. Channel Binding . 58
 7.16. Protected Result Indications 58
 8. References . 61
 8.1. Normative References 61
 8.2. Informative References 62
 Appendix A. Changes from RFC 3748 68
 Appendix B. Rationale . 69
 Appendix C. Acknowledgements 70
 Authors’ Addresses . 71

1. Introduction

 This document defines the Extensible Authentication Protocol (EAP),
 an authentication framework which supports multiple authentication
 methods. EAP typically runs directly over data link layers such as
 Point-to-Point Protocol (PPP),IEEE 802, or 3GPP 5G without requiring
 IP. EAP provides its own support for duplicate elimination and
 retransmission, but is reliant on lower layer ordering guarantees.
 Fragmentation is not supported within EAP itself; however, individual
 EAP methods may support this.

 EAP may be used on dedicated links, as well as switched circuits, and
 wired as well as wireless links. To date, EAP has been implemented

Aboba, et al. Expires August 26, 2021 [Page 3]

Internet-Draft EAP February 2021

 with hosts and routers that connect via switched circuits or dial-up
 lines using PPP [RFC1661]. It has also been implemented with
 switches and access points using IEEE 802 [IEEE-802]. EAP
 encapsulation on IEEE 802 wired media is described in [IEEE-802.1X],
 and encapsulation on IEEE wireless LANs in [IEEE-802.11i]. EAP can
 be used for authentication in all types of accesses in 3GPP 5G
 [TS.33.501].

 One of the advantages of the EAP architecture is its flexibility.
 EAP is used to select a specific authentication mechanism, typically
 after the authenticator requests more information in order to
 determine the specific authentication method to be used. Rather than
 requiring the authenticator to be updated to support each new
 authentication method, EAP permits the use of a backend
 authentication server, which may implement some or all authentication
 methods, with the authenticator acting as a pass-through for some or
 all methods and peers.

 Within this document, authenticator requirements apply regardless of
 whether the authenticator is operating as a pass-through or not.
 Where the requirement is meant to apply to either the authenticator
 or backend authentication server, depending on where the EAP
 authentication is terminated, the term "EAP server" will be used.

 Other aspects of the EAP framework are discussed in companion
 documents, [RFC4137] discusses a possible state machine, [RFC5113]
 defines the network discovery and selection problem, [RFC5247]
 specifies the EAP key hierarchy, [RFC6677] and [RFC7029] explores
 man-in-the-middle attacks as well as defining how to implement
 channel bindings.

 While the authors believe that the update from RFC 3748 is useful, it
 is by no means something that absolute has to be done, but has been
 provided for the community’s consideration as part of an overall
 interest in maintaining the technology and its documentation. If we
 care about a technology we should keep it up to date. The authors
 believe that it is preferable to have ongoing maintenance that
 addresses issues when they are identified, rather than waiting for a
 larger but more infrequent update. The specific changes are
 discussed in Appendix A, and the rationale for the terminology-
 related parts of the change is discussed in more detail in
 Appendix B.

 This update proposal is brought forward for discussion. Discussion
 may find that the update is considered useful or unnecessary, or
 perhaps even a distracton or flawed in some of its definitions. All
 feedback is welcome!

Aboba, et al. Expires August 26, 2021 [Page 4]

Internet-Draft EAP February 2021

1.1. Specification of Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 This document frequently uses the following terms:

 authenticator

 The end of the link initiating EAP authentication. The term
 authenticator is used in [IEEE-802.1X], and has the same meaning
 in this document.

 peer

 The end of the link that responds to the authenticator. In
 [IEEE-802.1X], this end is known as the Supplicant.

 Supplicant

 The end of the link that responds to the authenticator in
 [IEEE-802.1X]. In this document, this end of the link is called
 the peer.

 backend authentication server

 A backend authentication server is an entity that provides an
 authentication service to an authenticator. When used, this
 server typically executes EAP methods for the authenticator. This
 terminology is also used in [IEEE-802.1X].

 AAA

 Authentication, Authorization, and Accounting. AAA protocols with
 EAP support include RADIUS [RFC3579] and Diameter [RFC4072]. In
 this document, the terms "AAA server" and "backend authentication
 server" are used interchangeably.

 Displayable Message

 This is interpreted to be a human readable string of characters.
 The message encoding MUST follow the UTF-8 transformation format
 [RFC3629].

Aboba, et al. Expires August 26, 2021 [Page 5]

Internet-Draft EAP February 2021

 EAP server

 The entity that terminates the EAP authentication method with the
 peer. In the case where no backend authentication server is used,
 the EAP server is part of the authenticator. In the case where
 the authenticator operates in pass-through mode, the EAP server is
 located on the backend authentication server.

 Silently Discard

 This means the implementation discards the packet without further
 processing. The implementation SHOULD provide the capability of
 logging the event, including the contents of the silently
 discarded packet, and SHOULD record the event in a statistics
 counter.

 Successful Authentication

 In the context of this document, "successful authentication" is an
 exchange of EAP messages, as a result of which the authenticator
 decides to allow access by the peer, and the peer decides to use
 this access. The authenticator’s decision typically involves both
 authentication and authorization aspects; the peer may
 successfully authenticate to the authenticator, but access may be
 denied by the authenticator due to policy reasons.

 Message Integrity Check (MIC)

 A keyed hash function used for authentication and integrity
 protection of data. This is usually called a Message
 Authentication Code (MAC), but IEEE 802 specifications (and this
 document) use the acronym MIC to avoid confusion with Medium
 Access Control.

 Cryptographic Separation

 Two keys (x and y) are "cryptographically separate" if an
 adversary that knows all messages exchanged in the protocol cannot
 compute x from y or y from x without "breaking" some cryptographic
 assumption. In particular, this definition allows that the
 adversary has the knowledge of all nonces sent in cleartext, as
 well as all predictable counter values used in the protocol.
 Breaking a cryptographic assumption would typically require
 inverting a one-way function or predicting the outcome of a
 cryptographic pseudo-random number generator without knowledge of
 the secret state. In other words, if the keys are
 cryptographically separate, there is no shortcut to compute x from
 y or y from x, but the work an adversary must do to perform this

Aboba, et al. Expires August 26, 2021 [Page 6]

Internet-Draft EAP February 2021

 computation is equivalent to performing an exhaustive search for
 the secret state value.

 Main Session Key (MSK)

 Keying material that is derived between the EAP peer and server
 and exported by the EAP method. The MSK is at least 64 octets in
 length. In existing implementations, a AAA server acting as an
 EAP server transports the MSK to the authenticator.

 Extended Main Session Key (EMSK)

 Additional keying material derived between the EAP client and
 server that is exported by the EAP method. The EMSK is at least
 64 octets in length. The EMSK is not shared with the
 authenticator or any other third party. The EMSK is reserved for
 future uses that are not defined yet.

 Result indications

 A method provides result indications if after the method’s last
 message is sent and received:

 1. The peer is aware of whether it has authenticated the server,
 as well as whether the server has authenticated it.

 2. The server is aware of whether it has authenticated the peer,
 as well as whether the peer has authenticated it.

 In the case where successful authentication is sufficient to
 authorize access, then the peer and authenticator will also know if
 the other party is willing to provide or accept access. This may not
 always be the case. An authenticated peer may be denied access due
 to lack of authorization (e.g., session limit) or other reasons.
 Since the EAP exchange is run between the peer and the server, other
 nodes (such as AAA proxies) may also affect the authorization
 decision. This is discussed in more detail in Section 7.16.

1.3. Applicability

 EAP was designed for use in network access authentication, where IP
 layer connectivity may not be available. Use of EAP for other
 purposes, such as bulk data transport, is NOT RECOMMENDED.

 Since EAP does not require IP connectivity, it provides just enough
 support for the reliable transport of authentication protocols, and
 no more.

Aboba, et al. Expires August 26, 2021 [Page 7]

Internet-Draft EAP February 2021

 EAP is a lock-step protocol which only supports a single packet in
 flight. As a result, EAP cannot efficiently transport bulk data,
 unlike transport protocols such as TCP [RFC0793] or SCTP [RFC4960].

 While EAP provides support for retransmission, it assumes ordering
 guarantees provided by the lower layer, so out of order reception is
 not supported.

 Since EAP does not support fragmentation and reassembly, EAP
 authentication methods generating payloads larger than the minimum
 EAP MTU need to provide fragmentation support.

 While authentication methods such as EAP-TLS
 [RFC5216][I-D.ietf-emu-eap-tls13] provide support for fragmentation
 and reassembly, the EAP methods defined in this document do not. As
 a result, if the EAP packet size exceeds the EAP MTU of the link,
 these methods will encounter difficulties.

 EAP authentication is initiated by the server (authenticator),
 whereas many authentication protocols are initiated by the client
 (peer). As a result, it may be necessary for an authentication
 algorithm to add one or two additional messages (at most one
 roundtrip) in order to run over EAP.

 Where certificate-based authentication is supported, the number of
 additional roundtrips may be much larger due to fragmentation of
 certificate chains. In general, a fragmented EAP packet will require
 as many round-trips to send as there are fragments. For example, a
 certificate chain 14960 octets in size would require ten round-trips
 to send with a 1496 octet EAP MTU.

 Where EAP runs over a lower layer in which significant packet loss is
 experienced, or where the connection between the authenticator and
 authentication server experiences significant packet loss, EAP
 methods requiring many round-trips can experience difficulties. In
 these situations, use of EAP methods with fewer roundtrips is
 advisable.

2. Extensible Authentication Protocol (EAP)

 The EAP authentication exchange proceeds as follows:

 1. The authenticator sends a Request to authenticate the peer. The
 Request has a Type field to indicate what is being requested.
 Examples of Request Types include Identity, MD5-challenge, etc.
 The MD5-challenge Type corresponds closely to the CHAP
 authentication protocol [RFC1994]. Typically, the authenticator
 will send an initial Identity Request; however, an initial

Aboba, et al. Expires August 26, 2021 [Page 8]

Internet-Draft EAP February 2021

 Identity Request is not required, and MAY be bypassed. For
 example, the identity may not be required where it is determined
 by the port to which the peer has connected (leased lines,
 dedicated switch or dial-up ports), or where the identity is
 obtained in another fashion (via calling station identity or MAC
 address, in the Name field of the MD5-Challenge Response, etc.).

 2. The peer sends a Response packet in reply to a valid Request. As
 with the Request packet, the Response packet contains a Type
 field, which corresponds to the Type field of the Request.

 3. The authenticator sends an additional Request packet, and the
 peer replies with a Response. The sequence of Requests and
 Responses continues as long as needed. EAP is a ’lock step’
 protocol, so that other than the initial Request, a new Request
 cannot be sent prior to receiving a valid Response. The
 authenticator is responsible for retransmitting requests as
 described in Section 4.1. After a suitable number of
 retransmissions, the authenticator SHOULD end the EAP
 conversation. The authenticator MUST NOT send a Success or
 Failure packet when retransmitting or when it fails to get a
 response from the peer.

 4. The conversation continues until the authenticator cannot
 authenticate the peer (unacceptable Responses to one or more
 Requests), in which case the authenticator implementation MUST
 transmit an EAP Failure (Code 4). Alternatively, the
 authentication conversation can continue until the authenticator
 determines that successful authentication has occurred, in which
 case the authenticator MUST transmit an EAP Success (Code 3).

 Advantages:

 o The EAP protocol can support multiple authentication mechanisms
 without having to pre-negotiate a particular one.

 o Network Access Server (NAS) devices (e.g., a switch or access
 point) do not have to understand each authentication method and
 MAY act as a pass-through agent for a backend authentication
 server. Support for pass-through is optional. An authenticator
 MAY authenticate local peers, while at the same time acting as a
 pass-through for non-local peers and authentication methods it
 does not implement locally.

 o Separation of the authenticator from the backend authentication
 server simplifies credentials management and policy decision
 making.

Aboba, et al. Expires August 26, 2021 [Page 9]

Internet-Draft EAP February 2021

 Disadvantages:

 o For use in PPP, EAP requires the addition of a new authentication
 Type to PPP LCP and thus PPP implementations will need to be
 modified to use it. It also strays from the previous PPP
 authentication model of negotiating a specific authentication
 mechanism during LCP. Similarly, switch or access point
 implementations need to support [IEEE-802.1X] in order to use EAP.

 o Where the authenticator is separate from the backend
 authentication server, this complicates the security analysis and,
 if needed, key distribution.

2.1. Support for Sequences

 An EAP conversation MAY utilize a sequence of methods. A common
 example of this is an Identity request followed by a single EAP
 authentication method such as an MD5-Challenge. However, the peer
 and authenticator MUST utilize only one authentication method (Type 4
 or greater) within an EAP conversation, after which the authenticator
 MUST send a Success or Failure packet.

 Once a peer has sent a Response of the same Type as the initial
 Request, an authenticator MUST NOT send a Request of a different Type
 prior to completion of the final round of a given method (with the
 exception of a Notification-Request) and MUST NOT send a Request for
 an additional method of any Type after completion of the initial
 authentication method; a peer receiving such Requests MUST treat them
 as invalid, and silently discard them. As a result, Identity Requery
 is not supported.

 A peer MUST NOT send a Nak (legacy or expanded) in reply to a Request
 after an initial non-Nak Response has been sent. Since spoofed EAP
 Request packets may be sent by an attacker, an authenticator
 receiving an unexpected Nak SHOULD discard it and log the event.

 Multiple authentication methods within an EAP conversation are not
 supported due to their vulnerability to man-in-the-middle attacks
 (see Section 7.4) and incompatibility with existing implementations.

 Where a single EAP authentication method is utilized, but other
 methods are run within it (a "tunneled" method), the prohibition
 against multiple authentication methods does not apply. Such
 "tunneled" methods appear as a single authentication method to EAP.
 Backward compatibility can be provided, since a peer not supporting a
 "tunneled" method can reply to the initial EAP-Request with a Nak
 (legacy or expanded). To address security vulnerabilities,

Aboba, et al. Expires August 26, 2021 [Page 10]

Internet-Draft EAP February 2021

 "tunneled" methods MUST support protection against man-in-the-middle
 attacks.

2.2. EAP Multiplexing Model

 Conceptually, EAP implementations consist of the following
 components:

 1. Lower layer. The lower layer is responsible for transmitting and
 receiving EAP frames between the peer and authenticator. EAP has
 been run over a variety of lower layers including PPP, wired IEEE
 802 LANs [IEEE-802.1X], IEEE 802.11 wireless LANs [IEEE-802.11],
 UDP (L2TP [RFC2661] and IKEv2 [RFC7296]), TCP
 [I-D.ietf-ipsra-pic], and 3GPP 5G [TS.33.501]. Lower layer
 behavior is discussed in Section 3.

 2. EAP layer. The EAP layer receives and transmits EAP packets via
 the lower layer, implements duplicate detection and
 retransmission, and delivers and receives EAP messages to and
 from the EAP peer and authenticator layers.

 3. EAP peer and authenticator layers. Based on the Code field, the
 EAP layer demultiplexes incoming EAP packets to the EAP peer and
 authenticator layers. Typically, an EAP implementation on a
 given host will support either peer or authenticator
 functionality, but it is possible for a host to act as both an
 EAP peer and authenticator. In such an implementation both EAP
 peer and authenticator layers will be present.

 4. EAP method layers. EAP methods implement the authentication
 algorithms and receive and transmit EAP messages via the EAP peer
 and authenticator layers. Since fragmentation support is not
 provided by EAP itself, this is the responsibility of EAP
 methods, which are discussed in Section 5.

 The EAP multiplexing model is illustrated in Figure 1 below. Note
 that there is no requirement that an implementation conform to this
 model, as long as the on-the-wire behavior is consistent with it.

Aboba, et al. Expires August 26, 2021 [Page 11]

Internet-Draft EAP February 2021

 +-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+
 | | | | | |
 | EAP method| EAP method| | EAP method| EAP method|
 | Type = X | Type = Y | | Type = X | Type = Y |
 | V | | | ^ | |
 +-+-+-+-!-+-+-+-+-+-+-+-+ +-+-+-+-!-+-+-+-+-+-+-+-+
 | ! | | ! |
 | EAP ! Peer layer | | EAP ! Auth. layer |
 | ! | | ! |
 +-+-+-+-!-+-+-+-+-+-+-+-+ +-+-+-+-!-+-+-+-+-+-+-+-+
 | ! | | ! |
 | EAP ! layer | | EAP ! layer |
 | ! | | ! |
 +-+-+-+-!-+-+-+-+-+-+-+-+ +-+-+-+-!-+-+-+-+-+-+-+-+
 | ! | | ! |
 | Lower ! layer | | Lower ! layer |
 | ! | | ! |
 +-+-+-+-!-+-+-+-+-+-+-+-+ +-+-+-+-!-+-+-+-+-+-+-+-+
 ! !
 ! Peer ! Authenticator
 +------------>-------------+

 Figure 1: EAP Multiplexing Model

 Within EAP, the Code field functions much like a protocol number in
 IP. It is assumed that the EAP layer demultiplexes incoming EAP
 packets according to the Code field. Received EAP packets with
 Code=1 (Request), 3 (Success), and 4 (Failure) are delivered by the
 EAP layer to the EAP peer layer, if implemented. EAP packets with
 Code=2 (Response) are delivered to the EAP authenticator layer, if
 implemented.

 Within EAP, the Type field functions much like a port number in UDP
 or TCP. It is assumed that the EAP peer and authenticator layers
 demultiplex incoming EAP packets according to their Type, and deliver
 them only to the EAP method corresponding to that Type. An EAP
 method implementation on a host may register to receive packets from
 the peer or authenticator layers, or both, depending on which role(s)
 it supports.

 Since EAP authentication methods may wish to access the Identity,
 implementations SHOULD make the Identity Request and Response
 accessible to authentication methods (Types 4 or greater), in
 addition to the Identity method. The Identity Type is discussed in
 Section 5.1.

 A Notification Response is only used as confirmation that the peer
 received the Notification Request, not that it has processed it, or

Aboba, et al. Expires August 26, 2021 [Page 12]

Internet-Draft EAP February 2021

 displayed the message to the user. It cannot be assumed that the
 contents of the Notification Request or Response are available to
 another method. The Notification Type is discussed in Section 5.2.

 Nak (Type 3) or Expanded Nak (Type 254) are utilized for the purposes
 of method negotiation. Peers respond to an initial EAP Request for
 an unacceptable Type with a Nak Response (Type 3) or Expanded Nak
 Response (Type 254). It cannot be assumed that the contents of the
 Nak Response(s) are available to another method. The Nak Type(s) are
 discussed in Section 5.3.

 EAP packets with Codes of Success or Failure do not include a Type
 field, and are not delivered to an EAP method. Success and Failure
 are discussed in Section 4.2.

 Given these considerations, the Success, Failure, Nak Response(s),
 and Notification Request/Response messages MUST NOT be used to carry
 data destined for delivery to other EAP methods.

2.3. Pass-Through Behavior

 When operating as a "pass-through authenticator", an authenticator
 performs checks on the Code, Identifier, and Length fields as
 described in Section 4.1. It forwards EAP packets received from the
 peer and destined to its authenticator layer to the backend
 authentication server; packets received from the backend
 authentication server destined to the peer are forwarded to it.

 A host receiving an EAP packet may only do one of three things with
 it: act on it, drop it, or forward it. The forwarding decision is
 typically based only on examination of the Code, Identifier, and
 Length fields. A pass-through authenticator implementation MUST be
 capable of forwarding EAP packets received from the peer with Code=2
 (Response) to the backend authentication server. It also MUST be
 capable of receiving EAP packets from the backend authentication
 server and forwarding EAP packets of Code=1 (Request), Code=3
 (Success), and Code=4 (Failure) to the peer.

 Unless the authenticator implements one or more authentication
 methods locally which support the authenticator role, the EAP method
 layer header fields (Type, Type-Data) are not examined as part of the
 forwarding decision. Where the authenticator supports local
 authentication methods, it MAY examine the Type field to determine
 whether to act on the packet itself or forward it. Compliant pass-
 through authenticator implementations MUST by default forward EAP
 packets of any Type.

Aboba, et al. Expires August 26, 2021 [Page 13]

Internet-Draft EAP February 2021

 EAP packets received with Code=1 (Request), Code=3 (Success), and
 Code=4 (Failure) are demultiplexed by the EAP layer and delivered to
 the peer layer. Therefore, unless a host implements an EAP peer
 layer, these packets will be silently discarded. Similarly, EAP
 packets received with Code=2 (Response) are demultiplexed by the EAP
 layer and delivered to the authenticator layer. Therefore, unless a
 host implements an EAP authenticator layer, these packets will be
 silently discarded. The behavior of a "pass-through peer" is
 undefined within this specification, and is unsupported by AAA
 protocols such as RADIUS [RFC3579] and Diameter [RFC4072].

 The forwarding model is illustrated in Figure 2.

 Peer Pass-through Authenticator Authentication
 Server

 +-+-+-+-+-+-+ +-+-+-+-+-+-+
EAP method		EAP method
V		^
+-+-+-!-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-!-+-+-+		
!		EAP
!		Peer
EAP ! peer		
!		
+-+-+-!-+-+-+ +-+-+-+-!-+-+-+-+-+-!-+-+-+-+ +-+-+-!-+-+-+		
!		!
EAP !layer		EAP !layer
!		!
+-+-+-!-+-+-+ +-+-+-+-!-+-+-+-+-+-!-+-+-+-+ +-+-+-!-+-+-+		
!		!
Lower!layer		Lower!layer
!		!
 +-+-+-!-+-+-+ +-+-+-+-!-+-+-+-+-+-!-+-+-+-+ +-+-+-!-+-+-+
 ! ! ! !
 ! ! ! !
 +-------->--------+ +--------->-------+

 Figure 2: Pass-through Authenticator

 For sessions in which the authenticator acts as a pass-through, it
 MUST determine the outcome of the authentication solely based on the
 Accept/Reject indication sent by the backend authentication server;
 the outcome MUST NOT be determined by the contents of an EAP packet
 sent along with the Accept/Reject indication, or the absence of such
 an encapsulated EAP packet.

Aboba, et al. Expires August 26, 2021 [Page 14]

Internet-Draft EAP February 2021

2.4. Peer-to-Peer Operation

 Since EAP is a peer-to-peer protocol, an independent and simultaneous
 authentication may take place in the reverse direction (depending on
 the capabilities of the lower layer). Both ends of the link may act
 as authenticators and peers at the same time. In this case, it is
 necessary for both ends to implement EAP authenticator and peer
 layers. In addition, the EAP method implementations on both peers
 must support both authenticator and peer functionality.

 Although EAP supports peer-to-peer operation, some EAP
 implementations, methods, AAA protocols, and link layers may not
 support this. Some EAP methods may support asymmetric
 authentication, with one type of credential being required for the
 peer and another type for the authenticator. Hosts supporting peer-
 to-peer operation with such a method would need to be provisioned
 with both types of credentials.

 For example, EAP-TLS [RFC5216][I-D.ietf-emu-eap-tls13] is a client-
 server protocol in which distinct certificate profiles are typically
 utilized for the client and server. This implies that a host
 supporting peer-to-peer authentication with EAP-TLS would need to
 implement both the EAP peer and authenticator layers, support both
 peer and authenticator roles in the EAP-TLS implementation, and
 provision certificates appropriate for each role.

 AAA protocols such as RADIUS/EAP [RFC3579] and Diameter EAP [RFC4072]
 only support "pass-through authenticator" operation. As noted in
 [RFC3579] Section 2.6.2, a RADIUS server responds to an Access-
 Request encapsulating an EAP-Request, Success, or Failure packet with
 an Access-Reject. There is therefore no support for "pass-through
 peer" operation.

 Even where a method is used which supports mutual authentication and
 result indications, several considerations may dictate that two EAP
 authentications (one in each direction) are required. These include:

 1. Support for bi-directional session key derivation in the lower
 layer. Lower layers such as IEEE 802.11 may only support uni-
 directional derivation and transport of transient session keys.
 For example, the group-key handshake defined in [IEEE-802.11i] is
 uni-directional, since in IEEE 802.11 infrastructure mode, only
 the Access Point (AP) sends multicast/broadcast traffic. In IEEE
 802.11 ad hoc mode, where either peer may send multicast/
 broadcast traffic, two uni-directional group-key exchanges are
 required. Due to limitations of the design, this also implies
 the need for unicast key derivations and EAP method exchanges to
 occur in each direction.

Aboba, et al. Expires August 26, 2021 [Page 15]

Internet-Draft EAP February 2021

 2. Support for tie-breaking in the lower layer. Lower layers such
 as IEEE 802.11 ad hoc do not support "tie breaking" wherein two
 hosts initiating authentication with each other will only go
 forward with a single authentication. This implies that even if
 802.11 were to support a bi-directional group-key handshake, then
 two authentications, one in each direction, might still occur.

 3. Peer policy satisfaction. EAP methods may support result
 indications, enabling the peer to indicate to the EAP server
 within the method that it successfully authenticated the EAP
 server, as well as for the server to indicate that it has
 authenticated the peer. However, a pass-through authenticator
 will not be aware that the peer has accepted the credentials
 offered by the EAP server, unless this information is provided to
 the authenticator via the AAA protocol. The authenticator SHOULD
 interpret the receipt of a key attribute within an Accept packet
 as an indication that the peer has successfully authenticated the
 server.

