Abstract

This document specifies a data model for synchronizing task data with a server using JMAP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 August 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3

Baum & Happel Expires 2 August 2021 [Page 1]
1. Introduction

JMAP ([RFC8620] - JSON Meta Application Protocol) is a generic protocol for synchronizing data, such as mail, calendars or contacts, between a client and a server. It is optimized for mobile and web environments, and aims to provide a consistent interface to different data types.

JMAP for Calendars ([I-D.ietf-jmap-calendars]) defines a data model for synchronizing calendar data between a client and a server using JMAP. The data model is designed to allow a server to provide consistent access to the same data via CalDAV [RFC4791] as well as JMAP.

While CalDAV defines access to tasks, JMAP for Calendars does not. This specification fills this gap and defines a data model for synchronizing task data between a client and a server using JMAP. It is built upon JMAP for Calendars and reuses most of its definitions. For better readability this document only outlines differences between this specification and JMAP for Calendars. If not stated otherwise, the same specifics that apply to Calendar, CalendarEvent and CalendarEventNotification objects as defined in the aforementioned specification also apply to similar data types introduced in this specification.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Type signatures, examples, and property descriptions in this document follow the conventions established in Section 1.1 of [RFC8620]. Data types defined in the core specification are also used in this document.

1.2. Terminology

The same terminology is used in this document as in the core JMAP specification, see [RFC8620], Section 1.6.

The terms ParticipantIdentity, TaskList, Task and TaskNotification are used to refer to the data types defined in this document and instances of those data types.
1.3. Data Model Overview

Similar to JMAP for Calendar, an Account (see [RFC8620], Section 1.6.2) contains zero or more TaskList objects, which is a named collection of Tasks belonging to a Principal (see [I-D.jenkins-jmap-sharing] Section XXX). Task lists can also provide defaults, such as alerts and a color to apply to tasks in the calendar. Clients commonly let users toggle visibility of tasks belonging to a particular task list on/off. Servers may allow a task to belong to multiple TaskLists within an account.

A Task is a representation of a single task or recurring series of Tasks in JSTask [I-D.ietf-calext-jscalendr] format. Recurrence rules and alerts as defined in JMAP for Calendars (see [I-D.ietf-jmap-calendars] Section XXX) apply.

Just like the CalendarEventNotification objects (see [I-D.ietf-jmap-calendars] Section XXX), TaskNotification objects keep track of the history of changes made to a task by other users. Similarly, the ShareNotification type (see [I-D.jenkins-jmap-sharing] Section XXX) notifies the user when their access to another user’s calendar is granted or revoked.

1.4. Addition to the Capabilities Object

The capabilities object is returned as part of the JMAP Session object; see [RFC8620], Section 2. This document defines one additional capability URI.

1.4.1. urn:ietf:params:jmap:tasks

This represents support for the TaskList, Task and TaskNotification data types and associated API methods. The value of this property in the JMAP Session capabilities property is an empty object.

The value of this property in an account’s accountCapabilities property is an object that MUST contain the following information on server capabilities and permissions for that account:

* *shareesActAs*: "String" This MUST be one of:
 - "self" - sharees act as themselves when using tasks in this account.
 - "secretary" - sharees act as the principal to which this account belongs.
* **maxTaskListsPerTask**: "UnsignedInt|null" The maximum number of TaskLists (see Section XXX) that can be assigned to a single Task object (see Section XXX). This MUST be an integer >= 1, or null for no limit (or rather, the limit is always the number of TaskLists in the account).

* **minDateTime**: "LocalDate" The earliest date-time the server is willing to accept for any date stored in a Task.

* **maxDateTime**: "LocalDate" The latest date-time the server is willing to accept for any date stored in a Task.

* **maxExpandedQueryDuration**: "Duration" The maximum duration the user may query over when asking the server to expand recurrences.

* **maxAssigneesPerTask**: "Number|null" The maximum number of assignees a single task may have, or null for no limit.

* **mayCreateTaskList**: "Boolean" If true, the user may create a task list in this account.

2. Principals

For systems that also support JMAP Sharing [RFC XXX], the tasks capability is used to indicate that this principal may be used with tasks.

2.1. Principal Capability urn:ietf:params:jmap:tasks

A "urn:ietf:params:jmap:tasks" property is added to the Principal "capabilities" object, the value of which is an object with the following properties:

* **accountId**: "Id|null" Id of Account with the "urn:ietf:params:jmap:tasks" capability that contains the task data for this principal, or null if none (e.g. the Principal is a group just used for permissions management), or the user does not have access to any data in the account.

* **account**: "Account|null" The JMAP Account object corresponding to the accountId, null if none.

* **sendTo**: "String[String]|null" If this principal may be added as a participant to an event, this is the map of methods for adding it, in the same format as Participant#sendTo in JSTask (see [I-D.ietf-calext-jscalarendar], Section 4.4.5).
3. Assignee Identities

An AssigneeIdentity stores information about a URI that represents the user within that account in an event's assignees. It has the following properties:

* **id**: "Id" (immutable; server-set) The id of the AssigneeIdentity.
* **name**: "String" (default: ") The display name of the assignee to use when adding this assignee to a task, e.g. "Jane Bloggs".
* **sendTo**: "String[String]" Represents methods by which the participant may receive invitations and updates to an event.

The keys in the property value are the available methods and MUST only contain ASCII alphanumeric characters (A-Za-z0-9). The value is a URI for the method specified in the key.

An assignee in a task corresponds to an AssigneeIdentity if any of the method/uri pairs in the sendTo property of the participant are identical to a method/uri pair in the sendTo property of the identity.

The following JMAP methods are supported.

3.1. AssigneeIdentity/get

This is a standard "/get" method as described in [RFC8620], Section 5.1. The _ids_ argument may be "null" to fetch all at once.

3.2. AssigneeIdentity/changes

This is a standard "/changes" method as described in [RFC8620], Section 5.2.

3.3. AssigneeIdentity/set

This is a standard "/set" method as described in [RFC8620], Section 5.3. The server MAY restrict the uri values the user may claim, for example only allowing "mailto:" URIs with email addresses that belong to the user. A standard "forbidden" error is returned to reject non-permissible changes.

4. TaskLists

A TaskList is a named collection of tasks. All tasks are associated with at least one TaskList.
A *TaskList* object has the following properties:

* *id*: "Id" (immutable; server-set) The id of the task list.
* *role*: "String|null" (default: null) Denotes the task list has a special purpose. This MUST be one of the following:
 - "inbox": This is the principal’s default task list;
 - "trash": This task list holds messages the user has discarded;
* *name*: "String" The user-visible name of the task list. This may be any UTF-8 string of at least 1 character in length and maximum 255 octets in size.
* *description*: "String|null" (default: null) An optional longer-form description of the task list, to provide context in shared environments where users need more than just the name.
* *color*: "String|null" (default: null) A color to be used when displaying events associated with the task list.