 However, it is possible that the EAP peer’s access policy was not
 satisfied during the initial EAP exchange, even though mutual
 authentication occurred. For example, the EAP authenticator may not
 have demonstrated authorization to act in both peer and authenticator
 roles. As a result, the peer may require an additional
 authentication in the reverse direction, even if the peer provided an
 indication that the EAP server had successfully authenticated to it.

3. Lower Layer Behavior

3.1. Lower Layer Requirements

 EAP makes the following assumptions about lower layers:

 1. Unreliable transport. In EAP, the authenticator retransmits
 Requests that have not yet received Responses so that EAP does
 not assume that lower layers are reliable. Since EAP defines its
 own retransmission behavior, it is possible (though undesirable)
 for retransmission to occur both in the lower layer and the EAP
 layer when EAP is run over a reliable lower layer.

 Note that EAP Success and Failure packets are not retransmitted.
 Without a reliable lower layer, and with a non-negligible error
 rate, these packets can be lost, resulting in timeouts. It is
 therefore desirable for implementations to improve their
 resilience to loss of EAP Success or Failure packets, as
 described in Section 4.2.

Aboba, et al. Expires August 26, 2021 [Page 16]

Internet-Draft EAP February 2021

 2. Lower layer error detection. While EAP does not assume that the
 lower layer is reliable, it does rely on lower layer error
 detection (e.g., CRC, Checksum, MIC, etc.). EAP methods may not
 include a MIC, or if they do, it may not be computed over all the
 fields in the EAP packet, such as the Code, Identifier, Length,
 or Type fields. As a result, without lower layer error
 detection, undetected errors could creep into the EAP layer or
 EAP method layer header fields, resulting in authentication
 failures.

 For example, EAP TLS [RFC5216][I-D.ietf-emu-eap-tls13], which
 computes its MIC over the Type-Data field only, regards MIC
 validation failures as a fatal error. Without lower layer error
 detection, this method, and others like it, will not perform
 reliably.

 3. Lower layer security. EAP does not require lower layers to
 provide security services such as per-packet confidentiality,
 authentication, integrity, and replay protection. However, where
 these security services are available, EAP methods supporting Key
 Derivation (see Section 7.2.1) can be used to provide dynamic
 keying material. This makes it possible to bind the EAP
 authentication to subsequent data and protect against data
 modification, spoofing, or replay. See Section 7.1 for details.

 4. Minimum MTU. EAP is capable of functioning on lower layers that
 provide an EAP MTU size of 1020 octets or greater.

 EAP does not support path MTU discovery, and fragmentation and
 reassembly is not supported by EAP, nor by the methods defined in
 this specification: Identity (1), Notification (2), Nak Response
 (3), MD5-Challenge (4), One Time Password (5), Generic Token Card
 (6), and expanded Nak Response (254) Types.

 Typically, the EAP peer obtains information on the EAP MTU from
 the lower layers and sets the EAP frame size to an appropriate
 value. Where the authenticator operates in pass-through mode,
 the authentication server does not have a direct way of
 determining the EAP MTU, and therefore relies on the
 authenticator to provide it with this information, such as via
 the Framed-MTU attribute, as described in [RFC3579], Section 2.4.

 While methods such as EAP-TLS [RFC5216][I-D.ietf-emu-eap-tls13]
 support fragmentation and reassembly, EAP methods originally
 designed for use within PPP where a 1500 octet MTU is guaranteed
 for control frames (see [RFC1661], Section 6.1) may lack
 fragmentation and reassembly features.

Aboba, et al. Expires August 26, 2021 [Page 17]

Internet-Draft EAP February 2021

 EAP methods can assume a minimum EAP MTU of 1020 octets in the
 absence of other information. EAP methods SHOULD include support
 for fragmentation and reassembly if their payloads can be larger
 than this minimum EAP MTU.

 EAP is a lock-step protocol, which implies a certain inefficiency
 when handling fragmentation and reassembly. Therefore, if the
 lower layer supports fragmentation and reassembly (such as where
 EAP is transported over IP), it may be preferable for
 fragmentation and reassembly to occur in the lower layer rather
 than in EAP. This can be accomplished by providing an
 artificially large EAP MTU to EAP, causing fragmentation and
 reassembly to be handled within the lower layer.

 5. Possible duplication. Where the lower layer is reliable, it will
 provide the EAP layer with a non-duplicated stream of packets.
 However, while it is desirable that lower layers provide for non-
 duplication, this is not a requirement. The Identifier field
 provides both the peer and authenticator with the ability to
 detect duplicates.

 6. Ordering guarantees. EAP does not require the Identifier to be
 monotonically increasing, and so is reliant on lower layer
 ordering guarantees for correct operation. EAP was originally
 defined to run on PPP, and [RFC1661] Section 1 has an ordering
 requirement:

 "The Point-to-Point Protocol is designed for simple links which
 transport packets between two peers. These links provide full-
 duplex simultaneous bi-directional operation, and are assumed to
 deliver packets in order."

 Lower layer transports for EAP MUST preserve ordering between a
 source and destination at a given priority level (the ordering
 guarantee provided by [IEEE-802]).

 Reordering, if it occurs, will typically result in an EAP
 authentication failure, causing EAP authentication to be re-run.
 In an environment in which reordering is likely, it is therefore
 expected that EAP authentication failures will be common. It is
 RECOMMENDED that EAP only be run over lower layers that provide
 ordering guarantees; running EAP over raw IP or UDP transport is

 NOT RECOMMENDED. Encapsulation of EAP within RADIUS [RFC3579]
 satisfies ordering requirements, since RADIUS is a "lockstep"
 protocol that delivers packets in order.

Aboba, et al. Expires August 26, 2021 [Page 18]

Internet-Draft EAP February 2021

3.2. EAP Usage Within PPP

 In order to establish communications over a point-to-point link, each
 end of the PPP link first sends LCP packets to configure the data
 link during the Link Establishment phase. After the link has been
 established, PPP provides for an optional Authentication phase before
 proceeding to the Network-Layer Protocol phase.

 By default, authentication is not mandatory. If authentication of
 the link is desired, an implementation MUST specify the
 Authentication Protocol Configuration Option during the Link
 Establishment phase.

 If the identity of the peer has been established in the
 Authentication phase, the server can use that identity in the
 selection of options for the following network layer negotiations.

 When implemented within PPP, EAP does not select a specific
 authentication mechanism at the PPP Link Control Phase, but rather
 postpones this until the Authentication Phase. This allows the
 authenticator to request more information before determining the
 specific authentication mechanism. This also permits the use of a
 "backend" server which actually implements the various mechanisms
 while the PPP authenticator merely passes through the authentication
 exchange. The PPP Link Establishment and Authentication phases, and
 the Authentication Protocol Configuration Option, are defined in The
 Point-to-Point Protocol (PPP) [RFC1661].

3.2.1. PPP Configuration Option Format

 A summary of the PPP Authentication Protocol Configuration Option
 format to negotiate EAP follows. The fields are transmitted from
 left to right.

 Exactly one EAP packet is encapsulated in the Information field of a
 PPP Data Link Layer frame where the protocol field indicates type hex
 C227 (PPP EAP).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Authentication Protocol |
 +-+

 Type

 3

Aboba, et al. Expires August 26, 2021 [Page 19]

Internet-Draft EAP February 2021

 Length

 4

 Authentication Protocol

 C227 (Hex) for Extensible Authentication Protocol (EAP)

3.3. EAP Usage Within IEEE 802

 The encapsulation of EAP over IEEE 802 is defined in [IEEE-802.1X].
 The IEEE 802 encapsulation of EAP does not involve PPP, and IEEE
 802.1X does not include support for link or network layer
 negotiations. As a result, within IEEE 802.1X, it is not possible to
 negotiate non-EAP authentication mechanisms, such as PAP or CHAP
 [RFC1994].

3.4. Lower Layer Indications

 The reliability and security of lower layer indications is dependent
 on the lower layer. Since EAP is media independent, the presence or
 absence of lower layer security is not taken into account in the
 processing of EAP messages.

 To improve reliability, if a peer receives a lower layer success
 indication as defined in Section 7.12, it MAY conclude that a Success
 packet has been lost, and behave as if it had actually received a
 Success packet. This includes choosing to ignore the Success in some
 circumstances as described in Section 4.2. See also protected result
 indications in Section 7.16.

 A discussion of some reliability and security issues with lower layer
 indications in PPP, IEEE 802 wired networks, and IEEE 802.11 wireless
 LANs can be found in the Security Considerations, Section 7.12.

 After EAP authentication is complete, the peer will typically
 transmit and receive data via the authenticator. It is desirable to
 provide assurance that the entities transmitting data are the same
 ones that successfully completed EAP authentication. To accomplish
 this, it is necessary for the lower layer to provide per-packet
 integrity, authentication and replay protection, and to bind these
 per-packet services to the keys derived during EAP authentication.
 Otherwise, it is possible for subsequent data traffic to be modified,
 spoofed, or replayed.

 Where keying material for the lower layer ciphersuite is itself
 provided by EAP, ciphersuite negotiation and key activation are
 controlled by the lower layer. In PPP, ciphersuites are negotiated

Aboba, et al. Expires August 26, 2021 [Page 20]

Internet-Draft EAP February 2021

 within ECP so that it is not possible to use keys derived from EAP
 authentication until the completion of ECP. Therefore, an initial
 EAP exchange cannot be protected by a PPP ciphersuite, although EAP
 re-authentication can be protected.

 In IEEE 802 media, initial key activation also typically occurs after
 completion of EAP authentication. Therefore an initial EAP exchange
 typically cannot be protected by the lower layer ciphersuite,
 although an EAP re-authentication or pre-authentication exchange can
 be protected.

4. EAP Packet Format

 A summary of the EAP packet format is shown below. The fields are
 transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Data ...
 +-+-+-+-+

 Code

 The Code field is one octet and identifies the Type of EAP packet.
 EAP Codes are assigned as follows:

 1 Request
 2 Response
 3 Success
 4 Failure

 Since EAP only defines Codes 1-4, EAP packets with other codes
 MUST be silently discarded by both authenticators and peers.

 Identifier

 The Identifier field is one octet and aids in matching Responses
 with Requests.

 Length

Aboba, et al. Expires August 26, 2021 [Page 21]

Internet-Draft EAP February 2021

 The Length field is two octets and indicates the length, in
 octets, of the EAP packet including the Code, Identifier, Length,
 and Data fields. Octets outside the range of the Length field
 should be treated as Data Link Layer padding and MUST be ignored
 upon reception. A message with the Length field set to a value
 larger than the number of received octets MUST be silently
 discarded.

 Data

 The Data field is zero or more octets. The format of the Data
 field is determined by the Code field.

4.1. Request and Response

 Description

 The Request packet (Code field set to 1) is sent by the
 authenticator to the peer. Each Request has a Type field which
 serves to indicate what is being requested. Additional Request
 packets MUST be sent until a valid Response packet is received, an
 optional retry counter expires, or a lower layer failure
 indication is received.

 Retransmitted Requests MUST be sent with the same Identifier value
 in order to distinguish them from new Requests. The content of
 the data field is dependent on the Request Type. The peer MUST
 send a Response packet in reply to a valid Request packet.
 Responses MUST only be sent in reply to a valid Request and never
 be retransmitted on a timer.

 If a peer receives a valid duplicate Request for which it has
 already sent a Response, it MUST resend its original Response
 without reprocessing the Request. Requests MUST be processed in
 the order that they are received, and MUST be processed to their
 completion before inspecting the next Request.

 A summary of the Request and Response packet format follows. The
 fields are transmitted from left to right.

Aboba, et al. Expires August 26, 2021 [Page 22]

Internet-Draft EAP February 2021

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | Type-Data ...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 Code

 1 for Request
 2 for Response

 Identifier

 The Identifier field is one octet. The Identifier field MUST be
 the same if a Request packet is retransmitted due to a timeout
 while waiting for a Response. Any new (non-retransmission)
 Requests MUST modify the Identifier field.

 The Identifier field of the Response MUST match that of the
 currently outstanding Request. An authenticator receiving a
 Response whose Identifier value does not match that of the
 currently outstanding Request MUST silently discard the Response.

 In order to avoid confusion between new Requests and
 retransmissions, the Identifier value chosen for each new Request
 need only be different from the previous Request, but need not be
 unique within the conversation. One way to achieve this is to
 start the Identifier at an initial value and increment it for each
 new Request. Initializing the first Identifier with a random
 number rather than starting from zero is recommended, since it
 makes sequence attacks somewhat more difficult.

 Since the Identifier space is unique to each session,
 authenticators are not restricted to only 256 simultaneous
 authentication conversations. Similarly, with re-authentication,
 an EAP conversation might continue over a long period of time, and
 is not limited to only 256 roundtrips.

 Implementation Note: The authenticator is responsible for
 retransmitting Request messages. If the Request message is
 obtained from elsewhere (such as from a backend authentication
 server), then the authenticator will need to save a copy of the
 Request in order to accomplish this. The peer is responsible for

Aboba, et al. Expires August 26, 2021 [Page 23]

Internet-Draft EAP February 2021

 detecting and handling duplicate Request messages before
 processing them in any way, including passing them on to an
 outside party. The authenticator is also responsible for
 discarding Response messages with a non-matching Identifier value
 before acting on them in any way, including passing them on to the
 backend authentication server for verification. Since the
 authenticator can retransmit before receiving a Response from the
 peer, the authenticator can receive multiple Responses, each with
 a matching Identifier. Until a new Request is received by the
 authenticator, the Identifier value is not updated, so that the
 authenticator forwards Responses to the backend authentication
 server, one at a time.

 Length

 The Length field is two octets and indicates the length of the EAP
 packet including the Code, Identifier, Length, Type, and Type-Data
 fields. Octets outside the range of the Length field should be
 treated as Data Link Layer padding and MUST be ignored upon
 reception. A message with the Length field set to a value larger
 than the number of received octets MUST be silently discarded.

 Type

 The Type field is one octet. This field indicates the Type of
 Request or Response. A single Type MUST be specified for each EAP
 Request or Response. An initial specification of Types follows in
 Section 5 of this document.

 The Type field of a Response MUST either match that of the
 Request, or correspond to a legacy or Expanded Nak (see
 Section 5.3) indicating that a Request Type is unacceptable to the
 peer. A peer MUST NOT send a Nak (legacy or expanded) in response
 to a Request, after an initial non-Nak Response has been sent. An
 EAP server receiving a Response not meeting these requirements
 MUST silently discard it.

 Type-Data

 The Type-Data field varies with the Type of Request and the
 associated Response.

4.2. Success and Failure

 The Success packet is sent by the authenticator to the peer after
 completion of an EAP authentication method (Type 4 or greater) to
 indicate that the peer has authenticated successfully to the
 authenticator. The authenticator MUST transmit an EAP packet with

Aboba, et al. Expires August 26, 2021 [Page 24]

Internet-Draft EAP February 2021

 the Code field set to 3 (Success). If the authenticator cannot
 authenticate the peer (unacceptable Responses to one or more
 Requests), then after unsuccessful completion of the EAP method in
 progress, the implementation MUST transmit an EAP packet with the
 Code field set to 4 (Failure). An authenticator MAY wish to issue
 multiple Requests before sending a Failure response in order to allow
 for human typing mistakes. Success and Failure packets MUST NOT
 contain additional data.

 Success and Failure packets MUST NOT be sent by an EAP authenticator
 if the specification of the given method does not explicitly permit
 the method to finish at that point. A peer EAP implementation
 receiving a Success or Failure packet where sending one is not
 explicitly permitted MUST silently discard it. By default, an EAP
 peer MUST silently discard a "canned" Success packet (a Success
 packet sent immediately upon connection). This ensures that a rogue
 authenticator will not be able to bypass mutual authentication by
 sending a Success packet prior to conclusion of the EAP method
 conversation.

 Implementation Note: Because the Success and Failure packets are not
 acknowledged, they are not retransmitted by the authenticator, and
 may be potentially lost. A peer MUST allow for this circumstance as
 described in this note. See also Section 3.4 for guidance on the
 processing of lower layer success and failure indications.

 As described in Section 2.1, only a single EAP authentication method
 is allowed within an EAP conversation. EAP methods may implement
 result indications. After the authenticator sends a failure result
 indication to the peer, regardless of the response from the peer, it
 MUST subsequently send a Failure packet. After the authenticator
 sends a success result indication to the peer and receives a success
 result indication from the peer, it MUST subsequently send a Success
 packet.

 On the peer, once the method completes unsuccessfully (that is,
 either the authenticator sends a failure result indication, or the
 peer decides that it does not want to continue the conversation,
 possibly after sending a failure result indication), the peer MUST
 terminate the conversation and indicate failure to the lower layer.
 The peer MUST silently discard Success packets and MAY silently
 discard Failure packets. As a result, loss of a Failure packet need
 not result in a timeout.

 On the peer, after success result indications have been exchanged by
 both sides, a Failure packet MUST be silently discarded. The peer
 MAY, in the event that an EAP Success is not received, conclude that

Aboba, et al. Expires August 26, 2021 [Page 25]

Internet-Draft EAP February 2021

 the EAP Success packet was lost and that authentication concluded
 successfully.

 If the authenticator has not sent a result indication, and the peer
 is willing to continue the conversation, the peer waits for a Success
 or Failure packet once the method completes, and MUST NOT silently
 discard either of them. In the event that neither a Success nor
 Failure packet is received, the peer SHOULD terminate the
 conversation to avoid lengthy timeouts in case the lost packet was an
 EAP Failure.

 If the peer attempts to authenticate to the authenticator and fails
 to do so, the authenticator MUST send a Failure packet and MUST NOT
 grant access by sending a Success packet. However, an authenticator
 MAY omit having the peer authenticate to it in situations where
 limited access is offered (e.g., guest access). In this case, the
 authenticator MUST send a Success packet.

 Where the peer authenticates successfully to the authenticator, but
 the authenticator does not send a result indication, the
 authenticator MAY deny access by sending a Failure packet where the
 peer is not currently authorized for network access.

 A summary of the Success and Failure packet format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+

 Code

 3 for Success
 4 for Failure

 Identifier

 The Identifier field is one octet and aids in matching replies to
 Responses. The Identifier field MUST match the Identifier field
 of the Response packet that it is sent in response to.

 Length

Aboba, et al. Expires August 26, 2021 [Page 26]

Internet-Draft EAP February 2021

 4

4.3. Retransmission Behavior

 Because the authentication process will often involve user input,
 some care must be taken when deciding upon retransmission strategies
 and authentication timeouts. By default, where EAP is run over an
 unreliable lower layer, the EAP retransmission timer SHOULD be
 dynamically estimated. A maximum of 3-5 retransmissions is
 suggested.

 When run over a reliable lower layer (e.g., EAP over ISAKMP/TCP, as
 within [I-D.ietf-ipsra-pic]), the authenticator retransmission timer
 SHOULD be set to an infinite value, so that retransmissions do not
 occur at the EAP layer. The peer may still maintain a timeout value
 so as to avoid waiting indefinitely for a Request.

 Where the authentication process requires user input, the measured
 round trip times may be determined by user responsiveness rather than
 network characteristics, so that dynamic RTO estimation may not be
 helpful. Instead, the retransmission timer SHOULD be set so as to
 provide sufficient time for the user to respond, with longer timeouts
 required in certain cases, such as where Token Cards (see
 Section 5.6) are involved.

 In order to provide the EAP authenticator with guidance as to the
 appropriate timeout value, a hint can be communicated to the
 authenticator by the backend authentication server (such as via the
 RADIUS Session-Timeout attribute).

 In order to dynamically estimate the EAP retransmission timer, the
 algorithms for the estimation of SRTT, RTTVAR, and RTO described in
 [RFC6298] are RECOMMENDED, including use of Karn’s algorithm, with
 the following potential modifications:

 o In order to avoid synchronization behaviors that can occur with
 fixed timers among distributed systems, the retransmission timer
 is calculated with a jitter by using the RTO value and randomly
 adding a value drawn between -RTOmin/2 and RTOmin/2. Alternative
 calculations to create jitter MAY be used. These MUST be pseudo-
 random. For a discussion of pseudo-random number generation, see
 [RFC1750].

 o When EAP is transported over a single link (as opposed to over the
 Internet), smaller values of RTOinitial, RTOmin, and RTOmax MAY be
 used. Recommended values are RTOinitial=1 second, RTOmin=200ms,
 and RTOmax=20 seconds.

Aboba, et al. Expires August 26, 2021 [Page 27]

Internet-Draft EAP February 2021

 o When EAP is transported over a single link (as opposed to over the
 Internet), estimates MAY be done on a per-authenticator basis,
 rather than a per-session basis. This enables the retransmission
 estimate to make the most use of information on link-layer
 behavior.

 o An EAP implementation MAY clear SRTT and RTTVAR after backing off
 the timer multiple times, as it is likely that the current SRTT
 and RTTVAR are bogus in this situation. Once SRTT and RTTVAR are
 cleared, they should be initialized with the next RTT sample taken
 as described in [RFC6298] equation 2.2.

5. Initial EAP Request/Response Types

 This section defines the initial set of EAP Types used in Request/
 Response exchanges. More Types may be defined in future documents.
 The Type field is one octet and identifies the structure of an EAP
 Request or Response packet. The first 3 Types are considered special
 case Types.

 The remaining Types define authentication exchanges. Nak (Type 3) or
 Expanded Nak (Type 254) are valid only for Response packets, they
 MUST NOT be sent in a Request.

 All EAP implementations MUST support Types 1-4, which are defined in
 this document, and SHOULD support Type 254. Implementations MAY
 support other Types defined here or in future RFCs.

 1 Identity
 2 Notification
 3 Nak (Response only)
 4 MD5-Challenge
 5 One Time Password (OTP)
 6 Generic Token Card (GTC)
 254 Expanded Types
 255 Experimental use

 EAP methods MAY support authentication based on shared secrets. If
 the shared secret is a passphrase entered by the user,
 implementations MAY support entering passphrases with non-ASCII
 characters. In this case, the input should be processed using an
 appropriate stringprep [RFC3454] profile, and encoded in octets using
 UTF-8 encoding [RFC3629]. A preliminary version of a possible
 stringprep profile is described in [RFC8265].

Aboba, et al. Expires August 26, 2021 [Page 28]

Internet-Draft EAP February 2021

5.1. Identity

 Description

 The Identity Type is used to query the identity of the peer.
 Generally, the authenticator will issue this as the initial
 Request. An optional displayable message MAY be included to
 prompt the peer in the case where there is an expectation of
 interaction with a user. A Response of Type 1 (Identity) SHOULD
 be sent in Response to a Request with a Type of 1 (Identity).

 Some EAP implementations piggy-back various options into the
 Identity Request after a NUL-character. By default, an EAP
 implementation SHOULD NOT assume that an Identity Request or
 Response can be larger than 1020 octets.

 It is RECOMMENDED that the Identity Response be used primarily for
 routing purposes and selecting which EAP method to use. EAP
 Methods SHOULD include a method-specific mechanism for obtaining
 the identity, so that they do not have to rely on the Identity
 Response. Identity Requests and Responses are sent in cleartext,
 so an attacker may snoop on the identity, or even modify or spoof
 identity exchanges. To address these threats, it is preferable
 for an EAP method to include an identity exchange that supports
 per-packet authentication, integrity and replay protection, and
 confidentiality. The Identity Response may not be the appropriate
 identity for the method; it may have been truncated or obfuscated
 so as to provide privacy, or it may have been decorated for
 routing purposes. Where the peer is configured to only accept
 authentication methods supporting protected identity exchanges,
 the peer MAY provide an abbreviated Identity Response (such as
 omitting the peer-name portion of the NAI [RFC2486]). For further
 discussion of identity protection, see Section 7.3.

 Implementation Note: The peer MAY obtain the Identity via user
 input. It is suggested that the authenticator retry the Identity
 Request in the case of an invalid Identity or authentication
 failure to allow for potential typos on the part of the user. It
 is suggested that the Identity Request be retried a minimum of 3
 times before terminating the authentication. The Notification
 Request MAY be used to indicate an invalid authentication attempt
 prior to transmitting a new Identity Request (optionally, the
 failure MAY be indicated within the message of the new Identity
 Request itself).

 Type

Aboba, et al. Expires August 26, 2021 [Page 29]

Internet-Draft EAP February 2021

 1

 Type-Data

 This field MAY contain a displayable message in the Request,
 containing UTF-8 encoded ISO 10646 characters [RFC3629]. Where
 the Request contains a null, only the portion of the field prior
 to the null is displayed. If the Identity is unknown, the
 Identity Response field should be zero bytes in length. The
 Identity Response field MUST NOT be null terminated. In all
 cases, the length of the Type-Data field is derived from the
 Length field of the Request/Response packet.