If not null, the value MUST be a case-insensitive color name taken from the set of names defined in Section 4.3 of CSS Color Module Level 3 COLORS (https://www.w3.org/TR/css-color-3/), or an RGB value in hexadecimal notation, as defined in Section 4.2.1 of CSS Color Module Level 3.

The color SHOULD have sufficient contrast to be used as text on a white background.

* *sortOrder*: "UnsignedInt" (default: 0) Defines the sort order of task lists when presented in the client’s UI, so it is consistent between devices. The number MUST be an integer in the range 0 <= sortOrder < 2^(31.)

A task list with a lower order should be displayed before a list with a higher order in any list of task lists in the client’s UI. Task lists with equal order SHOULD be sorted in alphabetical order by name. The sorting should take into account locale-specific character order convention.

* *isSubscribed*: "Boolean" Has the user indicated they wish to see this task list in their client? This SHOULD default to false for task lists in shared accounts the user has access to and true for any new task list created by the user themself.
If false, the task list should only be displayed when the user explicitly requests it or to offer it for the user to subscribe to.

* isVisible*: "Boolean" (default: true) Should the task list’s events be displayed to the user at the moment? Clients MUST ignore this property if isSubscribed is false. If an event is in multiple task lists, it should be displayed if isVisible is true for any of those task lists.

* defaultAlertsWithTime*: "Id[Alert]|null" (default: null) A map of alert ids to Alert objects (see [I-D.ietf-calext-jscalender], Section 4.5.2) to apply for events where "showWithoutTime" is false and "useDefaultAlerts" is true. Ids MUST be unique across all default alerts in the account, including those in other task lists; a UUID is recommended.

* defaultAlertsWithoutTime*: "Id[Alert]|null" (default: null) A map of alert ids to Alert objects (see [I-D.ietf-calext-jscalender], Section 4.5.2) to apply for events where "showWithoutTime" is true and "useDefaultAlerts" is true. Ids MUST be unique across all default alerts in the account, including those in other task lists; a UUID is recommended.

* timeZone*: "String|null" (default: null) The time zone to use for events without a time zone when the server needs to resolve them into absolute time, e.g., for alerts or availability calculation. The value MUST be a time zone id from the IANA Time Zone Database TZDB (https://www.iana.org/time-zones). If "null", the timeZone of the account’s associated Principal will be used. Clients SHOULD use this as the default for new events in this task list if set.

* shareWith*: "Id[CalendarRights]|null" (default: null) A map of Principal id to rights for principals this calendar is shared with. The principal to which this task list belongs MUST NOT be in this set. This is null if the user requesting the object does not have the mayAdmin right, or if the task list is not shared with anyone. May be modified only if the user has the mayAdmin right. The account id for the principals may be found in the "urn:ietf:params:jmap:principals:owner" capability of the Account to which the calendar belongs.

The user is an *owner* for a task if the Task object has an "assignee" property, and one of the Participant objects both:

1. Has the "chair" role.
2. Corresponds to one of the user’s AssigneeIdentity objects in the account.

A task has no owner if its assignee property is null or omitted.

TODO currently disregarding "myRights"

4.1. TaskList/get

This is a standard "/get" method as described in [RFC8620], Section 5.1. The _ids_ argument may be "null" to fetch all at once.

TODO add part about rights properties.

4.2. TaskList/changes

This is a standard "/changes" method as described in [RFC8620], Section 5.2.

4.3. TaskList/set

This is the "Calendar/set" method as described in [I-D.ietf-calext-jscalendar], Section XXX.

TODO copy+paste from "Calendar/set" and replace "onDestroyRemoveEvents" by "onDestroyRemoveTasks" (and "calendarHasEvent").

5. Tasks

A *Task* object contains information about a task, or recurring series of tasks. It is a JSTask object, as defined in [I-D.ietf-calext-jscalendar], with the following additional properties:

* *id*: "Id" The id of the Task. This property is immutable. The id uniquely identifies a JSTask with a particular "uid" and "recurrenceId" within a particular account.

* taskListIds*: "Id[Boolean]" The set of TaskList ids this task belongs to. An task MUST belong to one or more TaskLists at all times (until it is destroyed). The set is represented as an object, with each key being a _TaskList id_. The value for each key in the object MUST be "true".
* `isDraft`: "Boolean" If true, this task is to be considered a draft. The server will not send any push notifications for alerts. This may only be set to true upon creation. Once set to false, the value cannot be updated to true. This property MUST NOT appear in "recurrenceOverrides".

* `utcStart`: "UTCDate" For simple clients that do not or cannot implement time zone support. Clients should only use this if also asking the server to expand recurrences, as you cannot accurately expand a recurrence without the original time zone.

 This property is calculated at fetch time by the server. Time zones are political and they can and do change at any time. Fetching exactly the same property again may return a different results if the time zone data has been updated on the server. Time zone data changes are not considered "updates" to the task.

 If set, server will convert to the task's current time zone using its current time zone data and store the local time.

 This is not included by default and must be requested explicitly.

 Floating tasks (tasks without a time zone) will be interpreted as per the time zone given as a Task/get argument.

 Note that it is not possible to accurately calculate the expansion of recurrence rules or recurrence overrides with the utcStart property rather than the local start time. Even simple recurrences such as "repeat weekly" may cross a daylight-savings boundary and end up at a different UTC time. Clients that wish to use "utcStart" are RECOMMENDED to request the server expand recurrences (see Section XXX).

* `utcEnd`: "UTCDate" The server calculates the end time in UTC from the start/timeZone/duration properties of the task. This is not included by default and must be requested explicitly. Like utcStart, this is calculated at fetch time if requested and may change due to time zone data changes. Floating tasks will be interpreted as per the time zone given as a Task/get argument.

5.1. Additional JSCalendar properties

This document defines four new JSCalendar properties.

5.1.1. mayInviteSelf

Type: "Boolean" (default: false)
If "true", any user that has access to the event may add themselves to it as a participant with the "attendee" role. This property MUST NOT be altered in the recurrenceOverrides; it may only be set on the master object.

5.1.2. mayInviteOthers

Type: "Boolean" (default: false)

If "true", any current participant with the "attendee" role may add new participants with the "attendee" role to the event. This property MUST NOT be altered in the recurrenceOverrides; it may only be set on the master object.

5.1.3. hideAttendees

Type: "Boolean" (default: false)

If "true", only the owners of the event may see the full set of participants. Other sharees of the event may only see the owners and themselves. This property MUST NOT be altered in the recurrenceOverrides; it may only be set on the master object.

5.1.4. relatedTo

Type: "Id[String]|null" (default: null)

A map of task ids to relations. Relation SHOULD be one of: - "blockedBy": Blocked by task with id. - "clonedBy": Task with id was cloned from this issue. - "duplicatedBy": Task with id is a duplicate of this issue. - "causedBy": Task with id was the cause for this task. - "relatesTo": Task with id is related. - "childOf": Task with id is parent.

5.2. Properties similar in JMAP for Calendar

Attachments, per-user properties, recurrences and updates to recurrences are described in [I-D.ietf-jmap-calendars], Section XXX.

5.3. Task/get

This is the "CalendarEvent/get" method as described in [I-D.ietf-jmap-calendars], Section XXX.

TODO redefine this here. Similar to "TaskList/get" we only need to replace a few definitions. For example, replace "reduceParticipants" with "reduceAssignees". Copy+Paste most of the stuff.
5.4. Task/changes

This is a standard "/changes" method as described in [RFC8620], Section 5.2.

5.5. Task/set

This is the "CalendarEvent/set" method as described in [I-D.ietf-jmap-calendars], Section XXX.

TODO copy+paste most stuff from "CalendarEvent/set". It should be fine to just reference patching.

5.6. Task/copy

This is a standard "/copy" method as described in [RFC8620], Section 5.4.

5.7. Task/query

This is the "CalendarEvent/query" method as described in [I-D.ietf-jmap-calendars], Section XXX.

TODO copy+paste most stuff from "CalendarEvent/query". Mainly filtering should be different.

5.8. Task/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620], Section 5.6.

6. Task Notifications

The TaskNotification data type records changes made by external entities to tasks in calendars the user is subscribed to.

Notifications are stored in the same Account as the Task that was changed.

This is the same specification as the CalendarEventNotification object from [I-D.ietf-jmap-calendars], Section XXX. Only the object properties differ slightly and are therefore fully described in this document.

6.1. Object Properties

The *TaskNotification* object has the following properties:

* *id*: "String" The id of the TaskNotification.
* *created*: "UTCDate" The time this notification was created.

* *changedBy*: "Person" Who made the change.
 - *name*: "String" The name of the person who made the change.
 - *email*: "String" The email of the person who made the change, or null if no email is available.
 - *principalId*: "String|null" The id of the principal corresponding to the person who made the change, if any. This will be null if the change was due to receiving an iTIP message.

* *comment*: "String|null" Comment sent along with the change by the user that made it. (e.g. COMMENT property in an iTIP message).

* *type*: "String" This MUST be one of
 - created
 - updated
 - destroyed

* *TaskId*: "String" The id of the Task that this notification is about.

* *isDraft*: "Boolean" (created/updated only) Is this event a draft?

* *event*: "JSTask" The data before the change (if updated or destroyed), or the data after creation (if created).

* *eventPatch*: "PatchObject" (updated only) A patch encoding the change between the data in the event property, and the data after the update.

To reduce data, if the change only affects a single instance of a recurring event, the server MAY set the event and eventPatch properties for the instance; the calendarEventId MUST still be for the master event.

6.2. TaskNotification/get

This is a standard "/get" method as described in [RFC8620], Section 5.1.
6.3. TaskNotification/changes

This is a standard "/changes" method as described in [RFC8620], Section 5.2.

6.4. TaskNotification/set

This is a standard "/changes" method as described in [RFC8620], Section 5.3.

Only destroy is supported; any attempt to create/update MUST be rejected with a "forbidden" SetError.

6.5. TaskNotification/query

This is a standard "/query" method as described in [RFC8620], Section 5.5.

6.5.1. Filtering

A *FilterCondition* object has the following properties:

* "after": "UTCDate|null" The creation date must be on or after this date to match the condition.

* "before": "UTCDate|null" The creation date must be before this date to match the condition.

* "type": "String" The type property must be the same to match the condition.

* "taskId": "Id[]|null" A list of task ids. The taskId property of the notification must be in this list to match the condition.

6.5.2. Sorting

The "created" property MUST be supported for sorting.

6.6. TaskNotification/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620], Section 5.6.

7. Security Considerations

All security considerations of JMAP for Calendars [I-D.ietf-jmap-calendars] apply to this specification.
8. IANA Considerations

8.1. JMAP Capability Registration for "tasks"

TODO Actually register

IANA will register the "tasks" JMAP Capability as follows:

Capability Name: "urn:ietf:params:jmap:tasks"

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section XXX

8.2. JSCalendar Property Registrations

All IANA registrations for JSTask are described in JMAP for Calendars [I-D.ietf-jmap-calendars].

9. Normative References

[I-D.ietf-calet-jscalendar]

[I-D.ietf-jmap-calendars]

[I-D.jenkins-jmap-sharing]

10. Informative References

Authors’ Addresses

Joris Baum (editor)
audriga
Durlacher Allee 47
76131 Karlsruhe
Germany

Email: joris@audriga.com
URI: https://www.audriga.com

Hans-Joerg (editor)
audriga
Durlacher Allee 47
76131 Karlsruhe
Germany

Email: hans-joerg@audriga.com
URI: https://www.audriga.com
This document specifies a data model for synchronizing calendar data with a server using JMAP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.
1. Introduction .. 4
 1.1. Notational Conventions .. 4
 1.2. The LocalDate Data Type 4
 1.3. Terminology ... 4
 1.4. Data Model Overview ... 5
 1.4.1. UIDs and CalendarEvent Ids 6
 1.5. Addition to the Capabilities Object 6
 1.5.1. urn:ietf:params:jmap:calendars 6
 1.5.2. urn:ietf:params:jmap:calendars:preferences 7
 1.5.3. urn:ietf:params:jmap:principals:availability 7

2. Principals and Sharing ... 8
 2.1. Principal Capability urn:ietf:params:jmap:calendars 8
 2.2. Principal/getAvailability 8

3. Participant Identities .. 10
 3.1. ParticipantIdentity/get 11
 3.2. ParticipantIdentity/changes 11
 3.3. ParticipantIdentity/set 11

4. Calendars ... 11
 4.1. Calendar/get .. 15
 4.2. Calendar/changes .. 16
 4.3. Calendar/set .. 16

5. Calendar Events ... 17
 5.1. Additional JSCalendar properties 19
 5.1.1. mayInviteSelf ... 19
 5.1.2. mayInviteOthers ... 19
 5.1.3. hideAttendees .. 19
 5.2. Attachments .. 20
 5.3. Per-user properties .. 20
 5.4. Recurring events .. 20
 5.5. Updating for "this-and-future" 21
 5.5.1. Splitting an event 21
 5.5.2. Updating the base event and overriding previous 21
 5.6. CalendarEvent/get ... 21
 5.7. CalendarEvent/changes 23
 5.8. CalendarEvent/set ... 23
 5.8.1. Patching ... 26
 5.8.2. Sending invitations and responses 29
 5.9. CalendarEvent/copy .. 32
 5.10. CalendarEvent/query .. 32
 5.10.1. Filtering ... 32
 5.10.2. Sorting .. 34
 5.11. CalendarEvent/queryChanges 34
 5.12. Examples ... 34