 Security Claims (see Section 7.2):

 Auth. mechanism: None
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: N/A
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No
 Perfect Forward Secrecy: N/A

5.2. Notification

 Description

 The Notification Type is optionally used to convey a displayable
 message from the authenticator to the peer. An authenticator MAY
 send a Notification Request to the peer at any time when there is
 no outstanding Request, prior to completion of an EAP
 authentication method. The peer MUST respond to a Notification
 Request with a Notification Response unless the EAP authentication
 method specification prohibits the use of Notification messages.
 In any case, a Nak Response MUST NOT be sent in response to a
 Notification Request. Note that the default maximum length of a
 Notification Request is 1020 octets. By default, this leaves at
 most 1015 octets for the human readable message.

Aboba, et al. Expires August 26, 2021 [Page 30]

Internet-Draft EAP February 2021

 An EAP method MAY indicate within its specification that
 Notification messages must not be sent during that method. In
 this case, the peer MUST silently discard Notification Requests
 from the point where an initial Request for that Type is answered
 with a Response of the same Type.

 The peer SHOULD display this message to the user or log it if it
 cannot be displayed. The Notification Type is intended to provide
 an acknowledged notification of some imperative nature, but it is
 not an error indication, and therefore does not change the state
 of the peer. Examples include a password with an expiration time
 that is about to expire, an OTP sequence integer which is nearing
 0, an authentication failure warning, etc. In most circumstances,
 Notification should not be required.

 Type

 2

 Type-Data

 The Type-Data field in the Request contains a displayable message
 greater than zero octets in length, containing UTF-8 encoded ISO
 10646 characters [RFC3629]. The length of the message is
 determined by the Length field of the Request packet. The message
 MUST NOT be null terminated. A Response MUST be sent in reply to
 the Request with a Type field of 2 (Notification). The Type-Data
 field of the Response is zero octets in length. The Response
 should be sent immediately (independent of how the message is
 displayed or logged).

 Security Claims (see Section 7.2):

Aboba, et al. Expires August 26, 2021 [Page 31]

Internet-Draft EAP February 2021

 Auth. mechanism: None
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: N/A
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No
 Perfect Forward Secrecy: N/A

5.3. Nak

5.3.1. Legacy Nak

 Description

 The legacy Nak Type is valid only in Response messages. It is
 sent in reply to a Request where the desired authentication Type
 is unacceptable. Authentication Types are numbered 4 and above.
 The Response contains one or more authentication Types desired by
 the Peer. Type zero (0) is used to indicate that the sender has
 no viable alternatives, and therefore the authenticator SHOULD NOT
 send another Request after receiving a Nak Response containing a
 zero value.

 Since the legacy Nak Type is valid only in Responses and has very
 limited functionality, it MUST NOT be used as a general purpose
 error indication, such as for communication of error messages, or
 negotiation of parameters specific to a particular EAP method.

 Code

 2 for Response.

 Identifier

 The Identifier field is one octet and aids in matching Responses
 with Requests. The Identifier field of a legacy Nak Response MUST
 match the Identifier field of the Request packet that it is sent
 in response to.

 Length

Aboba, et al. Expires August 26, 2021 [Page 32]

Internet-Draft EAP February 2021

 >=6

 Type

 3

 Type-Data

 Where a peer receives a Request for an unacceptable authentication
 Type (4-253,255), or a peer lacking support for Expanded Types
 receives a Request for Type 254, a Nak Response (Type 3) MUST be
 sent. The Type-Data field of the Nak Response (Type 3) MUST
 contain one or more octets indicating the desired authentication
 Type(s), one octet per Type, or the value zero (0) to indicate no
 proposed alternative. A peer supporting Expanded Types that
 receives a Request for an unacceptable authentication Type (4-253,
 255) MAY include the value 254 in the Nak Response (Type 3) to
 indicate the desire for an Expanded authentication Type. If the
 authenticator can accommodate this preference, it will respond
 with an Expanded Type Request (Type 254).

 Security Claims (see Section 7.2):

 Auth. mechanism: None
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: N/A
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No
 Perfect Forward Secrecy: N/A

5.3.2. Expanded Nak

 Description

 The Expanded Nak Type is valid only in Response messages. It MUST
 be sent only in reply to a Request of Type 254 (Expanded Type)
 where the authentication Type is unacceptable. The Expanded Nak

Aboba, et al. Expires August 26, 2021 [Page 33]

Internet-Draft EAP February 2021

 Type uses the Expanded Type format itself, and the Response
 contains one or more authentication Types desired by the peer, all
 in Expanded Type format. Type zero (0) is used to indicate that
 the sender has no viable alternatives. The general format of the
 Expanded Type is described in Section 5.7.

 Since the Expanded Nak Type is valid only in Responses and has
 very limited functionality, it MUST NOT be used as a general
 purpose error indication, such as for communication of error
 messages, or negotiation of parameters specific to a particular
 EAP method.

 Code

 2 for Response.

 Identifier

 The Identifier field is one octet and aids in matching Responses
 with Requests. The Identifier field of an Expanded Nak Response
 MUST match the Identifier field of the Request packet that it is
 sent in response to.

 Length

 >=20

 Type

 254

 Vendor-Id

 0 (IETF)

 Vendor-Type

 3 (Nak)

 Vendor-Data

 The Expanded Nak Type is only sent when the Request contains an
 Expanded Type (254) as defined in Section 5.7. The Vendor-Data
 field of the Nak Response MUST contain one or more authentication
 Types (4 or greater), all in expanded format, 8 octets per Type,
 or the value zero (0), also in Expanded Type format, to indicate
 no proposed alternative. The desired authentication Types may
 include a mixture of Vendor-Specific and IETF Types. For example,

Aboba, et al. Expires August 26, 2021 [Page 34]

Internet-Draft EAP February 2021

 an Expanded Nak Response indicating a preference for OTP (Type 5),
 and an MIT (Vendor-Id=20) Expanded Type of 6 would appear as
 follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 2 | Identifier | Length=28 |
 +-+
 | Type=254 | 0 (IETF) |
 +-+
 | 3 (Nak) |
 +-+
 | Type=254 | 0 (IETF) |
 +-+
 | 5 (OTP) |
 +-+
 | Type=254 | 20 (MIT) |
 +-+
 | 6 |
 +-+

 An Expanded Nak Response indicating a no desired alternative would
 appear as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 2 | Identifier | Length=20 |
 +-+
 | Type=254 | 0 (IETF) |
 +-+
 | 3 (Nak) |
 +-+
 | Type=254 | 0 (IETF) |
 +-+
 | 0 (No alternative) |
 +-+

 Security Claims (see Section 7.2):

Aboba, et al. Expires August 26, 2021 [Page 35]

Internet-Draft EAP February 2021

 Auth. mechanism: None
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: N/A
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No
 Perfect Forward Secrecy: N/A

5.4. MD5-Challenge

 Description

 The MD5-Challenge Type is analogous to the PPP CHAP protocol
 [RFC1994] (with MD5 as the specified algorithm). The Request
 contains a "challenge" message to the peer. A Response MUST be
 sent in reply to the Request. The Response MAY be either of Type
 4 (MD5-Challenge), Nak (Type 3), or Expanded Nak (Type 254). The
 Nak reply indicates the peer’s desired authentication Type(s).
 EAP peer and EAP server implementations MUST support the MD5-
 Challenge mechanism. An authenticator that supports only pass-
 through MUST allow communication with a backend authentication
 server that is capable of supporting MD5-Challenge, although the
 EAP authenticator implementation need not support MD5-Challenge
 itself. However, if the EAP authenticator can be configured to
 authenticate peers locally (e.g., not operate in pass-through),
 then the requirement for support of the MD5-Challenge mechanism
 applies.

 Note that the use of the Identifier field in the MD5-Challenge
 Type is different from that described in [RFC1994]. EAP allows
 for retransmission of MD5-Challenge Request packets, while
 [RFC1994] states that both the Identifier and Challenge fields
 MUST change each time a Challenge (the CHAP equivalent of the
 MD5-Challenge Request packet) is sent.

 Note 1. MD5 algorithm has severe issues, particularly when used
 without HMAC (which is not used by CHAP or EAP-MD5). For more
 information, refer to Section 7.11.1.

Aboba, et al. Expires August 26, 2021 [Page 36]

Internet-Draft EAP February 2021

 Note 2: [RFC1994] treats the shared secret as an octet string, and
 does not specify how it is entered into the system (or if it is
 handled by the user at all). EAP MD5-Challenge implementations
 MAY support entering passphrases with non-ASCII characters. See
 Section 5 for instructions how the input should be processed and
 encoded into octets.

 Type

 4

 Type-Data

 The contents of the Type-Data field is summarized below. For
 reference on the use of these fields, see the PPP Challenge
 Handshake Authentication Protocol [RFC1994].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Value-Size | Value ...
 +-+
 | Name ...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Security Claims (see Section 7.2):

 Auth. mechanism: Password or pre-shared key.
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: No
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No
 Perfect Forward Secrecy: N/A

Aboba, et al. Expires August 26, 2021 [Page 37]

Internet-Draft EAP February 2021

5.5. One-Time Password (OTP)

 Description

 The One-Time Password system is defined in "A One-Time Password
 System" [RFC2289] and "OTP Extended Responses" [RFC2243]. The
 Request contains an OTP challenge in the format described in
 [RFC2289]. A Response MUST be sent in reply to the Request. The
 Response MUST be of Type 5 (OTP), Nak (Type 3), or Expanded Nak
 (Type 254). The Nak Response indicates the peer’s desired
 authentication Type(s). The EAP OTP method is intended for use
 with the One-Time Password system only, and MUST NOT be used to
 provide support for cleartext passwords.

 Type

 5

 Type-Data

 The Type-Data field contains the OTP "challenge" as a displayable
 message in the Request. In the Response, this field is used for
 the 6 words from the OTP dictionary [RFC2289]. The messages MUST
 NOT be null terminated. The length of the field is derived from
 the Length field of the Request/Reply packet.

 Note: [RFC2289] does not specify how the secret pass-phrase is
 entered by the user, or how the pass-phrase is converted into
 octets. EAP OTP implementations MAY support entering passphrases
 with non-ASCII characters. See Section 5 for instructions on how
 the input should be processed and encoded into octets.

 Security Claims (see Section 7.2):

Aboba, et al. Expires August 26, 2021 [Page 38]

Internet-Draft EAP February 2021

 Auth. mechanism: One-Time Password
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: Yes
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: No
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No
 Perfect Forward Secrecy: N/A

5.6. Generic Token Card (GTC)

 Description

 The Generic Token Card Type is defined for use with various Token
 Card implementations which require user input. The Request
 contains a displayable message and the Response contains the Token
 Card information necessary for authentication. Typically, this
 would be information read by a user from the Token card device and
 entered as ASCII text. A Response MUST be sent in reply to the
 Request. The Response MUST be of Type 6 (GTC), Nak (Type 3), or
 Expanded Nak (Type 254). The Nak Response indicates the peer’s
 desired authentication Type(s). The EAP GTC method is intended
 for use with the Token Cards supporting challenge/response
 authentication and MUST NOT be used to provide support for
 cleartext passwords in the absence of a protected tunnel with
 server authentication.

 Type

 6

 Type-Data

 The Type-Data field in the Request contains a displayable message
 greater than zero octets in length. The length of the message is
 determined by the Length field of the Request packet. The message
 MUST NOT be null terminated. A Response MUST be sent in reply to
 the Request with a Type field of 6 (Generic Token Card). The
 Response contains data from the Token Card required for

Aboba, et al. Expires August 26, 2021 [Page 39]

Internet-Draft EAP February 2021

 authentication. The length of the data is determined by the
 Length field of the Response packet.

 EAP GTC implementations MAY support entering a response with non-
 ASCII characters. See Section 5 for instructions how the input
 should be processed and encoded into octets.

 Security Claims (see Section 7.2):

 Auth. mechanism: Hardware token.
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: No
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No
 Perfect Forward Secrecy: N/A

5.7. Expanded Types

 Description

 Since many of the existing uses of EAP are vendor-specific, the
 Expanded method Type is available to allow vendors to support
 their own Expanded Types not suitable for general usage.

 The Expanded Type is also used to expand the global Method Type
 space beyond the original 255 values. A Vendor-Id of 0 maps the
 original 255 possible Types onto a space of 2^32-1 possible Types.
 (Type 0 is only used in a Nak Response to indicate no acceptable
 alternative).

 An implementation that supports the Expanded attribute MUST treat
 EAP Types that are less than 256 equivalently, whether they appear
 as a single octet or as the 32-bit Vendor-Type within an Expanded
 Type where Vendor-Id is 0. Peers not equipped to interpret the
 Expanded Type MUST send a Nak as described in Section 5.3.1, and
 negotiate a more suitable authentication method.

 A summary of the Expanded Type format is shown below. The fields
 are transmitted from left to right.

Aboba, et al. Expires August 26, 2021 [Page 40]

Internet-Draft EAP February 2021

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Vendor-Id |
 +-+
 | Vendor-Type |
 +-+
 | Vendor data...
 +-+

 Type

 254 for Expanded Type

 Vendor-Id

 The Vendor-Id is 3 octets and represents the SMI Network
 Management Private Enterprise Code of the Vendor in network byte
 order, as allocated by IANA. A Vendor-Id of zero is reserved for
 use by the IETF in providing an expanded global EAP Type space.

 Vendor-Type

 The Vendor-Type field is four octets and represents the vendor-
 specific method Type.

 If the Vendor-Id is zero, the Vendor-Type field is an extension
 and superset of the existing namespace for EAP Types. The first
 256 Types are reserved for compatibility with single-octet EAP
 Types that have already been assigned or may be assigned in the
 future. Thus, EAP Types from 0 through 255 are semantically
 identical, whether they appear as single octet EAP Types or as
 Vendor-Types when Vendor-Id is zero. There is one exception to
 this rule: Expanded Nak and Legacy Nak packets share the same
 Type, but must be treated differently because they have a
 different format.

 Vendor-Data

 The Vendor-Data field is defined by the vendor. Where a Vendor-Id
 of zero is present, the Vendor-Data field will be used for
 transporting the contents of EAP methods of Types defined by the
 IETF.

Aboba, et al. Expires August 26, 2021 [Page 41]

Internet-Draft EAP February 2021

5.8. Experimental

 Description

 The Experimental Type has no fixed format or content. It is
 intended for use when experimenting with new EAP Types. This Type
 is intended for experimental and testing purposes. No guarantee
 is made for interoperability between peers using this Type, as
 outlined in [RFC3692].

 Type

 255

 Type-Data

 Undefined

6. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the EAP
 protocol, in accordance with BCP 26, [RFC8126].

 There are two name spaces in EAP that require registration: Packet
 Codes and method Types.

 EAP is not intended as a general-purpose protocol, and allocations
 SHOULD NOT be made for purposes unrelated to authentication.

 The following terms are used here with the meanings defined in BCP
 26: "name space", "assigned value", "registration".

 The following policies are used here with the meanings defined in BCP
 26: "Private Use", "First Come First Served", "Expert Review",
 "Specification Required", "IETF Review", "Standards Action".

 For registration requests where a Designated Expert should be
 consulted, the responsible IESG area director should appoint the
 Designated Expert. The intention is that any allocation will be
 accompanied by a published RFC. But in order to allow for the
 allocation of values prior to the RFC being approved for publication,
 the Designated Expert can approve allocations once it seems clear
 that an RFC will be published. The Designated expert will post a

Aboba, et al. Expires August 26, 2021 [Page 42]

Internet-Draft EAP February 2021

 request to the EAP WG mailing list (or a successor designated by the
 Area Director) for comment and review, including an Internet-Draft.
 Before a period of 30 days has passed, the Designated Expert will
 either approve or deny the registration request and publish a notice
 of the decision to the EAP WG mailing list or its successor, as well
 as informing IANA. A denial notice must be justified by an
 explanation, and in the cases where it is possible, concrete
 suggestions on how the request can be modified so as to become
 acceptable should be provided.

6.1. Packet Codes

 Packet Codes have a range from 1 to 255, of which 1-4 have been
 allocated by this document and 5-6 by [RFC6696]. Because a new
 Packet Code has considerable impact on interoperability, a new Packet
 Code requires Standards Action, and should be allocated starting at
 5.

6.2. Method Types

 The original EAP method Type space has a range from 1 to 255, and is
 the scarcest resource in EAP, and thus must be allocated with care.
 Method Type 0 is reserved. Method Types 1-55 have been allocated,
 with 20 available for re-use. Method Types 20 and 56-191 may be
 allocated through Expert Review, on the advice of a Designated
 Expert, with Specification Required.

 Allocation of blocks of method Types (more than one for a given
 purpose) should require IETF Review. EAP Type Values 192-253 are
 reserved and allocation requires Standards Action.

 Method Type 254 is allocated for the Expanded Type. Where the
 Vendor-Id field is non-zero, the Expanded Type is used for functions
 specific only to one vendor’s implementation of EAP, where no
 interoperability is deemed useful. When used with a Vendor-Id of
 zero, method Type 254 can also be used to provide for an expanded
 IETF method Type space. Method Type values 256-4294967295 may be
 allocated after Type values 1-191 have been allocated, on the advice
 of a Designated Expert, with Specification Required.

 Method Type 255 is allocated for Experimental use, such as testing of
 new EAP methods before a permanent Type is allocated.

7. Security Considerations

 This section defines a generic threat model as well as the EAP method
 security claims mitigating those threats.

Aboba, et al. Expires August 26, 2021 [Page 43]

Internet-Draft EAP February 2021

 It is expected that the generic threat model and corresponding
 security claims will used to define EAP method requirements for use
 in specific environments. An example of such a requirements analysis
 is provided in [IEEE-802.11i-req]. A security claims section is
 required in EAP method specifications, so that EAP methods can be
 evaluated against the requirements.

7.1. Threat Model

 EAP was developed for use with PPP [RFC1661] and was later adapted
 for use in wired IEEE 802 networks [IEEE-802] in [IEEE-802.1X] and
 3GPP 5G [TS.33.501]. Subsequently, EAP has been proposed for use on
 wireless LAN networks and over the Internet. In all these
 situations, it is possible for an attacker to gain access to links
 over which EAP packets are transmitted. For example, attacks on
 telephone infrastructure are documented in [DECEPTION].

 An attacker with access to the link may carry out a number of
 attacks, including:

 1. An attacker may try to discover user identities by snooping
 authentication traffic.

 2. An attacker may try to modify or spoof EAP packets.

 3. An attacker may launch denial of service attacks by spoofing
 lower layer indications or Success/Failure packets, by replaying
 EAP packets, or by generating packets with overlapping
 Identifiers.

 4. An attacker may attempt to recover the pass-phrase by mounting
 an offline dictionary attack.

 5. An attacker may attempt to convince the peer to connect to an
 untrusted network by mounting a man-in-the-middle attack.

 6. An attacker may attempt to disrupt the EAP negotiation in order
 cause a weak authentication method to be selected.

 7. An attacker may attempt to recover keys by taking advantage of
 weak key derivation techniques used within EAP methods.

 8. An attacker may attempt to take advantage of weak ciphersuites
 subsequently used after the EAP conversation is complete.

 9. An attacker may attempt to perform downgrading attacks on lower
 layer ciphersuite negotiation in order to ensure that a weaker
 ciphersuite is used subsequently to EAP authentication.

Aboba, et al. Expires August 26, 2021 [Page 44]

Internet-Draft EAP February 2021

 10. An attacker acting as an authenticator may provide incorrect
 information to the EAP peer and/or server via out-of-band
 mechanisms (such as via a AAA or lower layer protocol). This
 includes impersonating another authenticator, or providing
 inconsistent information to the peer and EAP server.

 Depending on the lower layer, these attacks may be carried out
 without requiring physical proximity. Where EAP is used over
 wireless networks, EAP packets may be forwarded by authenticators
 (e.g., pre-authentication) so that the attacker need not be within
 the coverage area of an authenticator in order to carry out an attack
 on it or its peers. Where EAP is used over the Internet, attacks may
 be carried out at an even greater distance.

7.2. Security Claims

 In order to clearly articulate the security provided by an EAP
 method, EAP method specifications MUST include a Security Claims
 section, including the following declarations:

 o Mechanism. This is a statement of the authentication technology:
 certificates, pre-shared keys, passwords, token cards, etc.

 o Security claims. This is a statement of the claimed security
 properties of the method, using terms defined in Section 7.2.1:
 mutual authentication, integrity protection, replay protection,
 confidentiality, key derivation, key strength, dictionary attack
 resistance, fast reconnect, cryptographic binding, session
 independance, fragmentation, channel binding, perfect forward
 secrecy. The Security Claims section of an EAP method
 specification SHOULD provide justification for the claims that are
 made. This can be accomplished by including a proof in an
 Appendix, or including a reference to a proof.

 o Key strength. If the method derives keys, then the effective key
 strength MUST be estimated. This estimate is meant for potential
 users of the method to determine if the keys produced are strong
 enough for the intended application.

 The effective key strength SHOULD be stated as a number of bits,
 defined as follows: If the effective key strength is N bits, the
 best currently known methods to recover the key (with non-
 negligible probability) require, on average, an effort comparable
 to 2^(N-1) operations of a typical block cipher. The statement
 SHOULD be accompanied by a short rationale, explaining how this
 number was derived. This explanation SHOULD include the
 parameters required to achieve the stated key strength based on
 current knowledge of the algorithms.

Aboba, et al. Expires August 26, 2021 [Page 45]

Internet-Draft EAP February 2021

 (Note: Although it is difficult to define what "comparable effort"
 and "typical block cipher" exactly mean, reasonable approximations
 are sufficient here. Refer to e.g. [SILVERMAN] for more
 discussion.)

 The key strength depends on the methods used to derive the keys.
 For instance, if keys are derived from a shared secret (such as a
 password or a long-term secret), and possibly some public
 information such as nonces, the effective key strength is limited
 by the strength of the long-term secret (assuming that the
 derivation procedure is computationally simple). To take another
 example, when using public key algorithms, the strength of the
 symmetric key depends on the strength of the public keys used.

 o Description of key hierarchy. EAP methods deriving keys MUST
 either provide a reference to a key hierarchy specification, or
 describe how Master Session Keys (MSKs) and Extended Master
 Session Keys (EMSKs) are to be derived.

 o Indication of vulnerabilities. In addition to the security claims
 that are made, the specification MUST indicate which of the
 security claims detailed in Section 7.2.1 are NOT being made.

7.2.1. Security Claims Terminology for EAP Methods

 These terms are used to describe the security properties of EAP
 methods:

 Protected ciphersuite negotiation

 This refers to the ability of an EAP method to negotiate the
 ciphersuite used to protect the EAP conversation, as well as to
 integrity protect the negotiation. It does not refer to the
 ability to negotiate the ciphersuite used to protect data.

 Mutual authentication

 This refers to an EAP method in which, within an interlocked
 exchange, the authenticator authenticates the peer and the peer
 authenticates the authenticator. Two independent one-way methods,
 running in opposite directions do not provide mutual
 authentication as defined here.

 Integrity protection

 This refers to providing data origin authentication and protection
 against unauthorized modification of information for EAP packets
 (including EAP Requests and Responses). When making this claim, a

Aboba, et al. Expires August 26, 2021 [Page 46]

Internet-Draft EAP February 2021

 method specification MUST describe the EAP packets and fields
 within the EAP packet that are protected.

 Replay protection

 This refers to protection against replay of an EAP method or its
 messages, including success and failure result indications.

 Confidentiality

 This refers to encryption of EAP messages, including EAP Requests
 and Responses, and success and failure result indications. A
 method making this claim MUST support identity protection (see
 Section 7.3).

 Key derivation

 This refers to the ability of the EAP method to derive exportable
 keying material, such as the Master Session Key (MSK), and
 Extended Master Session Key (EMSK). The MSK is used only for
 further key derivation, not directly for protection of the EAP
 conversation or subsequent data. Use of the EMSK is reserved.

 Key strength

 If the effective key strength is N bits, the best currently known
 methods to recover the key (with non-negligible probability)
 require, on average, an effort comparable to 2^(N-1) operations of
 a typical block cipher.

 Dictionary attack resistance

 Where password authentication is used, passwords are commonly
 selected from a small set (as compared to a set of N-bit keys),
 which raises a concern about dictionary attacks. A method may be
 said to provide protection against dictionary attacks if, when it
 uses a password as a secret, the method does not allow an offline
 attack that has a work factor based on the number of passwords in
 an attacker’s dictionary.

 Fast reconnect

 The ability, in the case where a security association has been
 previously established, to create a new or refreshed security
 association more efficiently or in a smaller number of round-
 trips.

 Cryptographic binding

Aboba, et al. Expires August 26, 2021 [Page 47]

Internet-Draft EAP February 2021

 The demonstration of the EAP peer to the EAP server that a single
 entity has acted as the EAP peer for all methods executed within a
 tunnel method. Binding MAY also imply that the EAP server
 demonstrates to the peer that a single entity has acted as the EAP
 server for all methods executed within a tunnel method. If
 executed correctly, binding serves to mitigate man-in-the-middle
 vulnerabilities.

 Session independence

 The demonstration that passive attacks (such as capture of the EAP
 conversation) or active attacks (including compromise of the MSK
 or EMSK) does not enable compromise of subsequent or prior MSKs or
 EMSKs.