6. Alerts .. 34
 6.1. Default alerts ... 35
 6.2. Acknowledging an alert 35
6.3. Snoozing an alert 35
6.4. Push events ... 36
7. Calendar Event Notifications 36
 7.1. Auto-deletion of Notifications 37
 7.2. Object Properties 37
 7.3. CalendarEventNotification/get 38
 7.4. CalendarEventNotification/changes 38
 7.5. CalendarEventNotification/set 38
 7.6. CalendarEventNotification/query 38
 7.6.1. Filtering ... 38
 7.6.2. Sorting ... 39
 7.7. CalendarEventNotification/queryChanges 39
8. CalendarPreferences ... 39
 8.1. CalendarPreferences/get 39
 8.2. CalendarPreferences/set 40
9. Security Considerations 40
 9.1. Privacy ... 40
 9.2. Spoofing .. 40
 9.3. Denial-of-service 41
 9.3.1. Expanding Recurrences 41
 9.3.2. Firing alerts 41
 9.3.3. Load spikes 41
 9.4. Spam .. 42
10. IANA Considerations 42
 10.1. JMAP Capability Registration for "calendars" 42
 10.2. JMAP Capability Registration for "calendars:preferences" 42
 10.3. JMAP Capability Registration for "principals:availability" 43
 10.4. JSCalendar Property Registrations 43
 10.4.1. id .. 43
 10.4.2. calendarIds 43
 10.4.3. isDraft .. 43
 10.4.4. utcStart ... 44
 10.4.5. utcEnd ... 44
 10.4.6. mayInviteSelf 44
 10.4.7. mayInviteOthers 44
 10.4.8. hideAttendees 45
11. Normative References 45
12. Informative References 45
Authors’ Addresses ... 46
1. Introduction

JMAP ([RFC8620] (U+2013) JSON Meta Application Protocol) is a
generic protocol for synchronizing data, such as mail, calendars or
contacts, between a client and a server. It is optimized for mobile
and web environments, and aims to provide a consistent interface to
different data types.

This specification defines a data model for synchronizing calendar
data between a client and a server using JMAP. The data model is
designed to allow a server to provide consistent access to the same
data via CalDAV [RFC4791] as well as JMAP, however the functionality
offered over the two protocols may differ. Unlike CalDAV, this
specification does not define access to tasks or journal entries
(VTODO or VJOURNAL iCalendar components in CalDAV).

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Type signatures, examples, and property descriptions in this document
follow the conventions established in Section 1.1 of [RFC8620]. Data
types defined in the core specification are also used in this
document.

1.2. The LocalDate Data Type

Where LocalDate is given as a type, it means a string in the same
format as Date (see [RFC8620], Section 1.4), but with the time-offset
omitted from the end. The interpretation in absolute time depends
upon the time zone for the event, which may not be a fixed offset
(for example when daylight saving time occurs). For example,
2014-10-30T14:12:00.

1.3. Terminology

The same terminology is used in this document as in the core JMAP
specification, see [RFC8620], Section 1.6.

The terms ParticipantIdentity, Calendar, CalendarEvent,
CalendarEventNotification, and CalendarPreferences (with these
specific capitalizations) are used to refer to the data types defined
in this document and instances of those data types.
1.4. Data Model Overview

An Account (see [RFC8620], Section 1.6.2) with support for the calendar data model contains zero or more Calendar objects, which is a named collection of CalendarEvents. Calendars can also provide defaults, such as alerts and a color to apply to events in the calendar. Clients commonly let users toggle visibility of events belonging to a particular calendar on/off. Servers may allow an event to belong to multiple Calendars within an account.

A CalendarEvent is a representation of an event or recurring series of events in JSEvent [RFC8984] format. Simple clients may ask the server to expand recurrences for them within a specific time period, and optionally convert times into UTC so they do not have to handle time zone conversion. More full-featured clients will want to access the full event information and handle recurrence expansion and time zone conversion locally.

CalendarEventNotification objects keep track of the history of changes made to a calendar by other users, allowing calendar clients to notify the user of changes to their schedule.

The ParticipantIdentity data type represents the identities of the current user within an Account, which determines which events the user is a participant of and possibly their permissions related to that event.

The CalendarPreferences object is a singleton in the account that stores the user’s default calendar and participant identity.

In servers with support for JMAP Sharing [RFC XXX], data may be shared with other users. Sharing permissions are managed per calendar. For example, an individual may have separate calendars for personal and work activities, with both contributing to their free-busy availability, but only the work calendar shared in its entirety with colleagues. Principals may also represent schedulable entities, such as a meeting room.

Users can normally subscribe to any calendar to which they have access. This indicates the user wants this calendar to appear in their regular list of calendars. The separate "isVisible" property stores whether the user would currently like to view the events in a subscribed calendar.
1.4.1. UIDs and CalendarEvent Ids

Each CalendarEvent has a uid property ([RFC8984], Section 4.1.2), which is a globally unique identifier that identifies the same event in different Accounts, or different instances of the same recurring event within an Account.

An Account MUST NOT contain more than one CalendarEvent with the same uid unless all of the CalendarEvent objects have distinct, non-null values for their recurrenceId property. (This situation occurs if the principal is added to one or more specific instances of a recurring event without being invited to the whole series.)

Each CalendarEvent also has an id, which is scoped to the JMAP Account and used for referencing it in JMAP methods. There is no necessary link between the uid property and the CalendarEvent’s id. CalendarEvents with the same uid in different Accounts MAY have different ids.

1.5. Addition to the Capabilities Object

The capabilities object is returned as part of the JMAP Session object; see [RFC8620], Section 2. This document defines two additional capability URIs.

1.5.1. urn:ietf:params:jmap:calendars

This represents support for the Calendar, CalendarEvent, CalendarEventNotification, and ParticipantIdentity data types and associated API methods. The value of this property in the JMAP Session capabilities property is an empty object.

The value of this property in an account (U+2019)s accountCapabilities property is an object that MUST contain the following information on server capabilities and permissions for that account:

* *shareesActAs*: String This MUST be one of:
 - self - sharees act as themselves when using calendars in this account.
 - secretary- sharees act as the principal to which this account belongs.
* `maxCalendarsPerEvent*`: UnsignedInt|null The maximum number of Calendars (see Section XXX) that can be assigned to a single CalendarEvent object (see Section XXX). This MUST be an integer >= 1, or null for no limit (or rather, the limit is always the number of Calendars in the account).

* `minDateTime*`: LocalDate The earliest date-time the server is willing to accept for any date stored in a CalendarEvent.

* `maxDateTime*`: LocalDate The latest date-time the server is willing to accept for any date stored in a CalendarEvent.

* `maxExpandedQueryDuration*`: Duration The maximum duration the user may query over when asking the server to expand recurrences.

* `maxParticipantsPerEvent*`: Number|null The maximum number of participants a single event may have, or null for no limit.

* `mayCreateCalendar*`: Boolean If true, the user may create a calendar in this account.

1.5.2. urn:ietf:params:jmap:calendars:preferences

This represents support for the CalendarPreferences data type and associated API methods. The value of this property in the JMAP Session capabilities property and the account (U+2019)s accountCapabilities property is an empty object.

Any account with this capability MUST also have the urn:ietf:params:jmap:calendars capability.

1.5.3. urn:ietf:params:jmap:principals:availability

Represents support for the Principal/getAvailability method. Any account with this capability MUST also have the urn:ietf:params:jmap:principals capability (see [RFC XXX]).

The value of this property in the JMAP Session capabilities property is an empty object.

The value of this property in an account (U+2019)s accountCapabilities property is an object that MUST contain the following information on server capabilities and permissions for that account:

* `maxAvailabilityDuration*`: The maximum duration over which the server is prepared to calculate availability in a single call (see Section XXX).
2. Principals and Sharing

For systems that also support JMAP Sharing [RFC XXX], the calendars capability is used to indicate that this principal may be used with calendaring. A new method is defined to allow users to query availability when scheduling events.

2.1. Principal Capability urn:ietf:params:jmap:calendars

A "urn:ietf:params:jmap:calendars" property is added to the Principal "capabilities" object, the value of which is an object with the following properties:

* `accountId`: Id|null Id of Account with the urn:ietf:params:jmap:calendars capability that contains the calendar data for this principal, or null if none (e.g. the Principal is a group just used for permissions management), or the user does not have access to any data in the account (with the exception of free/busy, which is governed by the mayGetAvailability property).
* `account`: Account|null The JMAP Account object corresponding to the accountId, null if none.
* `mayGetAvailability`: Boolean May the user call the "Principal/getAvailability" method with this Principal?
* `mayShareWith`: Boolean May the user add this principal as a calendar sharee (by adding them to the shareWith property of a calendar, see Section XXX)?
* `sendTo`: String[String]|null If this principal may be added as a participant to an event, this is the map of methods for adding it, in the same format as Participant#sendTo in JSEvent (see [RFC8984], Section 4.4.5).

2.2. Principal/getAvailability

This method calculates the availability of the principal for scheduling within a requested time period. It takes the following arguments:

* `accountId`: Id The id of the account to use.
* `id`: Id The id of the Principal to calculate availability for.
* `utcStart`: UTCDate The start time (inclusive) of the period for which to return availability.
* `utcEnd`: UTCDate The end time (exclusive) of the period for which to return availability.
* `showDetails`: Boolean If true, event details will be returned if the user has permission to view them.
* `*eventProperties*`: String[] | null A list of properties to include in any JSEvent object returned. If null, all properties of the event will be returned. Otherwise, only properties with names in the given list will be returned.

The server will first find all relevant events, expanding any recurring events. Relevant events are ones where all of the following is true:

* The principal is subscribed to the calendar.
* Either the calendar belongs to the principal or the calendar account’s "shareesActAs" property is "self".
* The "includeInAvailability" property of the calendar for the principal is "all" or "attending".
* The user has the "mayReadFreeBusy" permission for the calendar.
* The event finishes after the "utcStart" argument and starts before the "utcEnd" argument.
* The event’s "privacy" property is not "secret".
* The "freeBusyStatus" property of the event is "busy" (or omitted, as this is the default).
* The "status" property of the event is not "cancelled".
* If the "includeInAvailability" property of the calendar is "attending", then the principal is a participant of the event, and has a "participationStatus" of "accepted" or "tentative".

If an event is in more than one calendar, it is relevant if all of the above are true for any one calendar that it is in.

The server then generates a BusyPeriod object for each of these events. A *BusyPeriod* object has the following properties:

* `*utcStart*`: UTCDate The start time (inclusive) of the period this represents.
* `*utcEnd*`: UTCDate The end time (exclusive) of the period this represents.
* `*busyStatus*`: String (optional, default "unavailable") This MUST be one of
 - confirmed: The event status is "confirmed".
 - tentative: The event status is "tentative".
 - unavailable: The principal is not available for scheduling at this time for any other reason.
* `*event*`: JSEvent|null The JSEvent representation of the event, or null if any of the following are true:
- The "showDetails" argument is false.
- The "privacy" property of the event is "private".
- The user does not have the "mayReadItems" permission for any of the calendars the event is in.

If an eventProperties argument was given, any properties in the JSEvent that are not in the eventProperties list are removed from the returned representation.

The server MAY also generate BusyPeriod objects based on other information it has about the principal’s availability, such as office hours.

Finally, the server MUST merge and split BusyPeriod objects where the "event" property is null, such that none of them overlap and either there is a gap in time between any two objects (the utcEnd of one does not equal the utcStart of another) or those objects have a different busyStatus property. If there are overlapping BusyPeriod time ranges with different "busyStatus" properties the server MUST choose the value in the following order: confirmed > unavailable > tentative.

The response has the following argument:

* `*list*`: BusyPeriod[] The list of BusyPeriod objects calculated as described above.

The following additional errors may be returned instead of the "Principal/getAvailability" response:

notFound: No principal with this id exists, or the user does not have permission to see that this principal exists.

forbidden: The user does not have permission to query this principal's availability.

tooLarge: The duration between utcStart an utcEnd is longer than the server is willing to calculate availability for.

rateLimit: Too many availability requests have been made recently and the user is being rate limited. It may work to try again later.

3. Participant Identities

A ParticipantIdentity stores information about a URI that represents the user within that account in an event’s participants. It has the following properties:
* *id*: Id (immutable; server-set) The id of the ParticipantIdentity.

* *name*: String (default: "") The display name of the participant to use when adding this participant to an event, e.g. "Joe Bloggs".

* *sendTo*: String[String] Represents methods by which the participant may receive invitations and updates to an event.

 The keys in the property value are the available methods and MUST only contain ASCII alphanumeric characters (A-Za-z0-9). The value is a URI for the method specified in the key.

A participant in an event corresponds to a ParticipantIdentity if any of the method/uri pairs in the sendTo property of the participant are identical to a method/uri pair in the sendTo property of the identity.

The following JMAP methods are supported.

3.1. ParticipantIdentity/get

This is a standard "/get" method as described in [RFC8620], Section 5.1. The _ids_ argument may be null to fetch all at once.

3.2. ParticipantIdentity/changes

This is a standard "/changes" method as described in [RFC8620], Section 5.2.

3.3. ParticipantIdentity/set

This is a standard "/set" method as described in [RFC8620], Section 5.3. The server MAY restrict the uri values the user may claim, for example only allowing mailto: URIs with email addresses that belong to the user. A standard forbidden error is returned to reject non-permissible changes.

A participant identity may be destroyed that is referenced as the defaultParticipantIdentityId in the CalendarPreferences object for the same account. Doing so updates the defaultParticipantIdentityId property on the CalendarPreferences to null.

4. Calendars

A Calendar is a named collection of events. All events are associated with at least one calendar.
A *Calendar* object has the following properties:

* *id*: Id (immutable; server-set) The id of the calendar.
* *name*: String The user-visible name of the calendar. This may be any UTF-8 string of at least 1 character in length and maximum 255 octets in size.
* *description*: String|null (default: null) An optional longer-form description of the calendar, to provide context in shared environments where users need more than just the name.
* *color*: String|null (default: null) A color to be used when displaying events associated with the calendar.