 Fragmentation

 This refers to whether an EAP method supports fragmentation and
 reassembly. As noted in Section 3.1, EAP methods should support
 fragmentation and reassembly if EAP packets can exceed the minimum
 MTU of 1020 octets.

 Channel binding

 The communication within an EAP method of integrity-protected
 channel properties such as endpoint identifiers which can be
 compared to values communicated via out of band mechanisms (such
 as via a AAA or lower layer protocol).

 Perfect Forward Secrecy

 The demonstration that the derived keying material, such as the
 MSK and EMSK will not be compromised even if long-term secrets
 used in EAP conversation are compromised.

 Note: This list of security claims is not exhaustive. Additional
 properties, such as additional denial-of-service protection, may be
 relevant as well.

7.3. Identity Protection

 An Identity exchange is optional within the EAP conversation.
 Therefore, it is possible to omit the Identity exchange entirely, or
 to use a method-specific identity exchange once a protected channel
 has been established.

 However, where roaming is supported as described in [RFC2607], it may
 be necessary to locate the appropriate backend authentication server

Aboba, et al. Expires August 26, 2021 [Page 48]

Internet-Draft EAP February 2021

 before the authentication conversation can proceed. The realm
 portion of the Network Access Identifier (NAI) [RFC2486] is typically
 included within the EAP-Response/Identity in order to enable the
 authentication exchange to be routed to the appropriate backend
 authentication server. Therefore, while the peer-name portion of the
 NAI SHOULD be omitted in the EAP-Response/Identity where proxies or
 relays are present, the realm portion may be required.

 It is possible for the identity in the identity response to be
 different from the identity authenticated by the EAP method. This
 may be intentional in the case of identity privacy. An EAP method
 SHOULD use the authenticated identity when making access control
 decisions.

7.4. Man-in-the-Middle Attacks

 Where EAP is tunneled within another protocol that omits peer
 authentication, there exists a potential vulnerability to a man-in-
 the-middle attack. For details, see [I-D.puthenkulam-eap-binding]
 and [MITM].

 As noted in Section 2.1, EAP does not permit untunneled sequences of
 authentication methods. Were a sequence of EAP authentication
 methods to be permitted, the peer might not have proof that a single
 entity has acted as the authenticator for all EAP methods within the
 sequence. For example, an authenticator might terminate one EAP
 method, then forward the next method in the sequence to another party
 without the peer’s knowledge or consent. Similarly, the
 authenticator might not have proof that a single entity has acted as
 the peer for all EAP methods within the sequence.

 Tunneling EAP within another protocol enables an attack by a rogue
 EAP authenticator tunneling EAP to a legitimate server. Where the
 tunneling protocol is used for key establishment but does not require
 peer authentication, an attacker convincing a legitimate peer to
 connect to it will be able to tunnel EAP packets to a legitimate
 server, successfully authenticating and obtaining the key. This
 allows the attacker to successfully establish itself as a man-in-
 the-middle, gaining access to the network, as well as the ability to
 decrypt data traffic between the legitimate peer and server.

 This attack may be mitigated by the following measures:

 1. Requiring mutual authentication within EAP tunneling mechanisms.

 2. Requiring cryptographic binding between the EAP tunneling
 protocol and the tunneled EAP methods. Where cryptographic
 binding is supported, a mechanism is also needed to protect

Aboba, et al. Expires August 26, 2021 [Page 49]

Internet-Draft EAP February 2021

 against downgrade attacks that would bypass it. For further
 details on cryptographic binding, see
 [I-D.puthenkulam-eap-binding].

 3. Limiting the EAP methods authorized for use without protection,
 based on peer and authenticator policy.

 4. Avoiding the use of tunnels when a single, strong method is
 available.

7.5. Packet Modification Attacks

 While EAP methods may support per-packet data origin authentication,
 integrity, and replay protection, support is not provided within the
 EAP layer.

 Since the Identifier is only a single octet, it is easy to guess,
 allowing an attacker to successfully inject or replay EAP packets.
 An attacker may also modify EAP headers (Code, Identifier, Length,
 Type) within EAP packets where the header is unprotected. This could
 cause packets to be inappropriately discarded or misinterpreted.

 To protect EAP packets against modification, spoofing, or replay,
 methods supporting protected ciphersuite negotiation, mutual
 authentication, and key derivation, as well as integrity and replay
 protection, are recommended. See Section 7.2.1 for definitions of
 these security claims.

 Method-specific MICs may be used to provide protection. If a per-
 packet MIC is employed within an EAP method, then peers,
 authentication servers, and authenticators not operating in pass-
 through mode MUST validate the MIC. MIC validation failures SHOULD
 be logged. Whether a MIC validation failure is considered a fatal
 error or not is determined by the EAP method specification.

 It is RECOMMENDED that methods providing integrity protection of EAP
 packets include coverage of all the EAP header fields, including the
 Code, Identifier, Length, Type, and Type-Data fields.

 Since EAP messages of Types Identity, Notification, and Nak do not
 include their own MIC, it may be desirable for the EAP method MIC to
 cover information contained within these messages, as well as the
 header of each EAP message.

 To provide protection, EAP also may be encapsulated within a
 protected channel created by protocols such as ISAKMP [RFC2408], as
 is done in [RFC7296] or within TLS [RFC2246]. However, as noted in

Aboba, et al. Expires August 26, 2021 [Page 50]

Internet-Draft EAP February 2021

 Section 7.4, EAP tunneling may result in a man-in-the-middle
 vulnerability.

 Existing EAP methods define message integrity checks (MICs) that
 cover more than one EAP packet. For example, EAP-TLS
 [RFC5216][I-D.ietf-emu-eap-tls13] defines a MIC over a TLS record
 that could be split into multiple fragments; within the FINISHED
 message, the MIC is computed over previous messages. Where the MIC
 covers more than one EAP packet, a MIC validation failure is
 typically considered a fatal error.

 Within EAP-TLS [RFC5216][I-D.ietf-emu-eap-tls13], a MIC validation
 failure is treated as a fatal error, since that is what is specified
 in TLS [RFC2246]. However, it is also possible to develop EAP
 methods that support per-packet MICs, and respond to verification
 failures by silently discarding the offending packet.

 In this document, descriptions of EAP message handling assume that
 per-packet MIC validation, where it occurs, is effectively performed
 as though it occurs before sending any responses or changing the
 state of the host which received the packet.

7.6. Dictionary Attacks

 Password authentication algorithms such as EAP-MD5, MS-CHAPv1
 [RFC2433], and Kerberos V [RFC1510] are known to be vulnerable to
 dictionary attacks. MS-CHAPv1 vulnerabilities are documented in
 [PPTPv1]; MS-CHAPv2 vulnerabilities are documented in [PPTPv2];
 Kerberos vulnerabilities are described in [KRBATTACK], [KRBLIM], and
 [KERB4WEAK].

 In order to protect against dictionary attacks, authentication
 methods resistant to dictionary attacks (as defined in Section 7.2.1)
 are recommended.

 If an authentication algorithm is used that is known to be vulnerable
 to dictionary attacks, then the conversation may be tunneled within a
 protected channel in order to provide additional protection.
 However, as noted in Section 7.4, EAP tunneling may result in a man-
 in-the-middle vulnerability, and therefore dictionary attack
 resistant methods are preferred.

7.7. Connection to an Untrusted Network

 With EAP methods supporting one-way authentication, such as EAP-MD5,
 the peer does not authenticate the authenticator, making the peer
 vulnerable to attack by a rogue authenticator. Methods supporting

Aboba, et al. Expires August 26, 2021 [Page 51]

Internet-Draft EAP February 2021

 mutual authentication (as defined in Section 7.2.1) address this
 vulnerability.

 In EAP there is no requirement that authentication be full duplex or
 that the same protocol be used in both directions. It is perfectly
 acceptable for different protocols to be used in each direction.
 This will, of course, depend on the specific protocols negotiated.
 However, in general, completing a single unitary mutual
 authentication is preferable to two one-way authentications, one in
 each direction. This is because separate authentications that are
 not bound cryptographically so as to demonstrate they are part of the
 same session are subject to man-in-the-middle attacks, as discussed
 in Section 7.4.

7.8. Negotiation Attacks

 In a negotiation attack, the attacker attempts to convince the peer
 and authenticator to negotiate a less secure EAP method. EAP does
 not provide protection for Nak Response packets, although it is
 possible for a method to include coverage of Nak Responses within a
 method-specific MIC.

 Within or associated with each authenticator, it is not anticipated
 that a particular named peer will support a choice of methods. This
 would make the peer vulnerable to attacks that negotiate the least
 secure method from among a set. Instead, for each named peer, there
 SHOULD be an indication of exactly one method used to authenticate
 that peer name. If a peer needs to make use of different
 authentication methods under different circumstances, then distinct
 identities SHOULD be employed, each of which identifies exactly one
 authentication method.

7.9. Implementation Idiosyncrasies

 The interaction of EAP with lower layers such as PPP and IEEE 802 are
 highly implementation dependent.

 For example, upon failure of authentication, some PPP implementations
 do not terminate the link, instead limiting traffic in Network-Layer
 Protocols to a filtered subset, which in turn allows the peer the
 opportunity to update secrets or send mail to the network
 administrator indicating a problem. Similarly, while an
 authentication failure will result in denied access to the controlled
 port in [IEEE-802.1X], limited traffic may be permitted on the
 uncontrolled port.

 In EAP there is no provision for retries of failed authentication.
 However, in PPP the LCP state machine can renegotiate the

Aboba, et al. Expires August 26, 2021 [Page 52]

Internet-Draft EAP February 2021

 authentication protocol at any time, thus allowing a new attempt.
 Similarly, in IEEE 802.1X the Supplicant or Authenticator can re-
 authenticate at any time. It is recommended that any counters used
 for authentication failure not be reset until after successful
 authentication, or subsequent termination of the failed link.

7.10. Key Derivation

 It is possible for the peer and EAP server to mutually authenticate
 and derive keys. In order to provide keying material for use in a
 subsequently negotiated ciphersuite, an EAP method supporting key
 derivation MUST export a Master Session Key (MSK) of at least 64
 octets, and an Extended Master Session Key (EMSK) of at least 64
 octets. EAP Methods deriving keys MUST provide for mutual
 authentication between the EAP peer and the EAP Server.

 The MSK and EMSK MUST NOT be used directly to protect data; however,
 they are of sufficient size to enable derivation of a AAA-Key
 subsequently used to derive Transient Session Keys (TSKs) for use
 with the selected ciphersuite. Each ciphersuite is responsible for
 specifying how to derive the TSKs from the AAA-Key.

 The AAA-Key is derived from the keying material exported by the EAP
 method (MSK and EMSK). This derivation occurs on the AAA server. In
 many existing protocols that use EAP, the AAA-Key and MSK are
 equivalent, but more complicated mechanisms are possible (see
 [RFC5247] for details).

 EAP methods SHOULD ensure the freshness of the MSK and EMSK, even in
 cases where one party may not have a high quality random number
 generator. A RECOMMENDED method is for each party to provide a nonce
 of at least 128 bits, used in the derivation of the MSK and EMSK.

 EAP methods export the MSK and EMSK, but not Transient Session Keys
 so as to allow EAP methods to be ciphersuite and media independent.
 Keying material exported by EAP methods MUST be independent of the
 ciphersuite negotiated to protect data.

 Depending on the lower layer, EAP methods may run before or after
 ciphersuite negotiation, so that the selected ciphersuite may not be
 known to the EAP method. By providing keying material usable with
 any ciphersuite, EAP methods can used with a wide range of
 ciphersuites and media.

 In order to preserve algorithm independence, EAP methods deriving
 keys SHOULD support (and document) the protected negotiation of the
 ciphersuite used to protect the EAP conversation between the peer and

Aboba, et al. Expires August 26, 2021 [Page 53]

Internet-Draft EAP February 2021

 server. This is distinct from the ciphersuite negotiated between the
 peer and authenticator, used to protect data.

 The strength of Transient Session Keys (TSKs) used to protect data is
 ultimately dependent on the strength of keys generated by the EAP
 method. If an EAP method cannot produce keying material of
 sufficient strength, then the TSKs may be subject to a brute force
 attack. In order to enable deployments requiring strong keys, EAP
 methods supporting key derivation SHOULD be capable of generating an
 MSK and EMSK, each with an effective key strength of at least 128
 bits.

 Methods supporting key derivation MUST demonstrate cryptographic
 separation between the MSK and EMSK branches of the EAP key
 hierarchy. Without violating a fundamental cryptographic assumption
 (such as the non-invertibility of a one-way function), an attacker
 recovering the MSK or EMSK MUST NOT be able to recover the other
 quantity with a level of effort less than brute force.

 Non-overlapping substrings of the MSK MUST be cryptographically
 separate from each other, as defined in Section 7.2.1. That is,
 knowledge of one substring MUST NOT help in recovering some other
 substring without breaking some hard cryptographic assumption. This
 is required because some existing ciphersuites form TSKs by simply
 splitting the AAA-Key to pieces of appropriate length. Likewise,
 non-overlapping substrings of the EMSK MUST be cryptographically
 separate from each other, and from substrings of the MSK.

 The EMSK is reserved for future use and MUST remain on the EAP peer
 and EAP server where it is derived; it MUST NOT be transported to, or
 shared with, additional parties, or used to derive any other keys.
 (This restriction will be relaxed in a future document that specifies
 how the EMSK can be used.)

 Since EAP does not provide for explicit key lifetime negotiation, EAP
 peers, authenticators, and authentication servers MUST be prepared
 for situations in which one of the parties discards the key state,
 which remains valid on another party.

 This specification does not provide detailed guidance on how EAP
 methods derive the MSK and EMSK, how the AAA-Key is derived from the
 MSK and/or EMSK, or how the TSKs are derived from the AAA-Key.

 The development and validation of key derivation algorithms is
 difficult, and as a result, EAP methods SHOULD re-use well
 established and analyzed mechanisms for key derivation (such as those
 specified in IKE [RFC2409] or TLS [RFC2246]), rather than inventing
 new ones. EAP methods SHOULD also utilize well established and

Aboba, et al. Expires August 26, 2021 [Page 54]

Internet-Draft EAP February 2021

 analyzed mechanisms for MSK and EMSK derivation. Further details on
 EAP Key Derivation are provided within [RFC5247].

7.11. Weak Ciphersuites

 If after the initial EAP authentication, data packets are sent
 without per-packet authentication, integrity, and replay protection,
 an attacker with access to the media can inject packets, "flip bits"
 within existing packets, replay packets, or even hijack the session
 completely. Without per-packet confidentiality, it is possible to
 snoop data packets.

 To protect against data modification, spoofing, or snooping, it is
 recommended that EAP methods supporting mutual authentication and key
 derivation (as defined by Section 7.2.1) be used, along with lower
 layers providing per-packet confidentiality, authentication,
 integrity, and replay protection.

 Additionally, if the lower layer performs ciphersuite negotiation, it
 should be understood that EAP does not provide by itself integrity
 protection of that negotiation. Therefore, in order to avoid
 downgrading attacks which would lead to weaker ciphersuites being
 used, clients implementing lower layer ciphersuite negotiation SHOULD
 protect against negotiation downgrading.

 This can be done by enabling users to configure which ciphersuites
 are acceptable as a matter of security policy, or the ciphersuite
 negotiation MAY be authenticated using keying material derived from
 the EAP authentication and a MIC algorithm agreed upon in advance by
 lower-layer peers.

7.11.1. Legacy Authentication Methods

 EAP has a long history, and the early authentication methods have
 severe issues. For instance, the MD5-Challenge method uses an
 algorithm that has problems described in [RFC6151]. These problems
 are particularly pressing, given that MD5-Challenge does not employ a
 HMAC construction. The use of MD5-Challenge is NOT RECOMMENDED, at
 least not outside an external, tunneled authentication method.

 Users and network administrators must be aware of the security issues
 in the authentication methods they choose to allow and use. Modern
 use of EAP employes typically newer authentication methods such as
 Transport Layer Security (EAP-TLS) [I-D.ietf-emu-eap-tls13], Tunnel
 Extensible Authentication Protocol (TEAP) [RFC7170], or 3rd
 Generation Authentication and Key Agreement (EAP-AKA’)
 [I-D.ietf-emu-rfc5448bis].

Aboba, et al. Expires August 26, 2021 [Page 55]

Internet-Draft EAP February 2021

7.12. Link Layer

 There are reliability and security issues with link layer indications
 in PPP, IEEE 802 LANs, and IEEE 802.11 wireless LANs:

 1. PPP. In PPP, link layer indications such as LCP-Terminate (a
 link failure indication) and NCP (a link success indication) are
 not authenticated or integrity protected. They can therefore be
 spoofed by an attacker with access to the link.

 2. IEEE 802. IEEE 802.1X EAPOL-Start and EAPOL-Logoff frames are
 not authenticated or integrity protected. They can therefore be
 spoofed by an attacker with access to the link.

 3. IEEE 802.11. In IEEE 802.11, link layer indications include
 Disassociate and Deauthenticate frames (link failure
 indications), and the first message of the 4-way handshake (link
 success indication). These messages are not authenticated or
 integrity protected, and although they are not forwardable, they
 are spoofable by an attacker within range.

 In IEEE 802.11, IEEE 802.1X data frames may be sent as Class 3
 unicast data frames, and are therefore forwardable. This implies
 that while EAPOL-Start and EAPOL-Logoff messages may be authenticated
 and integrity protected, they can be spoofed by an authenticated
 attacker far from the target when "pre-authentication" is enabled.

 In IEEE 802.11, a "link down" indication is an unreliable indication
 of link failure, since wireless signal strength can come and go and
 may be influenced by radio frequency interference generated by an
 attacker. To avoid unnecessary resets, it is advisable to damp these
 indications, rather than passing them directly to the EAP. Since EAP
 supports retransmission, it is robust against transient connectivity
 losses.

7.13. Separation of Authenticator and Backend Authentication Server

 It is possible for the EAP peer and EAP server to mutually
 authenticate and derive a AAA-Key for a ciphersuite used to protect
 subsequent data traffic. This does not present an issue on the peer,
 since the peer and EAP client reside on the same machine; all that is
 required is for the client to derive the AAA-Key from the MSK and
 EMSK exported by the EAP method, and to subsequently pass a Transient
 Session Key (TSK) to the ciphersuite module.

 However, in the case where the authenticator and authentication
 server reside on different machines, there are several implications
 for security.

Aboba, et al. Expires August 26, 2021 [Page 56]

Internet-Draft EAP February 2021

 1. Authentication will occur between the peer and the authentication
 server, not between the peer and the authenticator. This means
 that it is not possible for the peer to validate the identity of
 the authenticator that it is speaking to, using EAP alone.

 2. As discussed in [RFC3579], the authenticator is dependent on the
 AAA protocol in order to know the outcome of an authentication
 conversation, and does not look at the encapsulated EAP packet
 (if one is present) to determine the outcome. In practice, this
 implies that the AAA protocol spoken between the authenticator
 and authentication server MUST support per-packet authentication,
 integrity, and replay protection.

 3. After completion of the EAP conversation, where lower layer
 security services such as per-packet confidentiality,
 authentication, integrity, and replay protection will be enabled,
 a secure association protocol SHOULD be run between the peer and
 authenticator in order to provide mutual authentication between
 the peer and authenticator, guarantee liveness of transient
 session keys, provide protected ciphersuite and capabilities
 negotiation for subsequent data, and synchronize key usage.

 4. A AAA-Key derived from the MSK and/or EMSK negotiated between the
 peer and authentication server MAY be transmitted to the
 authenticator. Therefore, a mechanism needs to be provided to
 transmit the AAA-Key from the authentication server to the
 authenticator that needs it. The specification of the AAA-key
 derivation, transport, and wrapping mechanisms is outside the
 scope of this document. Further details on AAA-Key Derivation
 are provided within [RFC5247].

7.14. Cleartext Passwords

 This specification does not define a mechanism for cleartext password
 authentication. The omission is intentional. Use of cleartext
 passwords would allow the password to be captured by an attacker with
 access to a link over which EAP packets are transmitted.

 Since protocols encapsulating EAP, such as RADIUS [RFC3579], may not
 provide confidentiality, EAP packets may be subsequently encapsulated
 for transport over the Internet where they may be captured by an
 attacker.

 As a result, cleartext passwords cannot be securely used within EAP,
 except where encapsulated within a protected tunnel with server
 authentication. Some of the same risks apply to EAP methods without
 dictionary attack resistance, as defined in Section 7.2.1. For
 details, see Section 7.6.

Aboba, et al. Expires August 26, 2021 [Page 57]

Internet-Draft EAP February 2021

7.15. Channel Binding

 It is possible for a compromised or poorly implemented EAP
 authenticator to communicate incorrect information to the EAP peer
 and/or server. This may enable an authenticator to impersonate
 another authenticator or communicate incorrect information via out-
 of-band mechanisms (such as via a AAA or lower layer protocol).

 Where EAP is used in pass-through mode, the EAP peer typically does
 not verify the identity of the pass-through authenticator, it only
 verifies that the pass-through authenticator is trusted by the EAP
 server. This creates a potential security vulnerability.

 Section 4.3.7 of [RFC3579] describes how an EAP pass-through
 authenticator acting as a AAA client can be detected if it attempts
 to impersonate another authenticator (such by sending incorrect NAS-
 Identifier [RFC2865], NAS-IP-Address [RFC2865] or NAS-IPv6-Address
 [RFC3162] attributes via the AAA protocol). However, it is possible
 for a pass-through authenticator acting as a AAA client to provide
 correct information to the AAA server while communicating misleading
 information to the EAP peer via a lower layer protocol.

 For example, it is possible for a compromised authenticator to
 utilize another authenticator’s Called-Station-Id or NAS-Identifier
 in communicating with the EAP peer via a lower layer protocol, or for
 a pass-through authenticator acting as a AAA client to provide an
 incorrect peer Calling-Station-Id [RFC2865][RFC3580] to the AAA
 server via the AAA protocol.

 In order to address this vulnerability, EAP methods may support a
 protected exchange of channel properties such as endpoint
 identifiers, including (but not limited to): Called-Station-Id
 [RFC2865][RFC3580], Calling-Station-Id [RFC2865][RFC3580], NAS-
 Identifier [RFC2865], NAS-IP-Address [RFC2865], and NAS-IPv6-Address
 [RFC3162].

 Using such a protected exchange, it is possible to match the channel
 properties provided by the authenticator via out-of-band mechanisms
 against those exchanged within the EAP method. Where discrepancies
 are found, these SHOULD be logged; additional actions MAY also be
 taken, such as denying access.

7.16. Protected Result Indications

 Within EAP, Success and Failure packets are neither acknowledged nor
 integrity protected. Result indications improve resilience to loss
 of Success and Failure packets when EAP is run over lower layers
 which do not support retransmission or synchronization of the

Aboba, et al. Expires August 26, 2021 [Page 58]

Internet-Draft EAP February 2021

 authentication state. In media such as IEEE 802.11, which provides
 for retransmission, as well as synchronization of authentication
 state via the 4-way handshake defined in [IEEE-802.11i], additional
 resilience is typically of marginal benefit.

 Depending on the method and circumstances, result indications can be
 spoofable by an attacker. A method is said to provide protected
 result indications if it supports result indications, as well as the
 "integrity protection" and "replay protection" claims. A method
 supporting protected result indications MUST indicate which result
 indications are protected, and which are not.

 Protected result indications are not required to protect against
 rogue authenticators. Within a mutually authenticating method,
 requiring that the server authenticate to the peer before the peer
 will accept a Success packet prevents an attacker from acting as a
 rogue authenticator.

 However, it is possible for an attacker to forge a Success packet
 after the server has authenticated to the peer, but before the peer
 has authenticated to the server. If the peer were to accept the
 forged Success packet and attempt to access the network when it had
 not yet successfully authenticated to the server, a denial of service
 attack could be mounted against the peer. After such an attack, if
 the lower layer supports failure indications, the authenticator can
 synchronize state with the peer by providing a lower layer failure
 indication. See Section 7.12 for details.

 If a server were to authenticate the peer and send a Success packet
 prior to determining whether the peer has authenticated the
 authenticator, an idle timeout can occur if the authenticator is not
 authenticated by the peer. Where supported by the lower layer, an
 authenticator sensing the absence of the peer can free resources.

 In a method supporting result indications, a peer that has
 authenticated the server does not consider the authentication
 successful until it receives an indication that the server
 successfully authenticated it. Similarly, a server that has
 successfully authenticated the peer does not consider the
 authentication successful until it receives an indication that the
 peer has authenticated the server.

 In order to avoid synchronization problems, prior to sending a
 success result indication, it is desirable for the sender to verify
 that sufficient authorization exists for granting access, though, as
 discussed below, this is not always possible.