If not null, the value MUST be a case-insensitive color name taken from the set of names defined in Section 4.3 of CSS Color Module Level 3 COLORS (https://www.w3.org/TR/css-color-3/), or an RGB value in hexadecimal notation, as defined in Section 4.2.1 of CSS Color Module Level 3.

The color SHOULD have sufficient contrast to be used as text on a white background.

* *sortOrder*: UnsignedInt (default: 0) Defines the sort order of calendars when presented in the client’s UI, so it is consistent between devices. The number MUST be an integer in the range 0 <= sortOrder < 2^(31.)

A calendar with a lower order should be displayed before a calendar with a higher order in any list of calendars in the client’s UI. Calendars with equal order SHOULD be sorted in alphabetical order by name. The sorting should take into account locale-specific character order convention.

* *isSubscribed*: Boolean Has the user indicated they wish to see this Calendar in their client? This SHOULD default to false for Calendars in shared accounts the user has access to and true for any new Calendars created by the user themselves.

If false, the calendar should only be displayed when the user explicitly requests it or to offer it for the user to subscribe to.

* *isVisible*: Boolean (default: true) Should the calendar’s events be displayed to the user at the moment? Clients MUST ignore this property if isSubscribed is false. If an event is in multiple calendars, it should be displayed if isVisible is true for any of those calendars.
* includeInAvailability*: String (default: all) Should the calendar's events be used as part of availability calculation? This MUST be one of:
 - all: all events are considered.
 - attending: events the user is a confirmed or tentative participant of are considered.
 - none: all events are ignored (but may be considered if also in another calendar).

* defaultAlertsWithTime*: Id[Alert]|null (default: null) A map of alert ids to Alert objects (see [RFC8984], Section 4.5.2) to apply for events where "showWithoutTime" is false and "useDefaultAlerts" is true. Ids MUST be unique across all default alerts in the account, including those in other calendars; a UUID is recommended.

* defaultAlertsWithoutTime*: Id[Alert]|null (default: null) A map of alert ids to Alert objects (see [RFC8984], Section 4.5.2) to apply for events where "showWithoutTime" is true and "useDefaultAlerts" is true. Ids MUST be unique across all default alerts in the account, including those in other calendars; a UUID is recommended.

* timeZone*: String|null (default: null) The time zone to use for events without a time zone when the server needs to resolve them into absolute time, e.g., for alerts or availability calculation. The value MUST be a time zone id from the IANA Time Zone Database TZDB (https://www.iana.org/time-zones). If null, the timeZone of the account's associated Principal will be used. Clients SHOULD use this as the default for new events in this calendar if set.

* shareWith*: Id[CalendarRights]|null (default: null) A map of Principal id to rights for principals this calendar is shared with. The principal to which this calendar belongs MUST NOT be in this set. This is null if the user requesting the object does not have the mayAdmin right, or if the calendar is not shared with anyone. May be modified only if the user has the mayAdmin right. The account id for the principals may be found in the urn:ietf:params:jmap:principals:owner capability of the Account to which the calendar belongs.

* myRights*: CalendarRights (server-set) The set of access rights the user has in relation to this Calendar. If any event is in multiple calendars, the user has the following rights:
 - The user may fetch the event if they have the mayReadItems right on any calendar the event is in.
- The user may remove an event from a calendar (by modifying the event’s "calendarIds" property) if the user has the appropriate permission for that calendar.
- The user may make other changes to the event if they have the right to do so in _all_ calendars to which the event belongs.

A *CalendarRights* object has the following properties:

* *mayReadFreeBusy*: Boolean The user may read the free-busy information for this calendar as part of a call to Principal/getAvailability (see Section XXX).

* *mayReadItems*: Boolean The user may fetch the events in this calendar.

* *mayWriteAll*: Boolean The user may create, modify or destroy all events in this calendar, or move events to or from this calendar. If this is true, the mayWriteOwn, mayUpdatePrivate and mayRSVP properties MUST all also be true.

* *mayWriteOwn*: Boolean The user may create, modify or destroy an event on this calendar if either they are the owner of the event or the event has no owner. This means the user may also transfer ownership by updating an event so they are no longer an owner.

* *mayUpdatePrivate*: Boolean The user may modify the following properties on all events in the calendar, even if they would not otherwise have permission to modify that event. If the shareesActAs account capability is "self", these properties MUST all be stored per-user, and changes do not affect any other user of the calendar. If shareesActAs is "secretary", the values are shared between all users.

 - keywords
 - color
 - freeBusyStatus
 - useDefaultAlerts
 - alerts

 The user may also modify the above on a per-occurrence basis for recurring events (updating the recurrenceOverrides property of the event to do so).

* *mayRSVP*: Boolean The user may modify the following properties of any Participant object that corresponds to one of the user’s ParticipantIdentity objects in the account, even if they would not otherwise have permission to modify that event:
If the event has its "mayInviteSelf" property set to true (see Section XXX), then the user may also add a new Participant to the event with a sendTo property that is the same as the sendTo property of one of the user’s ParticipantIdentity objects in the account. The roles property of the participant MUST only contain "attendee".

If the event has its "mayInviteOthers" property set to true (see Section XXX) and there is an existing Participant in the event corresponding to one of the user’s ParticipantIdentity objects in the account, then the user may also add new participants. The roles property of any new participant MUST only contain "attendee".

The user may also do all of the above on a per-occurrence basis for recurring events (updating the recurrenceOverrides property of the event to do so).

* *mayAdmin*: Boolean The user may modify sharing for this calendar.

* *mayDelete*: Boolean (server-set) The user may delete the calendar itself. This property MUST be false if the account to which this calendar belongs has the _isReadOnly_ property set to true.

The user is an *owner* for an event if the CalendarEvent object has a "participants" property, and one of the Participant objects both:

a) Has the "owner" role.
b) Corresponds to one of the user’s ParticipantIdentity objects in the account.

An event has no owner if its participants property is null or omitted, or if none of the Participant objects have the "owner" role.

4.1. Calendar/get

This is a standard "/get" method as described in [RFC8620], Section 5.1. The _ids_ argument may be null to fetch all at once.
If mayReadFreeBusy is the only permission the user has, the calendar MUST NOT be returned in Calendar/get and Calendar/query; it must behave as though it did not exist. The data is just used as part of Principal/getAvailability.

4.2. Calendar/changes

This is a standard "/changes" method as described in [RFC8620], Section 5.2.

4.3. Calendar/set

This is a standard "/set" method as described in [RFC8620], Section 5.3 but with the following additional request argument:

* *onDestroyRemoveEvents*: Boolean (default: false)

If false, any attempt to destroy a Calendar that still has CalendarEvents in it will be rejected with a calendarHasEvent SetError. If true, any CalendarEvents that were in the Calendar will be removed from it, and if in no other Calendars they will be destroyed. This SHOULD NOT send scheduling messages to participants or create CalendarEventNotification objects.