Aboba, et al. Expires August 26, 2021 [Page 59]

Internet-Draft EAP February 2021

 While result indications may enable synchronization of the
 authentication result between the peer and server, this does not
 guarantee that the peer and authenticator will be synchronized in
 terms of their authorization or that timeouts will not occur. For
 example, the EAP server may not be aware of an authorization decision
 made by a AAA proxy; the AAA server may check authorization only
 after authentication has completed successfully, to discover that
 authorization cannot be granted, or the AAA server may grant access
 but the authenticator may be unable to provide it due to a temporary
 lack of resources. In these situations, synchronization may only be
 achieved via lower layer result indications.

 Success indications may be explicit or implicit. For example, where
 a method supports error messages, an implicit success indication may
 be defined as the reception of a specific message without a preceding
 error message. Failures are typically indicated explicitly. As
 described in Section 4.2, a peer silently discards a Failure packet
 received at a point where the method does not explicitly permit this
 to be sent. For example, a method providing its own error messages
 might require the peer to receive an error message prior to accepting
 a Failure packet.

 Per-packet authentication, integrity, and replay protection of result
 indications protects against spoofing. Since protected result
 indications require use of a key for per-packet authentication and
 integrity protection, methods supporting protected result indications
 MUST also support the "key derivation", "mutual authentication",
 "integrity protection", and "replay protection" claims.

 Protected result indications address some denial-of-service
 vulnerabilities due to spoofing of Success and Failure packets,
 though not all. EAP methods can typically provide protected result
 indications only in some circumstances. For example, errors can
 occur prior to key derivation, and so it may not be possible to
 protect all failure indications. It is also possible that result
 indications may not be supported in both directions or that
 synchronization may not be achieved in all modes of operation.

 For example, within EAP-TLS [RFC5216][I-D.ietf-emu-eap-tls13], in the
 client authentication handshake, the server authenticates the peer,
 but does not receive a protected indication of whether the peer has
 authenticated it. In contrast, the peer authenticates the server and
 is aware of whether the server has authenticated it. In the session
 resumption handshake, the peer authenticates the server, but does not
 receive a protected indication of whether the server has
 authenticated it. In this mode, the server authenticates the peer
 and is aware of whether the peer has authenticated it.

Aboba, et al. Expires August 26, 2021 [Page 60]

Internet-Draft EAP February 2021

8. References

8.1. Normative References

 [RFC1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
 STD 51, RFC 1661, DOI 10.17487/RFC1661, July 1994,
 <https://www.rfc-editor.org/info/rfc1661>.

 [RFC1994] Simpson, W., "PPP Challenge Handshake Authentication
 Protocol (CHAP)", RFC 1994, DOI 10.17487/RFC1994, August
 1996, <https://www.rfc-editor.org/info/rfc1994>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC2243] Metz, C., "OTP Extended Responses", RFC 2243,
 DOI 10.17487/RFC2243, November 1997, <https://www.rfc-
 editor.org/info/rfc2243>.

 [RFC2289] Haller, N., Metz, C., Nesser, P., and M. Straw, "A One-
 Time Password System", STD 61, RFC 2289,
 DOI 10.17487/RFC2289, February 1998, <https://www.rfc-
 editor.org/info/rfc2289>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011, <https://www.rfc-
 editor.org/info/rfc6298>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [IEEE-802]
 Institute of Electrical and Electronics Engineers, "Local
 and Metropolitan Area Networks: Overview and
 Architecture", IEEE Standard 802, 1990.

Aboba, et al. Expires August 26, 2021 [Page 61]

Internet-Draft EAP February 2021

 [IEEE-802.1X]
 Institute of Electrical and Electronics Engineers, "Local
 and Metropolitan Area Networks: Port-Based Network Access
 Control", IEEE Standard 802.1X, January 2020.

 [TS.33.501]
 3GPP, "Security architecture and procedures for 5G
 System", 3GPP TS 33.501 17.0.0, December 2020.

8.2. Informative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1510] Kohl, J. and C. Neuman, "The Kerberos Network
 Authentication Service (V5)", RFC 1510,
 DOI 10.17487/RFC1510, September 1993, <https://www.rfc-
 editor.org/info/rfc1510>.

 [RFC1750] Eastlake 3rd, D., Crocker, S., and J. Schiller,
 "Randomness Recommendations for Security", RFC 1750,
 DOI 10.17487/RFC1750, December 1994, <https://www.rfc-
 editor.org/info/rfc1750>.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, DOI 10.17487/RFC2246, January 1999,
 <https://www.rfc-editor.org/info/rfc2246>.

 [RFC2284] Blunk, L. and J. Vollbrecht, "PPP Extensible
 Authentication Protocol (EAP)", RFC 2284,
 DOI 10.17487/RFC2284, March 1998, <https://www.rfc-
 editor.org/info/rfc2284>.

 [RFC2408] Maughan, D., Schertler, M., Schneider, M., and J. Turner,
 "Internet Security Association and Key Management Protocol
 (ISAKMP)", RFC 2408, DOI 10.17487/RFC2408, November 1998,
 <https://www.rfc-editor.org/info/rfc2408>.

 [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
 (IKE)", RFC 2409, DOI 10.17487/RFC2409, November 1998,
 <https://www.rfc-editor.org/info/rfc2409>.

 [RFC2433] Zorn, G. and S. Cobb, "Microsoft PPP CHAP Extensions",
 RFC 2433, DOI 10.17487/RFC2433, October 1998,
 <https://www.rfc-editor.org/info/rfc2433>.

Aboba, et al. Expires August 26, 2021 [Page 62]

Internet-Draft EAP February 2021

 [RFC2486] Aboba, B. and M. Beadles, "The Network Access Identifier",
 RFC 2486, DOI 10.17487/RFC2486, January 1999,
 <https://www.rfc-editor.org/info/rfc2486>.

 [RFC2607] Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
 Implementation in Roaming", RFC 2607,
 DOI 10.17487/RFC2607, June 1999, <https://www.rfc-
 editor.org/info/rfc2607>.

 [RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
 G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",
 RFC 2661, DOI 10.17487/RFC2661, August 1999,
 <https://www.rfc-editor.org/info/rfc2661>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC3162] Aboba, B., Zorn, G., and D. Mitton, "RADIUS and IPv6",
 RFC 3162, DOI 10.17487/RFC3162, August 2001,
 <https://www.rfc-editor.org/info/rfc3162>.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 DOI 10.17487/RFC3454, December 2002, <https://www.rfc-
 editor.org/info/rfc3454>.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579,
 DOI 10.17487/RFC3579, September 2003, <https://www.rfc-
 editor.org/info/rfc3579>.

 [RFC3580] Congdon, P., Aboba, B., Smith, A., Zorn, G., and J. Roese,
 "IEEE 802.1X Remote Authentication Dial In User Service
 (RADIUS) Usage Guidelines", RFC 3580,
 DOI 10.17487/RFC3580, September 2003, <https://www.rfc-
 editor.org/info/rfc3580>.

 [RFC3692] Narten, T., "Assigning Experimental and Testing Numbers
 Considered Useful", BCP 82, RFC 3692,
 DOI 10.17487/RFC3692, January 2004, <https://www.rfc-
 editor.org/info/rfc3692>.

Aboba, et al. Expires August 26, 2021 [Page 63]

Internet-Draft EAP February 2021

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC4072] Eronen, P., Ed., Hiller, T., and G. Zorn, "Diameter
 Extensible Authentication Protocol (EAP) Application",
 RFC 4072, DOI 10.17487/RFC4072, August 2005,
 <https://www.rfc-editor.org/info/rfc4072>.

 [RFC4137] Vollbrecht, J., Eronen, P., Petroni, N., and Y. Ohba,
 "State Machines for Extensible Authentication Protocol
 (EAP) Peer and Authenticator", RFC 4137,
 DOI 10.17487/RFC4137, August 2005, <https://www.rfc-
 editor.org/info/rfc4137>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5113] Arkko, J., Aboba, B., Korhonen, J., Ed., and F. Bari,
 "Network Discovery and Selection Problem", RFC 5113,
 DOI 10.17487/RFC5113, January 2008, <https://www.rfc-
 editor.org/info/rfc5113>.

 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
 March 2008, <https://www.rfc-editor.org/info/rfc5216>.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, DOI 10.17487/RFC5247, August 2008,
 <https://www.rfc-editor.org/info/rfc5247>.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User Names
 and Passwords", RFC 4013, DOI 10.17487/RFC4013, February
 2005, <https://www.rfc-editor.org/info/rfc4013>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
 RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <https://www.rfc-editor.org/info/rfc6151>.

 [RFC6677] Hartman, S., Ed., Clancy, T., and K. Hoeper, "Channel-
 Binding Support for Extensible Authentication Protocol
 (EAP) Methods", RFC 6677, DOI 10.17487/RFC6677, July 2012,
 <https://www.rfc-editor.org/info/rfc6677>.

Aboba, et al. Expires August 26, 2021 [Page 64]

Internet-Draft EAP February 2021

 [RFC6696] Cao, Z., He, B., Shi, Y., Wu, Q., Ed., and G. Zorn, Ed.,
 "EAP Extensions for the EAP Re-authentication Protocol
 (ERP)", RFC 6696, DOI 10.17487/RFC6696, July 2012,
 <https://www.rfc-editor.org/info/rfc6696>.

 [RFC7029] Hartman, S., Wasserman, M., and D. Zhang, "Extensible
 Authentication Protocol (EAP) Mutual Cryptographic
 Binding", RFC 7029, DOI 10.17487/RFC7029, October 2013,
 <https://www.rfc-editor.org/info/rfc7029>.

 [RFC7170] Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
 "Tunnel Extensible Authentication Protocol (TEAP) Version
 1", RFC 7170, DOI 10.17487/RFC7170, May 2014,
 <https://www.rfc-editor.org/info/rfc7170>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7613] Saint-Andre, P. and A. Melnikov, "Preparation,
 Enforcement, and Comparison of Internationalized Strings
 Representing Usernames and Passwords", RFC 7613,
 DOI 10.17487/RFC7613, August 2015, <https://www.rfc-
 editor.org/info/rfc7613>.

 [RFC8265] Saint-Andre, P. and A. Melnikov, "Preparation,
 Enforcement, and Comparison of Internationalized Strings
 Representing Usernames and Passwords", RFC 8265,
 DOI 10.17487/RFC8265, October 2017, <https://www.rfc-
 editor.org/info/rfc8265>.

 [DECEPTION]
 Slatalla, M. and J. Quittner, "Masters of Deception",
 Harper-Collins New York, 1995.

 [KRBATTACK]
 Wu, T., "A Real-World Analysis of Kerberos Password
 Security", Proceedings of the 1999 ISOC Network and
 Distributed System Security Symposium
 http://www.isoc.org/isoc/conferences/ndss/99/proceedings/
 papers/wu.pdf.

 [KRBLIM] Bellovin, S. and M. Merrit, "Limitations of the Kerberos
 authentication system", Proceedings of the 1991 Winter
 USENIX Conference pp. 253-267, 1991.

Aboba, et al. Expires August 26, 2021 [Page 65]

Internet-Draft EAP February 2021

 [KERB4WEAK]
 Dole, B., Lodin, S., and E. Spafford, "Misplaced trust:
 Kerberos 4 session keys", Proceedings of the Internet
 Society Network and Distributed System Security
 Symposium pp. 60-70, March 1997.

 [I-D.ietf-ipsra-pic]
 Sheffer, Y., Krawczyk, H., and B. Aboba, "PIC, A Pre-IKE
 Credential Provisioning Protocol", draft-ietf-ipsra-pic-05
 (work in progress), February 2002.

 [PPTPv1] Schneier, B. and Mudge, "Cryptanalysis of Microsoft’s
 Point-to- Point Tunneling Protocol", Proceedings of the
 5th ACM Conference on Communications and Computer
 Security ACM Press, November 1998.

 [IEEE-802.11]
 Institute of Electrical and Electronics Engineers,
 "Wireless LAN Medium Access Control (MAC) and Physical
 Layer (PHY) Specifications", IEEE Standard 802.11, 1999.

 [SILVERMAN]
 Silverman, R., "A Cost-Based Security Analysis of
 Symmetric and Asymmetric Key Lengths", RSA Laboratories
 Bulletin 13 (Revised November 2001)
 http://www.rsasecurity.com/rsalabs/bulletins/
 bulletin13.html, April 2000.

 [IEEE-802.11i]
 Institute of Electrical and Electronics Engineers,
 "Unapproved Draft Supplement to Standard for
 Telecommunications and Information Exchange Between
 Systems - LAN/MAN Specific Requirements - Part 11:
 Wireless LAN Medium Access Control (MAC) and Physical
 Layer (PHY) Specifications: Specification for Enhanced
 Security", IEEE Draft 802.11i (work in progress), 2003.

 [I-D.zorn-eap-eval]
 Zorn, G., "Specifying Security Claims for EAP
 Authentication Types", draft-zorn-eap-eval-00 (work in
 progress), October 2002.

 [I-D.puthenkulam-eap-binding]
 Puthenkulam, J., "The Compound Authentication Binding
 Problem", draft-puthenkulam-eap-binding-04 (work in
 progress), October 2003.

Aboba, et al. Expires August 26, 2021 [Page 66]

Internet-Draft EAP February 2021

 [MITM] Asokan, N., Niemi, V., and K. Nyberg, "Man-in-the-Middle
 in Tunneled Authentication Protocols", IACR ePrint Archive
 Report 2002/163 http://eprint.iacr.org/2002/163, October
 2002.

 [IEEE-802.11i-req]
 Stanley, D., "EAP Method Requirements for Wireless LANs",
 February 2004.

 [PPTPv2] Schneier, B. and Mudge, "Cryptanalysis of Microsoft’s PPTP
 Authentication Extensions (MS-CHAPv2)", CQRE 99, Springer-
 Verlag pp. 192-203, 1999.

 [Terminology]
 Alissa Cooper et al., , "Inclusive terminology in IETF
 Documents", Contribution under the IETF
 GitHub https://github.com/ietf/terminology, October 2020.

 [W3C] Le Hegaret, P. and C. Mercier, "W3C Manual of Style", W3C
 Document https://w3c.github.io/manual-of-style/, January
 2021.

 [RedHat] Wright, C., "Making open source more inclusive by
 eradicating problematic language", RedHat Blog
 https://www.redhat.com/en/blog/making-open-source-more-
 inclusive-eradicating-problematic-language, January 2021.

 [GitLab] Ramsay, J., "Change the default initial branch name for
 new projects on GitLab", GitLab issue 221164
 https://gitlab.com/gitlab-org/gitlab/-/issues/221164, June
 2020.

 [Mozilla] Davidson, J., "Replace all user-facing instances that
 refer to "master" password", Mozilla Bug 1644807
 https://bugzilla.mozilla.org/show_bug.cgi?id=1644807,
 November 2016.

 [IESG] IESG, , "IESG Statement On Oppressive or Exclusionary
 Language", IESG Statement
 https://www.ietf.org/about/groups/iesg/statements/
 statement-on-oppressive-exclusionary-language/, July 2020.

 [I-D.ietf-emu-eap-tls13]
 Mattsson, J. and M. Sethi, "Using EAP-TLS with TLS 1.3",
 draft-ietf-emu-eap-tls13-13 (work in progress), November
 2020.

Aboba, et al. Expires August 26, 2021 [Page 67]

Internet-Draft EAP February 2021

 [I-D.ietf-emu-rfc5448bis]
 Arkko, J., Lehtovirta, V., Torvinen, V., and P. Eronen,
 "Improved Extensible Authentication Protocol Method for
 3GPP Mobile Network Authentication and Key Agreement (EAP-
 AKA’)", draft-ietf-emu-rfc5448bis-09 (work in progress),
 January 2021.

Appendix A. Changes from RFC 3748

 There are no changes with related to interoperability. Minor
 changes, including style, grammar, spelling, and editorial changes
 are not mentioned here. The only changes are the following:

 o The names of the MSK and EMSK terms used to discuss and specify
 the protocol have been changed.

 o The security considerations note the deficiencies in legacy EAP
 methods such as MD5-Challenge in Section 7.11.1, and recommend the
 use of more modern authentication methods.

 o Ivo Sedlacek’s errata on a reference to Section 7.12 rather than
 Section 7.2 from Section 3.4 has been adopted.

 o IANA rules have been updated to comply with RFC 8126 and current
 allocations.

 o References have been updated to their most recent versions.

 o The security claim perfect forward secrecy has been added.

 o References to 3GPP 5G has been added.

 o The peer-name portion of the NAI SHOULD be omitted in the EAP-
 Response/Identity.

 o Since the publication of RFC3748, several documents related to the
 core EAP document have been published: [RFC4137] offers a proposed
 state machine [RFC5113] defines the network discovery and
 selection problem, [RFC5247] specifies the EAP key hierarchy,
 [RFC6677] [RFC7029] explores man-in-the-middle attacks and defines
 how to implement channel bindings. References to RFC 4137, RFC
 5113, RFC 5247, RFC 6677, and RFC 7029 3GPP have been added.

 There are still some open questions, however:

 o RFC 3748 referred to an early version of the SASLPREP document,
 which turned into [RFC4013], then [RFC7613], and is currently

Aboba, et al. Expires August 26, 2021 [Page 68]

Internet-Draft EAP February 2021

 [RFC8265]. Does this still apply? Has something been learned in
 the meanwhile about internationalization and passwords?

 o Is there a need to update security considerations beyond what was
 done already? The is likly more to say about privacy, identity
 protection, pervasive monitoring and perfect forward secrecy.

 o IEEE references need to be updated to newer ones. Some aspects of
 IEEE have changed since 2004

 o IEEE links are discussed a lot in the document, and some of 3GPP
 link technologies and related EAP methods. Should the document
 say something more about 3GPP and 5G?

 o Could some sections be replaced by links to RFC 4137, RFC 5113,
 RFC 5247, RFC 6677, and RFC 7029? Should the document say more
 about RFC 4137, RFC 5113, RFC 5247, RFC 6677, and RFC 7029?

 o What other issues have been discussed since since 2004, but not
 recorded in errata?

 A summary of the changes between RFC 3748 and RFC 2284 were listed in
 Appendix A of RFC 3748 [RFC3748] [RFC2284].

Appendix B. Rationale

 In 2020, the Internet Engineering Steering Group (IESG) noted that
 terminology used in IETF documents is important [IESG]. When the
 objective of an organization is to be inclusive and respectful,
 terminology can also have an effect. There are obvious challenges
 for creating good terminology for the parts of Internet technology
 currently under development, both in a technical sense and in our
 ability to agree what terms are inclusive. There are also difficult
 tradeoffs related to changing terminology for existing technology, or
 for spending valuable effort on terminology vs. other things.

 This update is both a refresh of the RFC in general, bringing in the
 noted errata, updates to referred documents, but also an update of
 the terminology.

 With regards to terminology, the authors have worked for a long time
 with EAP technology, and continue to make contributions in this
 space. In the authors’ view, while there is no need for a change,
 some of the terms that are used when referring to various parts of
 the overall EAP technology could be improved. As a result, the
 authors wanted to make a modest proposal for a change that would
 improve the terms without changing the associated acronyms, and
 enable better use of the terms in future documents.

Aboba, et al. Expires August 26, 2021 [Page 69]

Internet-Draft EAP February 2021

 It should be noted that the issues with EAP terms are minor, compared
 many other terminology or other problems with Internet technology.
 The authors do not wish to start a big debate; if the WG finds this
 useful, we can perhaps make an update and move on. If not, we can
 simply move on without making a change.

 The specific change that is suggested in this document relates to the
 use of the word "master" in various EAP terms. This word is rather
 benign when compared to the use of master/slave or black/whitelists,
 and other similar terms. Indeed, "master" is commonly used in a
 large number of everyday terms. Given this, some authors and
 organizations have chosen to make updates only with the most
 egregious terms, such as master/slave.

 Nevertheless, at least the authors of this document feel that he
 would use another word if a different word or term was available. It
 should be noted that:

 o The slavery-related meaning comes up in any dictionary search for
 the word "master".

 o The word "master" and some suggested alternatives (such as "main")
 are listed in [Terminology].

 o Several organisations have recommended changing the word "master"
 in various aspects of their documentation or software. Others are
 considering changes. See, for instance, [W3C] [RedHat] [GitLab]
 [Mozilla].

 In any case, as noted, this proposal is for the working group to
 discuss. Discussion may find that the proposal is considered useful,
 unnecessary, or flawed in some fashion.

Appendix C. Acknowledgements

 This version of the document is a minor update with respect to RFC
 3748. The acknowledgements from RFC 3748 apply:

 This protocol derives much of its inspiration from Dave Carrel’s
 AHA document, as well as the PPP CHAP protocol [RFC1994].
 Valuable feedback was provided by Yoshihiro Ohba of Toshiba
 America Research, Jari Arkko of Ericsson, Sachin Seth of
 Microsoft, Glen Zorn of Cisco Systems, Jesse Walker of Intel, Bill
 Arbaugh, Nick Petroni and Bryan Payne of the University of
 Maryland, Steve Bellovin of AT&T Research, Paul Funk of Funk
 Software, Pasi Eronen of Nokia, Joseph Salowey of Cisco, Paul
 Congdon of HP, and members of the EAP working group.

Aboba, et al. Expires August 26, 2021 [Page 70]

Internet-Draft EAP February 2021

 The use of Security Claims sections for EAP methods, as required
 by Section 7.2 and specified for each EAP method described in this
 document, was inspired by Glen Zorn through [I-D.zorn-eap-eval].

 The authors of the most recent version of this document would like to
 thank Stephen Hayes, Lars Eggert, Mohit Sethi, Alissa Cooper, and Ivo
 Sedlacek for englightening discussions and general contributions in
 this area.

Authors’ Addresses

 Bernard Aboba
 Microsoft Corporation
 USA

 Email: bernarda@microsoft.com

 Larry J. Blunk
 Merit Network, Inc
 USA

 Email: ljb@merit.edu

 John R. Vollbrecht
 Vollbrecht Consulting LLC
 USA

 Email: jrv@umich.edu

 James Carlson
 Sun Microsystems, Inc
 USA

 Email: james.d.carlson@sun.com

 Henrik Levkowetz
 ipUnplugged AB
 Sweden

 Email: henrik@levkowetz.com

Aboba, et al. Expires August 26, 2021 [Page 71]

Internet-Draft EAP February 2021

 Jari Arkko (Editor)
 Ericsson
 Jorvas 02420
 Finland

 Email: jari.arkko@piuha.net

 John Mattsson (Editor)
 Ericsson
 Stockholm
 Sweden

 Email: john.mattsson@ericsson.com

Aboba, et al. Expires August 26, 2021 [Page 72]

Network Working Group J. Mattsson
Internet-Draft M. Sethi
Updates: 5216 (if approved) Ericsson
Intended status: Standards Track May 4, 2021
Expires: November 5, 2021

 Using EAP-TLS with TLS 1.3
 draft-ietf-emu-eap-tls13-15

Abstract

 The Extensible Authentication Protocol (EAP), defined in RFC 3748,
 provides a standard mechanism for support of multiple authentication
 methods. This document specifies the use of EAP-Transport Layer
 Security (EAP-TLS) with TLS 1.3 while remaining backwards compatible
 with existing implementations of EAP-TLS. TLS 1.3 provides
 significantly improved security, privacy, and reduced latency when
 compared to earlier versions of TLS. EAP-TLS with TLS 1.3 further
 improves security and privacy by always providing forward secrecy,
 never disclosing the peer identity, and by mandating use of
 revocation checking. This document also provides guidance on
 authorization and resumption for EAP-TLS in general (regardless of
 the underlying TLS version used). This document updates RFC 5216.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 5, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Mattsson & Sethi Expires November 5, 2021 [Page 1]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements and Terminology 4
 2. Protocol Overview . 4
 2.1. Overview of the EAP-TLS Conversation 4
 2.1.1. Authentication 5
 2.1.2. Ticket Establishment 6
 2.1.3. Resumption . 8
 2.1.4. Termination . 10
 2.1.5. No Peer Authentication 13
 2.1.6. Hello Retry Request 14
 2.1.7. Identity . 15
 2.1.8. Privacy . 16
 2.1.9. Fragmentation . 16
 2.2. Identity Verification 17
 2.3. Key Hierarchy . 18
 2.4. Parameter Negotiation and Compliance Requirements 19
 2.5. EAP State Machines 19
 3. Detailed Description of the EAP-TLS Protocol 20
 4. IANA considerations . 20
 5. Security Considerations 21
 5.1. Security Claims . 21
 5.2. Peer and Server Identities 21
 5.3. Certificate Validation 22
 5.4. Certificate Revocation 22
 5.5. Packet Modification Attacks 23
 5.6. Authorization . 23
 5.7. Resumption . 24
 5.8. Privacy Considerations 26
 5.9. Pervasive Monitoring 27
 5.10. Discovered Vulnerabilities 28
 6. References . 28
 6.1. Normative References 28
 6.2. Informative references 29
 Appendix A. Updated references 33
 Acknowledgments . 33
 Contributors . 33

Mattsson & Sethi Expires November 5, 2021 [Page 2]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 Authors’ Addresses . 33

1. Introduction

 The Extensible Authentication Protocol (EAP), defined in [RFC3748],
 provides a standard mechanism for support of multiple authentication
 methods. EAP-Transport Layer Security (EAP-TLS) [RFC5216] specifies
 an EAP authentication method with certificate-based mutual
 authentication utilizing the TLS handshake protocol for cryptographic
 algorithms and protocol version negotiation and establishment of
 shared secret keying material. EAP-TLS is widely supported for
 authentication and key establishment in IEEE 802.11 [IEEE-802.11]
 (Wi-Fi) and IEEE 802.1AE [IEEE-802.1AE] (MACsec) networks using IEEE
 802.1X [IEEE-802.1X] and it’s the default mechanism for certificate
 based authentication in 3GPP 5G [TS.33.501] and MulteFire [MulteFire]
 networks. Many other EAP methods such as EAP-FAST [RFC4851], EAP-
 TTLS [RFC5281], TEAP [RFC7170], and PEAP [PEAP] depend on TLS and
 EAP-TLS.