The "shareWith" property may only be set by users that have the mayAdmin right. The value is shared across all users, although users without the mayAdmin right cannot see the value.

When modifying the shareWith property, the user cannot give a right to a principal if the principal did not already have that right and the user making the change also does not have that right. Any attempt to do so must be rejected with a forbidden SetError.

Users can subscribe or unsubscribe to a calendar by setting the "isSubscribed" property. The server MAY forbid users from subscribing to certain calendars even though they have permission to see them, rejecting the update with a forbidden SetError.

The "timeZone", "includeInAvailability", "defaultAlertsWithoutTime" and "defaultAlertsWithTime" properties are stored per-user if the calendar account's "shareesActAs" capability is "self", and may be set by any user who is subscribed to the calendar. Each user gets the default value for these properties as the initial value; they do not inherit an initial value from the calendar owner.

If the calendar account's "shareesActAs" capability is "self" these properties are instead shared, and may only be set by users that have the mayAdmin right.
The following properties may be set by anyone who is subscribed to the calendar and are always stored per-user:

* name
* color
* sortOrder
* isVisible

The "name" and "color" properties are initially inherited from the owner’s copy of the calendar, but if set by a sharee that user gets their own copy of the property; it does not change for any other principals. If the value of the property in the owner’s calendar changes after this, it does not overwrite the sharee’s value.

The "sortOrder" and "isVisible" properties are initially the default value for each sharee; they are not inherited from the owner.

A calendar may be destroyed that is referenced as the "defaultCalendarId" in the CalendarPreferences object for the same account. Doing so updates the defaultCalendarId property on the CalendarPreferences to null.

The following extra SetError types are defined:

For "destroy":

* calendarHasEvent*: The Calendar has at least one CalendarEvent assigned to it, and the "onDestroyRemoveEvents" argument was false.

5. Calendar Events

A *CalendarEvent* object contains information about an event, or recurring series of events, that takes place at a particular time. It is a JSEvent object, as defined in [RFC8984], with the following additional properties:

* id*: Id (immutable; server-set) The id of the CalendarEvent. The id uniquely identifies a JSEvent with a particular "uid" and "recurrenceId" within a particular account.

* baseEventId*: Id|null (immutable; server-set) This is only defined if the _id_ property is a synthetic id, generated by the server to represent a particular instance of a recurring event (see Section XXX). This property gives the id of the "real" CalendarEvent this was generated from.
* *calendarIds*: Id[Boolean] The set of Calendar ids this event belongs to. An event MUST belong to one or more Calendars at all times (until it is destroyed). The set is represented as an object, with each key being a _Calendar id_. The value for each key in the object MUST be true.

* *isDraft*: Boolean (default: false) If true, this event is to be considered a draft. The server will not send any scheduling messages to participants or send push notifications for alerts. This may only be set to true upon creation. Once set to false, the value cannot be updated to true. This property MUST NOT appear in "recurrenceOverrrides".

* *utcStart*: UTCDate For simple clients that do not or cannot implement time zone support. Clients should only use this if also asking the server to expand recurrences, as you cannot accurately expand a recurrence without the original time zone.

This property is calculated at fetch time by the server. Time zones are political and they can and do change at any time. Fetching exactly the same property again may return a different results if the time zone data has been updated on the server. Time zone data changes are not considered "updates" to the event.

If set, server will convert to the event’s current time zone using its current time zone data and store the local time.

This is not included by default and must be requested explicitly.

Floating events (events without a time zone) will be interpreted as per the time zone given as a CalendarEvent/get argument.

Note that it is not possible to accurately calculate the expansion of recurrence rules or recurrence overrides with the utcStart property rather than the local start time. Even simple recurrences such as "repeat weekly" may cross a daylight-savings boundary and end up at a different UTC time. Clients that wish to use "utcStart" are RECOMMENDED to request the server expand recurrences (see Section XXX).

* *utcEnd*: UTCDate The server calculates the end time in UTC from the start/timeZone/duration properties of the event. This is not included by default and must be requested explicitly. Like utcStart, this is calculated at fetch time if requested and may change due to time zone data changes. Floating events will be interpreted as per the time zone given as a CalendarEvent/get argument.
CalendarEvent objects MUST NOT have a "method" property as this is only used when representing iTIP [RFC5546] scheduling messages, not events in a data store.

5.1. Additional JSCalendar properties

This document defines three new JSCalendar properties.

5.1.1. mayInviteSelf

Type: Boolean (default: false)

If true, any user may add themselves to the event as a participant with the "attendee" role. This property MUST NOT be altered in the recurrenceOverrides; it may only be set on the base object.

This indicates the owner will accept "party crasher" RSVPs via iTIP, subject to any other domain-specific restrictions, and users may add themselves to the event via JMAP as long as they have the mayRSVP permission for the calendar.

5.1.2. mayInviteOthers

Type: Boolean (default: false)

If true, any current participant with the "attendee" role may add new participants with the "attendee" role to the event. This property MUST NOT be altered in the recurrenceOverrides; it may only be set on the base object.

The mayRSVP permission for the calendar is also required in conjunction with this event property for users to be allowed to make this change via JMAP.

5.1.3. hideAttendees

Type: Boolean (default: false)

If true, only the owners of the event may see the full set of participants. Other sharees of the event may only see the owners and themselves. This property MUST NOT be altered in the recurrenceOverrides; it may only be set on the base object.
5.2. Attachments

The Link object, as defined in [RFC8984] Section 4.2.7, with a "rel" property equal to "enclosure" is used to represent attachments. Instead of mandating an "href" property, clients may set a "blobId" property instead to reference a blob of binary data in the account, as per [RFC8620] Section 6.

The server MUST translate this to an embedded data: URL [RFC2397] when sending the event to a system that cannot access the blob. Servers that support CalDAV access to the same data are recommended to expose these files as managed attachments [RFC8607].

5.3. Per-user properties

In shared calendars where the account’s "shareesActAs" capability is "self", the following properties MUST be stored per-user:

* keywords
* color
* freeBusyStatus
* useDefaultAlerts
* alerts

The user may also modify these properties on a per-occurrence basis for recurring events; again, these MUST be stored per-user.

When writing only per-user properties, the "updated" property MUST also be stored just for that user if set. When fetching the "updated" property, the value to return is whichever is later of the per-user updated time or the updated time of the base event.

5.4. Recurring events

Events may recur, in which case they represent multiple occurrences or instances. The data store will either contain a single base event, containing a recurrence rule and/or recurrence overrides; or, a set of individual instances (when invited to specific occurrences only).