 EAP-TLS [RFC5216] references TLS 1.0 [RFC2246] and TLS 1.1 [RFC4346],
 but can also work with TLS 1.2 [RFC5246]. TLS 1.0 and 1.1 are
 formally deprecated and prohibited to negotiate and use [RFC8996].
 Weaknesses found in TLS 1.2, as well as new requirements for
 security, privacy, and reduced latency have led to the specification
 of TLS 1.3 [RFC8446], which obsoletes TLS 1.2 [RFC5246]. TLS 1.3 is
 in large parts a complete remodeling of the TLS handshake protocol
 including a different message flow, different handshake messages,
 different key schedule, different cipher suites, different
 resumption, different privacy protection, and different record
 padding. This means that significant parts of the normative text in
 the previous EAP-TLS specification [RFC5216] are not applicable to
 EAP-TLS with TLS 1.3. Therefore, aspects such as resumption, privacy
 handling, and key derivation need to be appropriately addressed for
 EAP-TLS with TLS 1.3.

 This document defines how to use EAP-TLS with TLS 1.3 and does not
 change how EAP-TLS is used with older versions of TLS. It does
 however provide additional guidance on authorization and resumption
 for EAP-TLS in general (regardless of the underlying TLS version
 used). While this document updates EAP-TLS [RFC5216], it remains
 backwards compatible with it and existing implementations of EAP-TLS.
 This document only describes differences compared to [RFC5216]. All
 message flow are example message flows specific to TLS 1.3 and do not
 apply to TLS 1.2. Since EAP-TLS couples the TLS handshake state
 machine with the EAP state machine it is possible that new versions
 of TLS will cause incompatibilities that introduce failures or
 security issues if they are not carefully integrated into the EAP-TLS
 protocol. Therefore, implementations MUST limit the maximum TLS

Mattsson & Sethi Expires November 5, 2021 [Page 3]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 version they use to 1.3, unless later versions are explicitly enabled
 by the administrator.

 This document specifies EAP-TLS 1.3 and does not specify how other
 TLS-based EAP methods use TLS 1.3. The specification for how other
 TLS-based EAP methods use TLS 1.3 is left to other documents such as
 [I-D.ietf-emu-tls-eap-types].

 In addition to the improved security and privacy offered by TLS 1.3,
 there are other significant benefits of using EAP-TLS with TLS 1.3.
 Privacy, which in EAP-TLS means that the peer username is not
 disclosed, is mandatory and achieved without any additional round-
 trips. Revocation checking is mandatory and simplified with OCSP
 stapling, and TLS 1.3 introduces more possibilities to reduce
 fragmentation when compared to earlier versions of TLS.

1.1. Requirements and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with the terms and concepts used
 in EAP-TLS [RFC5216] and TLS [RFC8446]. The term EAP-TLS peer is
 used for the entity acting as EAP peer and TLS client. The term EAP-
 TLS server is used for the entity acting as EAP server and TLS
 server.

2. Protocol Overview

2.1. Overview of the EAP-TLS Conversation

 This section updates Section 2.1 of [RFC5216].

 TLS 1.3 changes both the message flow and the handshake messages
 compared to earlier versions of TLS. Therefore, much of Section 2.1
 of [RFC5216] does not apply for TLS 1.3.

 After receiving an EAP-Request packet with EAP-Type=EAP-TLS as
 described in [RFC5216] the conversation will continue with the TLS
 handshake protocol encapsulated in the data fields of EAP-Response
 and EAP-Request packets. When EAP-TLS is used with TLS version 1.3,
 the formatting and processing of the TLS handshake SHALL be done as
 specified in version 1.3 of TLS. This document only lists additional
 and different requirements, restrictions, and processing compared to
 [RFC8446] and [RFC5216].

Mattsson & Sethi Expires November 5, 2021 [Page 4]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

2.1.1. Authentication

 This section updates Section 2.1.1 of [RFC5216].

 The EAP-TLS server MUST authenticate with a certificate and SHOULD
 require the EAP-TLS peer to authenticate with a certificate.
 Certificates can be of any type supported by TLS including raw public
 keys. Pre-Shared Key (PSK) authentication SHALL NOT be used except
 for resumption. The full handshake in EAP-TLS with TLS 1.3 always
 provide forward secrecy by exchange of ephemeral "key_share"
 extensions in the ClientHello and ServerHello (e.g. containing
 ephemeral ECDHE public keys). SessionID is deprecated in TLS 1.3,
 see Sections 4.1.2 and 4.1.3 of [RFC8446]. TLS 1.3 introduced early
 application data which like all other application data is not used in
 EAP-TLS, see Section 4.2.10 of [RFC8446] for additional information
 of the "early_data" extension. Resumption is handled as described in
 Section 2.1.3. TLS 1.3 introduced the Post-Handshake KeyUpdate
 message which is not useful and not expected in EAP-TLS. As a
 protected success indication [RFC3748] the EAP-TLS server always
 sends TLS application data 0x00, see Section 2.5. Note that a TLS
 implementation MAY not allow the EAP-TLS layer to control in which
 order things are sent and the application data MAY therefore be sent
 before a NewSessionTicket. TLS application data 0x00 is therefore to
 be interpreted as success after the EAP-Request that contains TLS
 application data 0x00. After the EAP-TLS server has received an
 empty EAP-Response to the EAP-Request containing the TLS application
 data 0x00, the EAP-TLS server sends EAP-Success.

 Figure 1 shows an example message flow for a successful EAP-TLS full
 handshake with mutual authentication (and neither HelloRetryRequest
 nor Post-Handshake messages are sent).

Mattsson & Sethi Expires November 5, 2021 [Page 5]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 EAP-TLS Peer EAP-TLS Server

 EAP-Request/
 <-------- Identity
 EAP-Response/
 Identity (Privacy-Friendly) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS ClientHello) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 (TLS ServerHello,
 TLS EncryptedExtensions,
 TLS CertificateRequest,
 TLS Certificate,
 TLS CertificateVerify,
 <-------- TLS Finished)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS Certificate,
 TLS CertificateVerify,
 TLS Finished) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- TLS Application Data 0x00)
 EAP-Response/
 EAP-Type=EAP-TLS -------->
 <-------- EAP-Success

 Figure 1: EAP-TLS mutual authentication

2.1.2. Ticket Establishment

 This is a new section when compared to [RFC5216].

 To enable resumption when using EAP-TLS with TLS 1.3, the EAP-TLS
 server MUST send one or more Post-Handshake NewSessionTicket messages
 (each associated with a PSK, a PSK identity, a ticket lifetime, and
 other parameters) in the initial authentication. Note that TLS 1.3
 [RFC8446] limits the ticket lifetime to a maximum of 604800 seconds
 (7 days) and EAP-TLS servers MUST respect this upper limit when
 issuing tickets. The NewSessionTicket is sent after the EAP-TLS
 server has received the client Finished message in the initial
 authentication. The NewSessionTicket can be sent in the same flight
 as the TLS server Finished or later. The PSK associated with the

Mattsson & Sethi Expires November 5, 2021 [Page 6]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 ticket depends on the client Finished and cannot be pre-computed in
 handshakes with client authentication. The NewSessionTicket message
 MUST NOT include an "early_data" extension. If the "early_data"
 extension is received then it MUST be ignored. Servers should take
 into account that fewer NewSessionTickets will likely be needed in
 EAP-TLS than in the usual HTTPS connection scenario. In most cases a
 single NewSessionTicket will be sufficient. A mechanism by which
 clients can specify the desired number of tickets needed for future
 connections is defined in [I-D.ietf-tls-ticketrequests].

 Figure 2 shows an example message flow for a successful EAP-TLS full
 handshake with mutual authentication and ticket establishment of a
 single ticket.

 EAP-TLS Peer EAP-TLS Server

 EAP-Request/
 <-------- Identity
 EAP-Response/
 Identity (Privacy-Friendly) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS ClientHello) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 (TLS ServerHello,
 TLS EncryptedExtensions,
 TLS CertificateRequest,
 TLS Certificate,
 TLS CertificateVerify,
 <-------- TLS Finished)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS Certificate,
 TLS CertificateVerify,
 TLS Finished) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 (TLS NewSessionTicket,
 <-------- TLS Application Data 0x00)
 EAP-Response/
 EAP-Type=EAP-TLS -------->
 <-------- EAP-Success

 Figure 2: EAP-TLS ticket establishment

Mattsson & Sethi Expires November 5, 2021 [Page 7]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

2.1.3. Resumption

 This section updates Section 2.1.2 of [RFC5216].

 EAP-TLS is typically used with client authentication and typically
 fragments the TLS flights into a large number of EAP requests and EAP
 responses. Resumption significantly reduces the number of round-
 trips and enables the EAP-TLS server to omit database lookups needed
 during a full handshake with client authentication. TLS 1.3 replaces
 the session resumption mechanisms in earlier versions of TLS with a
 new PSK exchange. When EAP-TLS is used with TLS version 1.3, EAP-TLS
 SHALL use a resumption mechanism compatible with version 1.3 of TLS.

 For TLS 1.3, resumption is described in Section 2.2 of [RFC8446]. If
 the client has received a NewSessionTicket message from the EAP-TLS
 server, the client can use the PSK identity associated with the
 ticket to negotiate the use of the associated PSK. If the EAP-TLS
 server accepts it, then the security context of the new connection is
 tied to the original connection and the key derived from the initial
 handshake is used to bootstrap the cryptographic state instead of a
 full handshake. It is up to the EAP-TLS peer to use resumption, but
 it is RECOMMENDED that the EAP-TLS peer use resumption if it has a
 valid ticket that has not been used before. It is left to the EAP-
 TLS server whether to accept resumption, but it is RECOMMENDED that
 the EAP-TLS server accept resumption if the ticket which was issued
 is still valid. However, the EAP-TLS server MAY choose to require a
 full handshake. As in a full handshake, sending a NewSessionTicket
 during resumption is optional. As described in Appendix C.4 of
 [RFC8446], reuse of a ticket allows passive observers to correlate
 different connections. EAP-TLS peers and EAP-TLS servers SHOULD
 follow the client tracking preventions in Appendix C.4 of [RFC8446].

 It is RECOMMENDED to use a Network Access Identifiers (NAIs) with the
 same realm during resumption and the original full handshake. This
 requirement allows EAP packets to be routed to the same destination
 as the original full handshake. If this recommendation is not
 followed, resumption is likely impossible. When NAI reuse can be
 done without privacy implications, it is RECOMMENDED to use the same
 NAI in the resumption, as was used in the original full handshake
 [RFC7542]. For example, the NAI @realm can safely be reused since it
 does not provide any specific information to associate a user’s
 resumption attempt with the original full handshake. However,
 reusing the NAI P2ZIM2F+OEVAO21nNWg2bVpgNnU=@realm enables an on-path
 attacker to associate a resumption attempt with the original full
 handshake. The TLS PSK identity is typically derived by the TLS
 implementation and may be an opaque blob without a routable realm.
 The TLS PSK identity on its own is therefore unsuitable as a NAI in
 the Identity Response.

Mattsson & Sethi Expires November 5, 2021 [Page 8]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 Figure 3 shows an example message flow for a subsequent successful
 EAP-TLS resumption handshake where both sides authenticate via a PSK
 provisioned via an earlier NewSessionTicket and where the server
 provisions a single new ticket.

 EAP-TLS Peer EAP-TLS Server

 EAP-Request/
 <-------- Identity
 EAP-Response/
 Identity (Privacy-Friendly) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS ClientHello) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 (TLS ServerHello,
 TLS EncryptedExtensions,
 <-------- TLS Finished,
 TLS NewSessionTicket)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS Finished) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- TLS Application Data 0x00)
 EAP-Response/
 EAP-Type=EAP-TLS -------->
 <-------- EAP-Success

 Figure 3: EAP-TLS resumption

 As specified in Section 2.2 of [RFC8446], the EAP-TLS peer SHOULD
 supply a "key_share" extension when attempting resumption, which
 allows the EAP-TLS server to potentially decline resumption and fall
 back to a full handshake. If the EAP-TLS peer did not supply a
 "key_share" extension when attempting resumption, the EAP-TLS server
 needs to send HelloRetryRequest to signal that additional information
 is needed to complete the handshake, and the EAP-TLS peer needs to
 send a second ClientHello containing that information. Providing a
 "key_share" and using the "psk_dhe_ke" pre-shared key exchange mode
 is also important in order to limit the impact of a key compromise.
 When using "psk_dhe_ke", TLS 1.3 provides forward secrecy meaning
 that key leakage does not compromise any earlier connections. It is
 RECOMMMENDED to use "psk_dhe_ke" for resumption.

Mattsson & Sethi Expires November 5, 2021 [Page 9]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

2.1.4. Termination

 This section updates Section 2.1.3 of [RFC5216].

 TLS 1.3 changes both the message flow and the handshake messages
 compared to earlier versions of TLS. Therefore, some normative text
 in Section 2.1.3 of [RFC5216] does not apply for TLS 1.3. The two
 paragraphs below replaces the corresponding paragraphs in
 Section 2.1.3 of [RFC5216] when EAP-TLS is used with TLS 1.3. The
 other paragraphs in Section 2.1.3 of [RFC5216] still apply with the
 exception that SessionID is deprecated.

 If the EAP-TLS peer authenticates successfully, the EAP-TLS server
 MUST send an EAP-Request packet with EAP-Type=EAP-TLS containing
 TLS records conforming to the version of TLS used. The message
 flow ends with the EAP-TLS server sending an EAP-Success message.

 If the EAP-TLS server authenticates successfully, the EAP-TLS peer
 MUST send an EAP-Response message with EAP-Type=EAP-TLS containing
 TLS records conforming to the version of TLS used.

 Figures 4, 5, and 6 illustrate message flows in several cases where
 the EAP-TLS peer or EAP-TLS server sends a TLS Error alert message.
 In earlier versions of TLS, error alerts could be warnings or fatal.
 In TLS 1.3, error alerts are always fatal and the only alerts sent at
 warning level are "close_notify" and "user_cancelled", both of which
 indicate that the connection is not going to continue normally, see
 [RFC8446].

 In TLS 1.3 [RFC8446], error alerts are not mandatory to send after a
 fatal error condition. Failure to send TLS Error alerts means that
 the peer or server would have no way of determining what went wrong.
 EAP-TLS 1.3 strengthen this requirement. Whenever an implementation
 encounters a fatal error condition, it MUST send an appropriate TLS
 Error alert.

 Figure 4 shows an example message flow where the EAP-TLS server
 rejects the ClientHello with an error alert. The EAP-TLS server can
 also partly reject the ClientHello with a HelloRetryRequest, see
 Section 2.1.6.

Mattsson & Sethi Expires November 5, 2021 [Page 10]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 EAP-TLS Peer EAP-TLS Server

 EAP-Request/
 <-------- Identity
 EAP-Response/
 Identity (Privacy-Friendly) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS ClientHello) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- (TLS Error Alert)
 EAP-Response/
 EAP-Type=EAP-TLS -------->
 <-------- EAP-Failure

 Figure 4: EAP-TLS server rejection of ClientHello

 Figure 5 shows an example message flow where EAP-TLS server
 authentication is unsuccessful and the EAP-TLS peer sends a TLS Error
 alert.

Mattsson & Sethi Expires November 5, 2021 [Page 11]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 EAP-TLS Peer EAP-TLS Server

 EAP-Request/
 <-------- Identity
 EAP-Response/
 Identity (Privacy-Friendly) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS ClientHello) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 (TLS ServerHello,
 TLS EncryptedExtensions,
 TLS CertificateRequest,
 TLS Certificate,
 TLS CertificateVerify,
 <-------- TLS Finished)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS Error Alert)
 -------->
 <-------- EAP-Failure

 Figure 5: EAP-TLS unsuccessful EAP-TLS server authentication

 Figure 6 shows an example message flow where the EAP-TLS server
 authenticates to the EAP-TLS peer successfully, but the EAP-TLS peer
 fails to authenticate to the EAP-TLS server and sends a TLS Error
 alert.

Mattsson & Sethi Expires November 5, 2021 [Page 12]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 EAP-TLS Peer EAP-TLS Server

 EAP-Request/
 <-------- Identity
 EAP-Response/
 Identity (Privacy-Friendly) -------->

 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS ClientHello) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 (TLS ServerHello,
 TLS EncryptedExtensions,
 TLS CertificateRequest,
 TLS Certificate,
 TLS CertificateVerify,
 <-------- TLS Finished)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS Certificate,
 TLS CertificateVerify,
 TLS Finished) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- (TLS Error Alert)
 EAP-Response/
 EAP-Type=EAP-TLS -------->
 <-------- EAP-Failure

 Figure 6: EAP-TLS unsuccessful client authentication

2.1.5. No Peer Authentication

 This is a new section when compared to [RFC5216].

 Figure 7 shows an example message flow for a successful EAP-TLS full
 handshake without peer authentication (e.g., emergency services, as
 described in [RFC7406]).

Mattsson & Sethi Expires November 5, 2021 [Page 13]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 EAP-TLS Peer EAP-TLS Server

 EAP-Request/
 <-------- Identity
 EAP-Response/
 Identity (Privacy-Friendly) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS ClientHello) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 (TLS ServerHello,
 TLS EncryptedExtensions,
 TLS Certificate,
 TLS CertificateVerify,
 <-------- TLS Finished)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS Finished) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- TLS Application Data 0x00)
 EAP-Response/
 EAP-Type=EAP-TLS -------->
 <-------- EAP-Success

 Figure 7: EAP-TLS without peer authentication

2.1.6. Hello Retry Request

 This is a new section when compared to [RFC5216].

 As defined in TLS 1.3 [RFC8446], EAP-TLS servers can send a
 HelloRetryRequest message in response to a ClientHello if the EAP-TLS
 server finds an acceptable set of parameters but the initial
 ClientHello does not contain all the needed information to continue
 the handshake. One use case is if the EAP-TLS server does not
 support the groups in the "key_share" extension (or there is no
 "key_share" extension), but supports one of the groups in the
 "supported_groups" extension. In this case the client should send a
 new ClientHello with a "key_share" that the EAP-TLS server supports.

 Figure 8 shows an example message flow for a successful EAP-TLS full
 handshake with mutual authentication and HelloRetryRequest. Note the
 extra round-trip as a result of the HelloRetryRequest.

Mattsson & Sethi Expires November 5, 2021 [Page 14]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 EAP-TLS Peer EAP-TLS Server

 EAP-Request/
 <-------- Identity
 EAP-Response/
 Identity (Privacy-Friendly) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- (TLS Start)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS ClientHello) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 (TLS HelloRetryRequest)
 <--------
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS ClientHello) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 (TLS ServerHello,
 TLS EncryptedExtensions,
 TLS CertificateRequest,
 TLS Certificate,
 TLS CertificateVerify,
 TLS Finished)
 EAP-Response/
 EAP-Type=EAP-TLS
 (TLS Certificate,
 TLS CertificateVerify,
 TLS Finished) -------->
 EAP-Request/
 EAP-Type=EAP-TLS
 <-------- TLS Application Data 0x00)
 EAP-Response/
 EAP-Type=EAP-TLS -------->
 <-------- EAP-Success

 Figure 8: EAP-TLS with Hello Retry Request

2.1.7. Identity

 This is a new section when compared to [RFC5216].

 It is RECOMMENDED to use anonymous NAIs [RFC7542] in the Identity
 Response as such identities are routable and privacy-friendly. While
 opaque blobs are allowed by [RFC3748], such identities are NOT

Mattsson & Sethi Expires November 5, 2021 [Page 15]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 RECOMMENDED as they are not routable and should only be considered in
 local deployments where the EAP-TLS peer, EAP authenticator, and EAP-
 TLS server all belong to the same network. Many client certificates
 contain an identity such as an email address, which is already in NAI
 format. When the client certificate contains a NAI as subject name
 or alternative subject name, an anonymous NAI SHOULD be derived from
 the NAI in the certificate, see Section 2.1.8. More details on
 identities are described in Sections 2.1.3, 2.1.8, 2.2, and 5.8.

2.1.8. Privacy

 This section updates Section 2.1.4 of [RFC5216].

 TLS 1.3 significantly improves privacy when compared to earlier
 versions of TLS by forbidding cipher suites without confidentiality
 and encrypting large parts of the TLS handshake including the
 certificate messages.

 EAP-TLS peer and server implementations supporting TLS 1.3 MUST
 support anonymous Network Access Identifiers (NAIs) (Section 2.4 in
 [RFC7542]) and a client supporting TLS 1.3 MUST NOT send its username
 in cleartext in the Identity Response. Following [RFC7542], it is
 RECOMMENDED to omit the username (i.e., the NAI is @realm), but other
 constructions such as a fixed username (e.g. anonymous@realm) or an
 encrypted username (e.g.,
 xCZINCPTK5+7y81CrSYbPg+RKPE3OTrYLn4AQc4AC2U=@realm) are allowed.
 Note that the NAI MUST be a UTF-8 string as defined by the grammar in
 Section 2.2 of [RFC7542].

 As the certificate messages in TLS 1.3 are encrypted, there is no
 need to send an empty certificate_list and perform a second handshake
 for privacy (as needed by EAP-TLS with earlier versions of TLS).
 When EAP-TLS is used with TLS version 1.3 the EAP-TLS peer and EAP-
 TLS server SHALL follow the processing specified by version 1.3 of
 TLS. This means that the EAP-TLS peer only sends an empty
 certificate_list if it does not have an appropriate certificate to
 send, and the EAP-TLS server MAY treat an empty certificate_list as a
 terminal condition.

 EAP-TLS with TLS 1.3 is always used with privacy. This does not add
 any extra round-trips and the message flow with privacy is just the
 normal message flow as shown in Figure 1.

2.1.9. Fragmentation

 This section updates Section 2.1.5 of [RFC5216].

Mattsson & Sethi Expires November 5, 2021 [Page 16]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 Including ContentType (1 byte), ProtocolVersion (2 bytes), and length
 (2 bytes) headers a single TLS record may be up to 16645 octets in
 length. EAP-TLS fragmentation support is provided through addition
 of a flags octet within the EAP-Response and EAP-Request packets, as
 well as a TLS Message Length field of four octets. Implementations
 MUST NOT set the L bit in unfragmented messages, but MUST accept
 unfragmented messages with and without the L bit set.

 Some EAP implementations and access networks may limit the number of
 EAP packet exchanges that can be handled. To avoid fragmentation, it
 is RECOMMENDED to keep the sizes of EAP-TLS peer, EAP-TLS server, and
 trust anchor certificates small and the length of the certificate
 chains short. In addition, it is RECOMMENDED to use mechanisms that
 reduce the sizes of Certificate messages. For a detailed discussion
 on reducing message sizes to prevent fragmentation, see
 [I-D.ietf-emu-eaptlscert].

2.2. Identity Verification

 This section updates Section 2.2 of [RFC5216].

 The EAP peer identity provided in the EAP-Response/Identity is not
 authenticated by EAP-TLS. Unauthenticated information SHALL NOT be
 used for accounting purposes or to give authorization. The
 authenticator and the EAP-TLS server MAY examine the identity
 presented in EAP-Response/Identity for purposes such as routing and
 EAP method selection. EAP-TLS servers MAY reject conversations if
 the identity does not match their policy. Note that this also
 applies to resumption, see Sections 2.1.3, 5.6, and 5.7.

 The EAP server identity in the TLS server certificate is typically a
 fully qualified domain name (FQDN). EAP peer implementations SHOULD
 allow users to configuring a unique trust root (CA certificate) and a
 server name to authenticate the server certificate and match the
 subjectAlternativeName (SAN) extension in the server certificate with
 the configured server name. In the absence of a user-configured root
 CA certificate, implementations MAY rely on system-wide root CA
 certificate bundles for authenticating the server certificate. If
 server name matching is not used, then peers may end up trusting
 servers for EAP authentication that are not intended to be EAP
 servers for the network. If name matching is not used with a public
 CA bundle, then effectively any server can obtain a certificate which
 will be trusted for EAP authentication by the Peer.

 The process of configuring a root CA certificate and a server name is
 non-trivial and therefore automated methods of provisioning are
 RECOMMENDED. For example, the eduroam federation [RFC7593] provides
 a Configuration Assistant Tool (CAT) to automate the configuration

Mattsson & Sethi Expires November 5, 2021 [Page 17]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 process. In the absence of a trusted root CA certificate (user
 configured or system-wide), EAP peers MAY implement a trust on first
 use (TOFU) mechanism where the peer trusts and stores the server
 certificate during the first connection attempt. The EAP peer
 ensures that the server presents the same stored certificate on
 subsequent interactions. Use of TOFU mechanism does not allow for
 the server certificate to change without out-of-band validation of
 the certificate and is therefore not suitable for many deployments.

2.3. Key Hierarchy

 This section updates Section 2.3 of [RFC5216].

 TLS 1.3 replaces the TLS pseudorandom function (PRF) used in earlier
 versions of TLS with HKDF and completely changes the Key Schedule.
 The key hierarchies shown in Section 2.3 of [RFC5216] are therefore
 not correct when EAP-TLS is used with TLS version 1.3. For TLS 1.3
 the key schedule is described in Section 7.1 of [RFC8446].

 When EAP-TLS is used with TLS version 1.3 the Key_Material, IV, and
 Method-Id SHALL be derived from the exporter_secret using the TLS
 exporter interface [RFC5705] (for TLS 1.3 this is defined in
 Section 7.5 of [RFC8446]).

 Type-Code = 0x0D
 MSK = TLS-Exporter("EXPORTER_EAP_TLS_MSK",Type-Code,64)
 EMSK = TLS-Exporter("EXPORTER_EAP_TLS_EMSK",Type-Code,64)
 Method-Id = TLS-Exporter("EXPORTER_EAP_TLS_Method-Id",Type-Code,64)
 Session-Id = Type-Code || Method-Id

 Other TLS based EAP methods can use the TLS exporter in a similar
 fashion, see [I-D.ietf-emu-tls-eap-types].

 [RFC5247] deprecates the use of IV. Thus, RECV-IV and SEND-IV are
 not exported in EAP-TLS with TLS 1.3. As noted in [RFC5247], lower
 layers use the MSK in a lower-layer dependent manner. EAP-TLS with
 TLS 1.3 exports the MSK and does not specify how it used by lower
 layers.

 Note that the key derivation MUST use the length values given above.
 While in TLS 1.2 and earlier it was possible to truncate the output
 by requesting less data from the TLS-Exporter function, this practice
 is not possible with TLS 1.3. If an implementation intends to use
 only a part of the output of the TLS-Exporter function, then it MUST
 ask for the full output and then only use the desired part. Failure
 to do so will result in incorrect values being calculated for the
 above keying material.

Mattsson & Sethi Expires November 5, 2021 [Page 18]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 By using the TLS exporter, EAP-TLS can use any TLS 1.3 implementation
 without having to extract the Main Secret, ClientHello.random, and
 ServerHello.random in a non-standard way.

2.4. Parameter Negotiation and Compliance Requirements

 This section updates Section 2.4 of [RFC5216].

 TLS 1.3 cipher suites are defined differently than in earlier
 versions of TLS (see Section B.4 of [RFC8446]), and the cipher suites
 discussed in Section 2.4 of [RFC5216] can therefore not be used when
 EAP-TLS is used with TLS version 1.3.

 When EAP-TLS is used with TLS version 1.3, the EAP-TLS peers and EAP-
 TLS servers MUST comply with the compliance requirements (mandatory-
 to-implement cipher suites, signature algorithms, key exchange
 algorithms, extensions, etc.) for the TLS version used. For TLS 1.3
 the compliance requirements are defined in Section 9 of [RFC8446].
 In EAP-TLS with TLS 1.3, only cipher suites with confidentiality
 SHALL be supported.

 While EAP-TLS does not protect any application data except for the
 Commitment Message, the negotiated cipher suites and algorithms MAY
 be used to secure data as done in other TLS-based EAP methods.

2.5. EAP State Machines

 This is a new section when compared to [RFC5216] and only applies to
 TLS 1.3. [RFC4137] offers a proposed state machine for EAP.

 TLS 1.3 [RFC8446] introduces Post-Handshake messages. These Post-
 Handshake messages use the handshake content type and can be sent
 after the main handshake. Examples of Post-Handshake messages are
 NewSessionTicket, which is used for resumption and KeyUpdate, which
 is not useful and not expected in EAP-TLS. After sending TLS
 Finished, the EAP-TLS server may send any number of Post-Handshake
 messages in separate EAP-Requests.

 To provide a protected success result indication and to decrease the
 uncertainty for the EAP-TLS peer, the following procedure MUST be
 followed:

 When an EAP-TLS server has successfully processed the TLS client
 Finished and sent its last handshake message (Finished or a Post-
 Handshake), it commits to not sending any more handshake messages by
 sending an encrypted TLS record with application data 0x00. The
 encrypted TLS record with application data 0x00 is a protected
 success result indication, as defined in [RFC3748]. After sending an

Mattsson & Sethi Expires November 5, 2021 [Page 19]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 encrypted TLS record with application data 0x00, the EAP-TLS server
 may only send an EAP-Success. The EAP-TLS server MUST NOT send an
 encrypted TLS record with application data 0x00 alert before it has
 successfully processed the client finished and sent its last
 handshake message.

 TLS Error alerts SHOULD be considered a failure result indication, as
 defined in [RFC3748]. Implementations following [RFC4137] sets the
 alternate indication of failure variable altReject after sending or
 receiving an error alert. After sending or receiving a TLS Error
 alert, the EAP-TLS server may only send an EAP-Failure. Protected
 TLS Error alerts are protected failure result indications,
 unprotected TLS Error alerts are not.

 The keying material can be derived after the TLS server Finished has
 been sent or received. Implementations following [RFC4137] can then
 set the eapKeyData and aaaEapKeyData variables.

 The keying material can be made available to lower layers and the
 authenticator after the authenticated success result indication has
 been sent or received. Implementations following [RFC4137] can set
 the eapKeyAvailable and aaaEapKeyAvailable variables.

3. Detailed Description of the EAP-TLS Protocol

 No updates to Section 3 of [RFC5216].

4. IANA considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the EAP-
 TLS 1.3 protocol in accordance with [RFC8126].

 This document requires IANA to add the following labels to the TLS
 Exporter Label Registry defined by [RFC5705]. These labels are used
 in derivation of Key_Material, IV and Method-Id as defined in
 Section 2.3:

Mattsson & Sethi Expires November 5, 2021 [Page 20]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 +----------------------------+---------+-------------+------+
 | Value | DTLS-OK | Recommended | Note |
 +----------------------------+---------+-------------+------+
 | EXPORTER_EAP_TLS_MSK | N | Y | |
 | | | | |
 | EXPORTER_EAP_TLS_EMSK | N | Y | |
 | | | | |
 | EXPORTER_EAP_TLS_Method-Id | N | Y | |
 +----------------------------+---------+-------------+------+

 Table 1: TLS Exporter Label Registry

5. Security Considerations

5.1. Security Claims

 Using EAP-TLS with TLS 1.3 does not change the security claims for
 EAP-TLS as given in Section 5.1 of [RFC5216]. However, it
 strengthens several of the claims as described in the following
 updates to the notes given in Section 5.1 of [RFC5216].

 [1] Mutual authentication: By mandating revocation checking of
 certificates, the authentication in EAP-TLS with TLS 1.3 is stronger
 as authentication with revoked certificates will always fail.

 [2] Confidentiality: The TLS 1.3 handshake offers much better
 confidentiality than earlier versions of TLS. EAP-TLS with TLS 1.3
 mandates use of cipher suites that ensure confidentiality. TLS 1.3
 also encrypts certificates and some of the extensions. When using
 EAP-TLS with TLS 1.3, the use of privacy is mandatory and does not
 cause any additional round-trips.

 [3] Cryptographic strength: TLS 1.3 only defines strong algorithms
 without major weaknesses and EAP-TLS with TLS 1.3 always provides
 forward secrecy, see [RFC8446]. Weak algorithms such as 3DES, CBC
 mode, RC4, SHA-1, MD5, P-192, and RSA-1024 cannot be negotiated.

 [4] Cryptographic Negotiation: TLS 1.3 increases the number of
 cryptographic parameters that are negotiated in the handshake. When
 EAP-TLS is used with TLS 1.3, EAP-TLS inherits the cryptographic
 negotiation of AEAD algorithm, HKDF hash algorithm, key exchange
 groups, and signature algorithm, see Section 4.1.1 of [RFC8446].

5.2. Peer and Server Identities

 No updates to section 5.2 of [RFC5216].

Mattsson & Sethi Expires November 5, 2021 [Page 21]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

5.3. Certificate Validation

 No updates to section 5.3 of [RFC5216].

5.4. Certificate Revocation

 This section updates Section 5.4 of [RFC5216].

 While certificates may have long validity periods, there are a number
 of reasons (e.g., key compromise, CA compromise, privilege withdrawn,
 etc.) why EAP-TLS peer, EAP-TLS server, or sub-CA certificates have
 to be revoked before their expiry date. Revocation of the EAP-TLS
 server’s certificate is complicated by the fact that the EAP-TLS peer
 may not have Internet connectivity until authentication completes.

 When EAP-TLS is used with TLS 1.3, the revocation status of all the
 certificates in the certificate chains MUST be checked (except the
 trust anchor). An implementation may use Certificate Revocation List
 (CRL), Online Certificate Status Protocol (OSCP), or other
 standardized/proprietary methods for revocation checking. Examples
 of proprietary methods are non-standard formats for distribution of
 revocation lists as well as certificates with very short lifetime.

 EAP-TLS servers supporting TLS 1.3 MUST implement Certificate Status
 Requests (OCSP stapling) as specified in [RFC6066] and
 Section 4.4.2.1 of [RFC8446]. It is RECOMMENDED that EAP-TLS peers
 and EAP-TLS servers use OCSP stapling for verifying the status of the
 EAP-TLS server’s certificate chain. When an EAP-TLS peer uses
 Certificate Status Requests to check the revocation status of the
 EAP-TLS server’s certificate chain it MUST treat a CertificateEntry
 (except the trust anchor) without a valid CertificateStatus extension
 as invalid and abort the handshake with an appropriate alert. The
 OCSP status handling in TLS 1.3 is different from earlier versions of
 TLS, see Section 4.4.2.1 of [RFC8446]. In TLS 1.3 the OCSP
 information is carried in the CertificateEntry containing the
 associated certificate instead of a separate CertificateStatus
 message as in [RFC6066]. This enables sending OCSP information for
 all certificates in the certificate chain (except the trust anchor).

 To enable revocation checking in situations where EAP-TLS peers do
 not implement or use OCSP stapling, and where network connectivity is
 not available prior to authentication completion, EAP-TLS peer
 implementations MUST also support checking for certificate revocation
 after authentication completes and network connectivity is available.
 An EAP peer implementation SHOULD NOT trust the network (and any
 services) until it has verified the revocation status of the server
 certificate after receiving network connectivity. An EAP peer MUST
 use a secure transport to verify the revocation status of the server

Mattsson & Sethi Expires November 5, 2021 [Page 22]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 certificate. An EAP peer SHOULD NOT send any other traffic before
 revocation checking for the server certificate is complete.

5.5. Packet Modification Attacks

 This section updates Section 5.5 of [RFC5216].

 As described in [RFC3748] and Section 5.5 of [RFC5216], the only
 information that is integrity and replay protected in EAP-TLS are the
 parts of the TLS Data that TLS protects. All other information in
 the EAP-TLS message exchange including EAP-Request and EAP-Response
 headers, the identity in the identity response, EAP-TLS packet header
 fields, Type, and Flags, EAP-Success, and EAP-Failure can be
 modified, spoofed, or replayed.

 Protected TLS Error alerts are protected failure result indications
 and enables the EAP-TLS peer and EAP-TLS server to determine that the
 failure result was not spoofed by an attacker. Protected failure
 result indications provide integrity and replay protection but MAY be
 unauthenticated. Protected failure results do not significantly
 improve availability as TLS 1.3 treats most malformed data as a fatal
 error.

5.6. Authorization

 This is a new section when compared to [RFC5216]. The guidance in
 this section is relevant for EAP-TLS in general (regardless of the
 underlying TLS version used).

 EAP servers will usually require the EAP peer to provide a valid
 certificate and will fail the connection if one is not provided.
 Some deployments may permit no peer authentication for some or all
 connections. When peer authentication is not used, implementations
 MUST take care to limit network access appropriately for
 unauthenticated peers and implementations MUST use resumption with
 caution to ensure that a resumed session is not granted more
 privilege than was intended for the original session.

 EAP-TLS is typically encapsulated in other protocols, such as PPP
 [RFC1661], RADIUS [RFC2865], Diameter [RFC6733], or PANA [RFC5191].
 The encapsulating protocols can also provide additional, non-EAP
 information to an EAP-TLS server. This information can include, but
 is not limited to, information about the authenticator, information
 about the EAP-TLS peer, or information about the protocol layers
 above or below EAP (MAC addresses, IP addresses, port numbers, WiFi
 SSID, etc.). EAP-TLS servers implementing EAP-TLS inside those
 protocols can make policy decisions and enforce authorization based

Mattsson & Sethi Expires November 5, 2021 [Page 23]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 on a combination of information from the EAP-TLS exchange and non-EAP
 information.

 As noted in Section 2.2, the identity presented in EAP-Response/
 Identity is not authenticated by EAP-TLS and is therefore trivial for
 an attacker to forge, modify, or replay. Authorization and
 accounting MUST be based on authenticated information such as
 information in the certificate or the PSK identity and cached data
 provisioned for resumption as described in Section 5.7. Note that
 the requirements for Network Access Identifiers (NAIs) specified in
 Section 4 of [RFC7542] still apply and MUST be followed.

 EAP-TLS servers MAY reject conversations based on non-EAP information
 provided by the encapsulating protocol, for example, if the MAC
 address of the authenticator does not match the expected policy.

5.7. Resumption

 This is a new section when compared to [RFC5216]. The guidance in
 this section is relevant for EAP-TLS in general (regardless of the
 underlying TLS version used).

 There are a number of security issues related to resumption that are
 not described in [RFC5216]. The problems, guidelines, and
 requirements in this section therefore applies to all version of TLS.

 When resumption occurs, it is based on cached information at the TLS
 layer. To perform resumption in a secure way, the EAP-TLS peer and
 EAP-TLS server need to be able to securely retrieve authorization
 information such as certificate chains from the initial full
 handshake. We use the term "cached data" to describe such
 information. Authorization during resumption MUST be based on such
 cached data. The EAP-TLS peer and EAP-TLS server MAY perform fresh
 revocation checks on the cached certificate data. Any security
 policies for authorization MUST be followed also for resumption. The
 certificates may have been revoked since the initial full handshake
 and the authorizations of the other party may have reduced. If the
 cached revocation data is not sufficiently current, the EAP-TLS peer
 or EAP-TLS server MAY force a full TLS handshake.

 There are two ways to retrieve the cached data from the original full
 handshake. The first method is that the EAP-TLS server and client
 cache the information locally. The cached information is identified
 by an identifier. For TLS versions before 1.3, the identifier can be
 the session ID, for TLS 1.3, the identifier is the PSK identity. The
 second method for retrieving cached information is via [RFC5077] or
 [RFC8446], where the EAP-TLS server avoids storing information
 locally and instead encapsulates the information into a ticket or PSK

Mattsson & Sethi Expires November 5, 2021 [Page 24]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 which is sent to the client for storage. This ticket or PSK is
 encrypted using a key that only the EAP-TLS server knows. Note that
 the client still needs to cache the original handshake information
 locally and will use the session ID or PSK identity to lookup this
 information during resumption. However, the EAP-TLS server is able
 to decrypt the ticket or PSK to obtain the original handshake
 information.

 If the EAP-TLS server or EAP client do not apply any authorization
 policies, they MAY allow resumption where no cached data is
 available. In all other cases, they MUST cache data during the
 initial full handshake to enable resumption. The cached data MUST be
 sufficient to make authorization decisions during resumption. If
 cached data cannot be retrieved in a secure way, resumption MUST NOT
 be done.

 The above requirements also apply if the EAP-TLS server expects some
 system to perform accounting for the session. Since accounting must
 be tied to an authenticated identity, and resumption does not supply
 such an identity, accounting is impossible without access to cached
 data. Therefore systems which expect to perform accounting for the
 session SHOULD cache an identifier which can be used in subsequent
 accounting.

 As suggested in [RFC8446], EAP-TLS peers MUST NOT store resumption
 PSKs or tickets (and associated cached data) for longer than 7 days,
 regardless of the PSK or ticket lifetime. The EAP-TLS peer MAY
 delete them earlier based on local policy. The cached data MAY also
 be removed on the EAP-TLS server or EAP-TLS peer if any certificate
 in the certificate chain has been revoked or has expired. In all
 such cases, an attempt at resumption results in a full TLS handshake
 instead.

 Information from the EAP-TLS exchange (e.g., the identity provided in
 EAP-Response/Identity) as well as non-EAP information (e.g., IP
 addresses) may change between the initial full handshake and
 resumption. This change creates a "time-of-check time-of-use"
 (TOCTOU) security vulnerability. A malicious or compromised user
 could supply one set of data during the initial authentication, and a
 different set of data during resumption, potentially allowing them to
 obtain access that they should not have.

 If any authorization, accounting, or policy decisions were made with
 information that has changed between the initial full handshake and
 resumption, and if change may lead to a different decision, such
 decisions MUST be reevaluated. It is RECOMMENDED that authorization,
 accounting, and policy decisions are reevaluated based on the
 information given in the resumption. EAP-TLS servers MAY reject

Mattsson & Sethi Expires November 5, 2021 [Page 25]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 resumption where the information supplied during resumption does not
 match the information supplied during the original authentication.
 If a safe decision is not possible, EAP-TLS servers SHOULD reject the
 resumption and continue with a full handshake.

 Section 2.2 and 4.2.11 of [RFC8446] provides security considerations
 for TLS 1.3 resumption.

5.8. Privacy Considerations

 This is a new section when compared to [RFC5216].

 TLS 1.3 offers much better privacy than earlier versions of TLS as
 discussed in Section 2.1.8. In this section, we only discuss the
 privacy properties of EAP-TLS with TLS 1.3. For privacy properties
 of TLS 1.3 itself, see [RFC8446].

 EAP-TLS sends the standard TLS 1.3 handshake messages encapsulated in
 EAP packets. Additionally, the EAP-TLS peer sends an identity in the
 first EAP-Response. The other fields in the EAP-TLS Request and the
 EAP-TLS Response packets do not contain any cleartext privacy
 sensitive information.

 Tracking of users by eavesdropping on identity responses or
 certificates is a well-known problem in many EAP methods. When EAP-
 TLS is used with TLS 1.3, all certificates are encrypted, and the
 username part of the identity response is not revealed (e.g., using
 anonymous NAIs). Note that even though all certificates are
 encrypted, the server’s identity is only protected against passive
 attackers while client’s identity is protected against both passive
 and active attackers. As with other EAP methods, even when privacy-
 friendly identifiers or EAP tunneling is used, the domain name (i.e.,
 the realm) in the NAI is still typically visible. How much privacy
 sensitive information the domain name leaks is highly dependent on
 how many other users are using the same domain name in the particular
 access network. If all EAP-TLS peers have the same domain, no
 additional information is leaked. If a domain name is used by a
 small subset of the EAP-TLS peers, it may aid an attacker in tracking
 or identifying the user.

 Without padding, information about the size of the client certificate
 is leaked from the size of the EAP-TLS packets. The EAP-TLS packets
 sizes may therefore leak information that can be used to track or
 identify the user. If all client certificates have the same length,
 no information is leaked. EAP-TLS peers SHOULD use record padding,
 see Section 5.4 of [RFC8446] to reduce information leakage of
 certificate sizes.

Mattsson & Sethi Expires November 5, 2021 [Page 26]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 If anonymous NAIs are not used, the privacy-friendly identifiers need
 to be generated with care. The identities MUST be generated in a
 cryptographically secure way so that that it is computationally
 infeasible for an attacker to differentiate two identities belonging
 to the same user from two identities belonging to different users in
 the same realm. This can be achieved, for instance, by using random
 or pseudo-random usernames such as random byte strings or ciphertexts
 and only using the pseudo-random usernames a single time. Note that
 the privacy-friendly usernames also MUST NOT include substrings that
 can be used to relate the identity to a specific user. Similarly,
 privacy-friendly username MUST NOT be formed by a fixed mapping that
 stays the same across multiple different authentications.

 An EAP-TLS peer with a policy allowing communication with EAP-TLS
 servers supporting only TLS 1.2 without privacy and with a static RSA
 key exchange is vulnerable to disclosure of the EAP-TLS peer
 username. An active attacker can in this case make the EAP-TLS peer
 believe that an EAP-TLS server supporting TLS 1.3 only supports TLS
 1.2 without privacy. The attacker can simply impersonate the EAP-TLS
 server and negotiate TLS 1.2 with static RSA key exchange and send an
 TLS alert message when the EAP-TLS peer tries to use privacy by
 sending an empty certificate message. Since the attacker
 (impersonating the EAP-TLS server) does not provide a proof-of-
 possession of the private key until the Finished message when a
 static RSA key exchange is used, an EAP-TLS peer may inadvertently
 disclose its identity (username) to an attacker. Therefore, it is
 RECOMMENDED for EAP-TLS peers to not use EAP-TLS with TLS 1.2 and
 static RSA based cipher suites without privacy. This implies that an
 EAP-TLS peer SHOULD NOT continue the handshake if a TLS 1.2 EAP-TLS
 server sends an EAP-TLS/Request with a TLS alert message in response
 to an empty certificate message from the peer.

5.9. Pervasive Monitoring

 This is a new section when compared to [RFC5216].

 Pervasive monitoring refers to widespread surveillance of users. In
 the context of EAP-TLS, pervasive monitoring attacks can target EAP-
 TLS peer devices for tracking them (and their users) as and when they
 join a network. By encrypting more information, mandating the use of
 privacy, and always providing forward secrecy, EAP-TLS with TLS 1.3
 offers much better protection against pervasive monitoring. In
 addition to the privacy attacks discussed above, surveillance on a
 large scale may enable tracking of a user over a wide geographical
 area and across different access networks. Using information from
 EAP-TLS together with information gathered from other protocols
 increases the risk of identifying individual users.

Mattsson & Sethi Expires November 5, 2021 [Page 27]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

5.10. Discovered Vulnerabilities

 This is a new section when compared to [RFC5216].

 Over the years, there have been several serious attacks on earlier
 versions of Transport Layer Security (TLS), including attacks on its
 most commonly used ciphers and modes of operation. [RFC7457]
 summarizes the attacks that were known at the time of publishing and
 BCP 195 [RFC7525] provides recommendations for improving the security
 of deployed services that use TLS. However, many of the attacks are
 less serious for EAP-TLS as EAP-TLS only uses the TLS handshake and
 does not protect any application data. EAP-TLS implementations MUST
 mitigate known attacks. EAP-TLS implementations need to monitor and
 follow new EAP and TLS related security guidance and requirements
 such as [RFC8447], [RFC8996], [I-D.ietf-tls-md5-sha1-deprecate].

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
 March 2008, <https://www.rfc-editor.org/info/rfc5216>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

Mattsson & Sethi Expires November 5, 2021 [Page 28]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,
 DOI 10.17487/RFC7542, May 2015,
 <https://www.rfc-editor.org/info/rfc7542>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8996] Moriarty, K. and S. Farrell, "Deprecating TLS 1.0 and TLS
 1.1", BCP 195, RFC 8996, DOI 10.17487/RFC8996, March 2021,
 <https://www.rfc-editor.org/info/rfc8996>.

6.2. Informative references

 [I-D.ietf-emu-eaptlscert]
 Sethi, M., Mattsson, J., and S. Turner, "Handling Large
 Certificates and Long Certificate Chains in TLS-based EAP
 Methods", draft-ietf-emu-eaptlscert-08 (work in progress),
 November 2020.

 [I-D.ietf-emu-tls-eap-types]
 DeKok, A., "TLS-based EAP types and TLS 1.3", draft-ietf-
 emu-tls-eap-types-02 (work in progress), February 2021.

 [I-D.ietf-tls-md5-sha1-deprecate]
 Velvindron, L., Moriarty, K., and A. Ghedini, "Deprecating
 MD5 and SHA-1 signature hashes in TLS 1.2", draft-ietf-
 tls-md5-sha1-deprecate-06 (work in progress), March 2021.

 [I-D.ietf-tls-ticketrequests]
 Pauly, T., Schinazi, D., and C. A. Wood, "TLS Ticket
 Requests", draft-ietf-tls-ticketrequests-07 (work in
 progress), December 2020.

Mattsson & Sethi Expires November 5, 2021 [Page 29]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 [IEEE-802.11]
 Institute of Electrical and Electronics Engineers, "IEEE
 Standard for Information technology--Telecommunications
 and information exchange between systems Local and
 metropolitan area networks--Specific requirements - Part
 11: Wireless LAN Medium Access Control (MAC) and Physical
 Layer (PHY) Specifications", IEEE Std 802.11-2016
 (Revision of IEEE Std 802.11-2012) , December 2016.

 [IEEE-802.1AE]
 Institute of Electrical and Electronics Engineers, "IEEE
 Standard for Local and metropolitan area networks -- Media
 Access Control (MAC) Security", IEEE Standard
 802.1AE-2018 , December 2018.

 [IEEE-802.1X]
 Institute of Electrical and Electronics Engineers, "IEEE
 Standard for Local and metropolitan area networks -- Port-
 Based Network Access Control", IEEE Standard 802.1X-2020 ,
 January 2020.

 [MulteFire]
 MulteFire, "MulteFire Release 1.1 specification", 2019.

 [PEAP] Microsoft Corporation, "[MS-PEAP]: Protected Extensible
 Authentication Protocol (PEAP)", 2018.

 [RFC1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
 STD 51, RFC 1661, DOI 10.17487/RFC1661, July 1994,
 <https://www.rfc-editor.org/info/rfc1661>.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, DOI 10.17487/RFC2246, January 1999,
 <https://www.rfc-editor.org/info/rfc2246>.

 [RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
 Adams, "X.509 Internet Public Key Infrastructure Online
 Certificate Status Protocol - OCSP", RFC 2560,
 DOI 10.17487/RFC2560, June 1999,
 <https://www.rfc-editor.org/info/rfc2560>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

Mattsson & Sethi Expires November 5, 2021 [Page 30]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 DOI 10.17487/RFC3280, April 2002,
 <https://www.rfc-editor.org/info/rfc3280>.

 [RFC4137] Vollbrecht, J., Eronen, P., Petroni, N., and Y. Ohba,
 "State Machines for Extensible Authentication Protocol
 (EAP) Peer and Authenticator", RFC 4137,
 DOI 10.17487/RFC4137, August 2005,
 <https://www.rfc-editor.org/info/rfc4137>.

 [RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282,
 DOI 10.17487/RFC4282, December 2005,
 <https://www.rfc-editor.org/info/rfc4282>.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346,
 DOI 10.17487/RFC4346, April 2006,
 <https://www.rfc-editor.org/info/rfc4346>.

 [RFC4851] Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou, "The
 Flexible Authentication via Secure Tunneling Extensible
 Authentication Protocol Method (EAP-FAST)", RFC 4851,
 DOI 10.17487/RFC4851, May 2007,
 <https://www.rfc-editor.org/info/rfc4851>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/info/rfc5077>.

 [RFC5191] Forsberg, D., Ohba, Y., Ed., Patil, B., Tschofenig, H.,
 and A. Yegin, "Protocol for Carrying Authentication for
 Network Access (PANA)", RFC 5191, DOI 10.17487/RFC5191,
 May 2008, <https://www.rfc-editor.org/info/rfc5191>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, DOI 10.17487/RFC5247, August 2008,
 <https://www.rfc-editor.org/info/rfc5247>.

Mattsson & Sethi Expires November 5, 2021 [Page 31]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

 [RFC5281] Funk, P. and S. Blake-Wilson, "Extensible Authentication
 Protocol Tunneled Transport Layer Security Authenticated
 Protocol Version 0 (EAP-TTLSv0)", RFC 5281,
 DOI 10.17487/RFC5281, August 2008,
 <https://www.rfc-editor.org/info/rfc5281>.

 [RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <https://www.rfc-editor.org/info/rfc6733>.

 [RFC7170] Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
 "Tunnel Extensible Authentication Protocol (TEAP) Version
 1", RFC 7170, DOI 10.17487/RFC7170, May 2014,
 <https://www.rfc-editor.org/info/rfc7170>.

 [RFC7406] Schulzrinne, H., McCann, S., Bajko, G., Tschofenig, H.,
 and D. Kroeselberg, "Extensions to the Emergency Services
 Architecture for Dealing With Unauthenticated and
 Unauthorized Devices", RFC 7406, DOI 10.17487/RFC7406,
 December 2014, <https://www.rfc-editor.org/info/rfc7406>.

 [RFC7457] Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
 Known Attacks on Transport Layer Security (TLS) and
 Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC7457,
 February 2015, <https://www.rfc-editor.org/info/rfc7457>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7593] Wierenga, K., Winter, S., and T. Wolniewicz, "The eduroam
 Architecture for Network Roaming", RFC 7593,
 DOI 10.17487/RFC7593, September 2015,
 <https://www.rfc-editor.org/info/rfc7593>.

 [RFC8447] Salowey, J. and S. Turner, "IANA Registry Updates for TLS
 and DTLS", RFC 8447, DOI 10.17487/RFC8447, August 2018,
 <https://www.rfc-editor.org/info/rfc8447>.

 [TS.33.501]
 3GPP, "Security architecture and procedures for 5G
 System", 3GPP TS 33.501 17.0.0, December 2020.

Mattsson & Sethi Expires November 5, 2021 [Page 32]

Internet-Draft EAP-TLS with TLS 1.3 May 2021

Appendix A. Updated references

 All the following references in [RFC5216] are updated as specified
 below when EAP-TLS is used with TLS 1.3.

 All references to [RFC2560] are updated with [RFC6960].

 All references to [RFC3280] are updated with [RFC5280].

 All references to [RFC4282] are updated with [RFC7542].

Acknowledgments

 The authors want to thank Bernard Aboba, Jari Arkko, Terry Burton,
 Alan DeKok, Ari Keraenen, Benjamin Kaduk, Jouni Malinen, Oleg Pekar,
 Eric Rescorla, Jim Schaad, Joseph Salowey, Martin Thomson, Vesa
 Torvinen, and Hannes Tschofenig for comments and suggestions on the
 draft.

Contributors

 Alan DeKok, FreeRADIUS

Authors’ Addresses

 John Preuss Mattsson
 Ericsson
 Stockholm 164 40
 Sweden

 Email: john.mattsson@ericsson.com

 Mohit Sethi
 Ericsson
 Jorvas 02420
 Finland

 Email: mohit@piuha.net

Mattsson & Sethi Expires November 5, 2021 [Page 33]

Network Working Group DeKok, Alan
INTERNET-DRAFT FreeRADIUS
Updates: 5247, 5281, 7170 21 February 2021
Category: Standards Track
Expires: August 21, 2021

 TLS-based EAP types and TLS 1.3
 draft-ietf-emu-tls-eap-types-02.txt

Abstract

 EAP-TLS [RFC5216] is being updated for TLS 1.3 in [EAPTLS]. Many
 other EAP [RFC3748] and [RFC5247] types also depend on TLS, such as
 FAST [RFC4851], TTLS [RFC5281], TEAP [RFC7170], and possibly many
 vendor specific EAP methods. This document updates those methods in
 order to use the new key derivation methods available in TLS 1.3.
 Additional changes necessitated by TLS 1.3 are also discussed.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 29, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

DeKok, Alan Proposed Standard [Page 1]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info/) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

DeKok, Alan Proposed Standard [Page 2]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

Table of Contents

1. Introduction ... 4
 1.1. Requirements Language 4
2. Using TLS-based EAP methods with TLS 1.3 5
 2.1. Key Derivation 5
 2.2. TEAP .. 6
 2.3. FAST .. 7
 2.4. TTLS .. 8
 2.5. PEAP .. 8
3. Application Data ... 8
4. Resumption ... 9
5. Security Considerations 10
 5.1. Protected Success and Failure indicators 10
6. IANA Considerations 11
7. References ... 12
 7.1. Normative References 12
 7.2. Informative References 13

DeKok, Alan Proposed Standard [Page 3]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

1. Introduction

 EAP-TLS is being updated for TLS 1.3 in [EAPTLS]. Many other EAP
 types also depend on TLS, such as FAST [RFC4851], TTLS [RFC5281],
 TEAP [RFC7170], and possibly many vendor specific EAP methods. All
 of these methods use key derivation functions which rely on the
 information which is no longer available in TLS 1.3. As such, all of
 those methods are incompatible with TLS 1.3.

 We wish to enable the use of TLS 1.3 in the wider Internet community.
 As such, it is necessary to update the above EAP types. These
 changes involve defining new key derivation functions. We also
 discuss implementation issues in order to highlight differences
 between TLS 1.3 and earlier versions of TLS.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

DeKok, Alan Proposed Standard [Page 4]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

2. Using TLS-based EAP methods with TLS 1.3

 In general, all of the requirements of [EAPTLS] apply to other EAP
 methods that wish to use TLS 1.3. Unless otherwise discusses herein,
 implementations of EAP methods that wish to use TLS 1.3 MUST follow
 the guidelines in [EAPTLS].

 There remain some differences between EAP-TLS and other TLS-based EAP
 methods which necessitates this document. The main difference is
 that [EAPTLS] uses the EAP-TLS type ID (0x0D) in a number of
 calculations, whereas other method types will use their own type ID
 instead of the EAP-TLS type ID. This topic is discussed further
 below in Section 2.

 An additional difference is that the [EAPTLS] Section 2.5 requires a
 Commitment Message to be sent once the EAP-TLS handshake has
 completed. Other TLS-based EAP methods also use the Commitment
 Message, but only during resumption. When the other TLS-based EAP
 methods send application data inside of the TLS tunnel, the
 Commitment Message is not used. This topic is explained in more
 detail below, in Section 3.

 Finally, the document includes clarifications on how various TLS-
 based parameters are calculated when using TLS 1.3. These parameters
 are different for each EAP method, so they are discussed separately.

2.1. Key Derivation

 The key derivation for TLS-based EAP methods depends on the value of
 the Type-Code as defined by [IANA]. The most important definition is
 of the Type-Code:

 Type-Code = EAP Method type

 The Type-Code is defined to be 1 octet for values smaller than 255.
 Where expanded EAP Type Codes are used, the Type-Code is defined to
 be the Expanded Type Code (including the Type, Vendor-Id (in network
 byte order) and Vendor-Type fields (in network byte order) defined in
 [RFC3748] Section 5.7).

 Type-Code = 0xFE || Vendor-Id || Vendor-Type

 Unless otherwise discussed below, the key derivation functions for
 all TLS-based EAP types are defined as follows:

 Key_Material = TLS-Exporter("EXPORTER_EAP_TLS_Key_Material",
 Type-Code, 128)
 IV = TLS-Exporter("EXPORTER_EAP_TLS_IV", Type-Code, 64)

DeKok, Alan Proposed Standard [Page 5]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

 Method-Id = TLS-Exporter("EXPORTER_EAP_TLS_Method-Id",
 Type-Code, 64)
 Session-Id = Type-Code || Method-Id
 MSK = Key_Material(0, 63)
 EMSK = Key_Material(64, 127)
 Enc-RECV-Key = MSK(0, 31)
 Enc-SEND-Key = MSK(32, 63)
 RECV-IV = IV(0, 31)
 SEND-IV = IV(32, 63)

 We note that these definitions re-use the EAP-TLS exporter labels,
 and change the derivation only by adding a dependency on Type-Code.
 The reason for this change is simplicity. There does not appear to
 be compelling reasons to make the labels method-specific, when they
 can just include the Type-Code in the key derivation.

 These definitions apply in their entirety to TTLS [RFC5281] and PEAP
 as defined in [PEAP] and [MSPEAP]. Some definitions apply to FAST
 and TEAP, with exceptions as noted below.

 It is RECOMMENDED that vendor-defined TLS-based EAP methods use the
 above definitions for TLS 1.3. There is insufficient reason to use
 different definitions.

2.2. TEAP

 [RFC7170] Section 5.2 gives a definition for the Inner Method Session
 Key (IMSK), which depends on the TLS-PRF. We update that definition
 for TLS 1.3 as:

 IMSK = TLS-Exporter("TEAPbindkey@ietf.org", EMSK, 32)

 For MSK and EMSK, TEAP [RFC7170] uses an inner tunnel EMSK to
 calculate the outer EMSK. As such, those key derivations cannot use
 the above derivation.

 The other key derivations for TEAP are given here. All derivations
 not given here are the same as given above in the previous section.
 These derivations are also used for FAST, but using the FAST Type-
 Code.

 session_key_seed = TLS-Exporter("EXPORTER: session key seed",
 Type-Code, 40)

 S-IMCK[0] = session_key_seed
 For j = 1 to n-1 do
 IMCK[j] = TLS-Exporter("EXPORTER: Inner Methods Compound
 Keys", S-IMCK[j-1] | IMSK[j], 60)

DeKok, Alan Proposed Standard [Page 6]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

 S-IMCK[j] = first 40 octets of IMCK[j]
 CMK[j] = last 20 octets of IMCK[j]

 Where | denotes concatenation. MSK and EMSK are then derived from
 the above definitions, as:

 MSK = TLS-Exporter("EXPORTER: Session Key Generating Function",
 S-IMCK[j], 64)

 EMSK = TLS-Exporter("EXPORTER: Extended Session Key Generating
 Function", S-IMCK[j], 64)

 The TEAP Compound MAC defined in [RFC7170] Section 5.3 is updated to
 use the definition of CMK[j] given above, which then leads to the
 following definition

 CMK = CMK[j]

 Compound-MAC = MAC(CMK, BUFFER)

 where j is the number of the last successfully executed inner EAP
 method. For TLS 1.3, the hash function used is the same as the
 ciphersuite hash function negotiated for HKDF in the key schedule, as
 per section 7.1 of RFC 8446. The definition of BUFFER is unchanged
 from [RFC7170] Section 5.3

2.3. FAST

 For FAST, the session_key_seed is also used as the key_block, as
 defined in [RFC4851] Section 5.1.

 The definition of S-IMCK[n], MSK, and EMSK are the same as given
 above for TEAP. We reiterate that the EAP-FAST Type-Code must be
 used when deriving the session_key_seed, and not the TEAP Type-Code.

 Unlike [RFC4851] Section 5.2, the definition of IMCK[j] places the
 reference to S-IMCK after the textual label, and the concatenates the
 IMSK instead of MSK.

 EAP-FAST previously used a PAC, which is a type of pre-shared key
 (PSK). Such uses are deprecated in TLS 1.3. As such, PAC
 provisioning is no longer part of EAP-FAST when TLS 1.3 is used.

 The T-PRF given in [RFC4851] Section 5.5 is not used for TLS 1.3.

DeKok, Alan Proposed Standard [Page 7]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

2.4. TTLS

 [RFC5281] Section 11.1 defines an implicit challenge when the inner
 methods of CHAP [RFC1994], MS-CHAP [RFC2433], or MS-CHAPv2 [RFC2759]
 are used. The derivation for TLS 1.3 is instead given as

 EAP-TTLS_challenge = TLS-Exporter("ttls challenge",, n)

 There no "context_value" ([RFC8446] Section 7.5) passed to the TLS-
 Exporter function. The value "n" given here is the length of the
 challenge required, which varies according to the challenge.

 Note that unlike TLS 1.2 and earlier, the calculation of TLS-Exporter
 depends on the length passed to it. Implementations therefore MUST
 pass the correct length, instead of passing a large length and
 truncating the output. Any truncated output will be different from
 the output calculated using the correct length.

2.5. PEAP

 When PEAP uses crypto binding, it uses a different key calculation
 defined in [PEAP-MPPE] which consumes inner method keying material.
 The pseudo-random function (PRF) used here is not taken from the TLS
 exporter, but is instead calculated via a different method which is
 given in [PEAP-PRF]. That derivation remains unchanged in this
 specification.

 However, the key calculation uses a PEAP Tunnel Key [PEAP-TK] which
 is defined as:

 ... the TK is the first 60 octets of the Key_Material, as
 specified in [RFC5216]: TLS-PRF-128 (master secret, "client EAP
 encryption", client.random || server.random).

 We note that this text does not define Key_Material. Instead, it
 defines TK as the first octets of Key_Material, and gives a
 definition of Key_Material which is appropriate for TLS versions
 before TLS 1.3.

 For TLS 1.3, the TK should instead be derived from the Key_Material
 defined above in Section 2.1.

3. Application Data

 Unlike previous TLS versions, TLS 1.3 can continue negotiation after
 the TLS session has been initialized. Some implementations use the
 TLS "Finished" state as a signal that application data is now
 available, and an "inner tunnel" session can now be negotiated. As

DeKok, Alan Proposed Standard [Page 8]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

 noted in [RFC8446], TLS 1.3 may include one or more
 "NewSessionTicket" messages after the "Finished" state. This change
 can cause many implementations to fail.

 In order to correct this failure, if the underlying TLS connection is
 still performing negotiations, then implementations MUST NOT send, or
 expect to receive application data in the TLS session.
 Implementations MUST delay processing of application data until such
 time as the TLS negotiation has finished. If the TLS negotiation is
 successful, then the application data can be examined. If the TLS
 negotiation is unsuccessful, then the application data is untrusted,
 and therefore MUST be discarded without being examined.

 [EAPTLS] Section 2.5 requires a Commitment message which indicates
 that TLS negotiation has finished. Methods which use "inner tunnel"
 methods MUST instead begin their "inner tunnel" negotiation by
 sending type-specific application data.

4. Resumption

 [EAPTLS] Section 2.1.3 defines the process for resumption. This
 process is the same for all TLS-based EAP types. The only practical
 difference is that the type code is different.

 All TLS-based EAP methods support resumption. All EAP servers and
 peers MUST support resumption. We note that EAP servers and peers
 can still choose to not resume any particular session. For example,
 EAP servers may forbid resumption for administrative, or other policy
 reasons.

 It is RECOMMENDED that EAP servers and peers enable resumption, and
 use it where possible. The use of resumption decreases the number of
 round trips used for authentication. This decrease leads to faster
 authentications, and less load on the EAP server.

 EAP servers peers MUST NOT resume sessions across different EAP
 types, and EAP servers MUST reject resumptions in which the EAP Type
 code is different from the original authentication.

 As the packet flows for resumption are essentially identical across
 all TLS-based EAP types, it is technically possible to authenticate
 using EAP-TLS (EAP Type code 13), and then perform resumption using
 another EAP type, just as EAP-TTLS (EAP Type code 21). However,
 there is no practical benefit to doing so. It is also not clear what
 this behavior would mean, or what (if any) security issues there may
 be with it. As a result, this behavior is forbidden.

DeKok, Alan Proposed Standard [Page 9]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

5. Security Considerations

 [EAPTLS] Section 5 is included here by reference.

 Updating the above EAP methods to use TLS 1.3 is of high importance
 for the Internet Community. Using the most recent security protocols
 can significantly improve security and privace of a network.

 In some cases, client certificates are not used for TLS-based EAP
 methods. In those cases, the user is authenticated only after
 successful completion of the inner tunnel authentication. However,
 the TLS protocol may send one or more NewSessionTicket after
 receiving the TLS Finished message from the client, and therefore
 before the user is authenticated.

 This separation of data allows for a "time of use, time of check"
 security issue. Malicious clients can begin a session and receive
 the NewSessionTicket. Then prior to authentication, the malicious
 client can abort the authentication session. The malicious client
 can then use the obtained NewSessionTicket to "resume" the previous
 session.

 As a result, EAP servers MUST NOT permit sessions to be resumed until
 after authentication has successfully completed. This requirement
 may be met in a number of ways. For example, by not caching the
 session ticket until after authentication has completed, or by
 marking up the cached session ticket with a flag stating whether or
 not authentication has completed.

 For PEAP, some derivation use HMAC-SHA1 [PEAP-MPPE]. There are no
 known security issues with HMAC-SHA1. In the interests of
 interoperability and minimal changes, we do not change that
 definition here.

5.1. Protected Success and Failure indicators

 [EAPTLS] provides for protected success and failure indicators as
 discussed in Section 4.1.1 of [RFC4137]. These indicators are
 provided for both full authentication, and for resumption.

 Other TLS-based EAP methods provide these indicators only for
 resumption.

 For full authenticaton, the other TLS-based EAP methods do not
 provide for protected success and failure indicators as part of the
 outer TLS exchange. That is, the Commitment Message is not used, and
 there is no TLS-layer alert sent when the inner authentication fails.
 Instead, there is simple either an EAP-Success or EAP-Failure sent.

DeKok, Alan Proposed Standard [Page 10]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

 This behavior is the same as for previous TLS versions, and therefore
 introduces no new security issues.

 We note that most TLS-based EAP methods provide for success and
 failure indicators as part of the authentication exchange performed
 inside of the TLS tunnel. These indicators are therefore protected,
 as they cannot be modified or forged.

 When the inner authentication protocol indicates that authentication
 has failed, then implementations MUST fail authentication for the
 entire session. There MAY be additional protocol exchanges in order
 to exchange more detailed failure indicates, but the final result
 MUST be a failed authentication.

 Similarly, when the inner authentication protocol indicates that
 authentication has succeeed, then implementations SHOULD cause
 authentication to succeed for the entire session. There MAY be
 additional protocol exchanges in order which could cause other
 failures, so success is not required here.

 In both of these cases, the EAP server MUST send an EAP-Failure or
 EAP-Success message, as indicated by Section 2 item 4 of [RFC3748].
 Even though both parties have already determined the final
 authentication status, the full EAP state machine must still be
 followed.

6. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the TLS-
 based EAP methods for TLS 1.3 protocol in accordance with [RFC8126].

 This memo requires IANA to add the following labels to the TLS
 Exporter Label Registry defined by [RFC5705]. These labels are used
 in derivation of Key_Material, IV and Method-Id as defined above in
 Section 2.

 The labels above need to be added to the "TLS Exporter Labels"
 registry.

 * EXPORTER: session key seed * EXPORTER: Inner Methods Compound Keys
 * EXPORTER: Session Key Generating Function * EXPORTER: Extended
 Session Key Generating Function * TEAPbindkey@ietf.org

DeKok, Alan Proposed Standard [Page 11]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

7. References

7.1. Normative References

[RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March, 1997, <http://www.rfc-
 editor.org/info/rfc2119>.

[RFC3748]
 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)", RFC 3748,
 June 2004.

[RFC5216]
 Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS Authentication
 Protocol", RFC 5216, March 2008

[RFC5247]
 Aboba, B., Simon, D., and P. Eronen, "Extensible Authentication
 Protocol (EAP) Key Management Framework", RFC 5247, August 2008,

[RFC5705]
 Rescorla, E., "Keying Material Exporters for Transport Layer
 Security (TLS)", RFC 5705, March 2010

[RFC7170]
 Zhou, H., et al., "Tunnel Extensible Authentication Protocol (TEAP)
 Version 1", RFC 7170, May 2014.

[RFC8126]
 Cotton, M., et al, "Guidelines for Writing an IANA Considerations
 Section in RFCs", RC 8126, June 2017.

[RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
 Words", RFC 8174, May 2017, <http://www.rfc-
 editor.org/info/rfc8174>.

[RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol Version
 1.3", RFC 8446, August 2018.

[EAPTLS]
 Mattsson, J., and Sethi, M., "Using EAP-TLS with TLS 1.3", draft-
 ietf-emu-eap-tls13-14, February, 2021.

DeKok, Alan Proposed Standard [Page 12]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

[IANA]
 https://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml#eap-
 numbers-4

7.2. Informative References

[MSPEAP]
 https://msdn.microsoft.com/en-us/library/cc238354.aspx

[PEAP]
 Palekar, A. et al, "Protected EAP Protocol (PEAP)", draft-
 josefsson-pppext-eap-tls-eap-06.txt, March 2003.

[PEAP-MPPE]
 https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-
 PEAP/e75b0385-915a-4fc3-a549-fd3d06b995b0

[PEAP-PRF]
 https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-
 PEAP/0de54161-0bd3-424a-9b1a-854b4040a6df

[PEAP-TK]
 https://docs.microsoft.com/en-us/openspecs/windows_protocols/MS-
 PEAP/41288c09-3d7d-482f-a57f-e83691d4d246

[RFC1994]
 Simpson, W., "PPP Challenge Handshake Authentication Protocol
 (CHAP)", RFC 1994, August 1996.

[RFC2433]
 Zorn, G. and Cobb, S., "Microsoft PPP CHAP Extensions", RFC 2433,
 October 1998.

[RFC2759]
 Zorn, G., "Microsoft PPP CHAP Extensions, Version 2", RFC 2759,
 January 2000.

[RFC4137]
 Vollbrecht, J., et al, "State Machines for Extensible
 Authentication Protocol (EAP) Peer and Authenticator ", RFC 4137,
 August 2005.

[RFC4851]
 Cam-Winget, N., et al, "The Flexible Authentication via Secure
 Tunneling Extensible Authentication Protocol Method (EAP-FAST)",
 RFC 4851, May 2007.

DeKok, Alan Proposed Standard [Page 13]

INTERNET-DRAFT TLS-based EAP types and TLS 1.3 21 February 2021

[RFC5281]
 Funk, P., and Blake-Wilson, S., "Extensible Authentication Protocol
 Tunneled Transport Layer Security Authenticated Protocol Version 0
 (EAP-TTLSv0)", RFC 5281, August 2008.

Acknowledgments

 Thanks to Jorge Vergara for a detailed review of the requirements for
 various EAP types, and for assistance with interoperability testing.

 Authors’ Addresses

 Alan DeKok
 The FreeRADIUS Server Project

 Email: aland@freeradius.org

DeKok, Alan Proposed Standard [Page 14]

	draft-arkko-emu-rfc3748bis-00
	draft-ietf-emu-eap-tls13-15
	draft-ietf-emu-tls-eap-types-02