The client may ask the server to expand recurrences within a specific time range in "CalendarEvent/query". This will generate synthetic ids representing individual instances in the requested time range. The client can fetch and update the objects using these ids and the server will make the appropriate changes to the base event. Synthetic ids do not appear in "CalendarEvent/changes" responses; only the ids of events as actually stored on the server.
If the user is invited to specific instances then later added to the base event, "CalendarEvent/changes" will show the ids of all the individual instances being destroyed and the id for the base event being created.

5.5. Updating for "this-and-future"

When editing a recurring event, you can either update the base event (affecting all instances unless overridden) or update an override for a specific occurrence. To update all occurrences from a specific point onwards, there are therefore two options: split the event, or update the base event and override all occurrences before the split point back to their original values.

5.5.1. Splitting an event

If the event is not scheduled (has no participants), the simplest thing to do is to duplicate the event, modifying the recurrence rules of the original so it finishes before the split point, and the duplicate so it starts at the split point. As per JSCalendar [RFC8984] Section 4.1.3, a "next" and "first" relation MUST be set on the new objects respectively.

Splitting an event however is problematic in the case of a scheduled event, because the iTIP messages generated make it appear like two unrelated changes, which can be confusing.

5.5.2. Updating the base event and overriding previous

For scheduled events, a better approach is to avoid splitting and instead update the base event with the new property value for "this and future", then create overrides for all occurrences before the split point to restore the property to its previous value. Indeed, this may be the only option the user has permission to do if not an owner of the event.

Clients may choose to skip creating the overrides if the old data is not important, for example if the "alerts" property is being updated, it is probably not important to create overrides for events in the past with the alerts that have already fired.

5.6. CalendarEvent/get

This is a standard "/get" method as described in [RFC8620], Section 5.1, with three extra arguments:
* `recurrenceOverridesBefore*`: UTCDate|null If given, only recurrence overrides with a recurrence id before this date (when translated into UTC) will be returned.
* `recurrenceOverridesAfter*`: UTCDate|null If given, only recurrence overrides with a recurrence id on or after this date (when translated into UTC) will be returned.
* `reduceParticipants*`: Boolean (default: false) If true, only participants with the "owner" role or corresponding to the user’s participant identities will be returned in the "participants" property of the base event and any recurrence overrides. If false, all participants will be returned.
* `timeZone*`: String (default "Etc/UTC") The time zone to use when calculating the utcStart/utcEnd property of floating events. This argument has no effect if those properties are not requested.

A CalendarEvent object is a JSEvent object so may have arbitrary properties. If the client makes a "CalendarEvent/get" call with a null or omitted "properties" argument, all properties defined on the JSEvent object in the store are returned, along with the "id", "calendarIds", and "isDraft" properties. The "utcStart" and "utcEnd" computed properties are only returned if explicitly requested. If either are requested, the "recurrenceOverrides" property MUST NOT be requested (recurrence overrides cannot be interpreted accurately with just the UTC times).

If specific properties are requested from the JSEvent and the property is not present on the object in the server’s store, the server SHOULD return the default value if known for that property.

A requested id may represent a server-expanded single instance of a recurring event if the client asked the server to expand recurrences in "CalendarEvent/query". In such a case, the server will resolve any overrides and set the appropriate "start" and "recurrenceId" properties on the CalendarEvent object returned to the client. The "recurrenceRule" and "recurrenceOverrides" properties MUST be returned as null if requested for such an event.

An event with the same uid/recurrenceId may appear in different accounts. Clients may coalesce the view of such events, but must be aware that the data may be different in the different accounts due to per-user properties, difference in permissions etc.
The "privacy" property of a JSEvent object allows the owner to override how sharees of the calendar see the event. If this is set to "private", when a sharee fetches the event the server MUST only return the basic time and metadata properties of the JSEvent object as specified in [RFC8984], Section 4.4.3. If set to "secret", the server MUST behave as though the event does not exist for all users other than the owner.

This "hideAttendees" property of a JSEvent object allows the owner to reduce the visibility of sharees into the set of participants. If this is true, when a non-owner sharee fetches the event, the server MUST only return participants with the "owner" role or corresponding to the user’s participant identities.

5.7. CalendarEvent/changes

This is a standard "/changes" method as described in [RFC8620], Section 5.2.

Synthetic ids generated by the server expanding recurrences in "CalendarEvent/query" do not appear in "CalendarEvent/changes" responses; only the ids of events as actually stored on the server.

5.8. CalendarEvent/set

This is a standard "/set" method as described in [RFC8620], Section 5.3, with the following extra argument:

* *sendSchedulingMessages*: Boolean (default: false) If true then any changes to scheduled events will be sent to all the participants (if the user is an owner of the event) or back to the owners (otherwise). If false, the changes only affect this account and no scheduling messages will be sent.

An id may represent a server-expanded single instance of a recurring event if the client asked the server to expand recurrences in "CalendarEvent/query". When the synthetic id for such an instance is given, the server MUST process an update as an update to the recurrence override for that instance on the base event, and a destroy as removing just that instance.
Clients MUST NOT send an update/destroy to both the base event and a synthetic instance in a single "/set" request; the result of this is undefined. Note however, a client may replace a series of explicit instances (each with the same uid but a different recurrenceId property) with the base event (same uid, no recurrenceId) in a single "/set" call. (So the /set will destroy the existing instances and create the new base event.) This will happen when someone is initially invited to a specific instance or instances of a recurring event, then later invited to the whole series.

Servers MUST enforce the user’s permissions as returned in the "myRights" property of the Calendar objects and reject changes with a forbidden SetError if not allowed.

The "privacy" property of a JSEvent object allows the owner to override how sharees of the calendar see the event. If this is set to "private", a sharee may not delete or update the event (even if only modifying per-user properties); any attempt to modify such an event MUST be rejected with a forbidden SetError. If set to "secret", the server MUST behave as though the event does not exist for all users other than the owner.

The "privacy" property MUST NOT be set to anything other than "public" (the default) for events in a calendar that does not belong to the user (e.g. a shared team calendar). The server MUST reject this with an invalidProperties SetError.

If omitted on create, the server MUST set the following properties to an appropriate value:

* @type
* uid
* created

If (and only if) the server is the source of the event (see Section XXX), the "updated" property MUST be set to the current time by the server whenever an event is created or updated. If the client tries to set a value for this property it is not an error, but it MUST be overridden and replaced with the server’s time. If the event is being created and the overridden "updated" time is now earlier than a client-supplied "created" time, the "created" time MUST also be overridden to the server’s time. If the server is not the source of the event it MUST NOT automatically set an "updated" time, as this can break correct processing of iTIP messages.

When updating an event, if all of:
* a property has been changed other than "calendarIds", "isDraft" or a per-user property (see Section XXX); and
* the server is the source of the event (see Section XXX); and
* the "sequence" property is not explicitly set in the update, or the given value is less than or equal to the current "sequence" value on the server;

then the server MUST increment the "sequence" value by one.

The "created" property MUST NOT be updated after creation. The "method" property MUST NOT be set. Any attempt to do these is rejected with a standard invalidProperties SetError.

If "utcStart" is set, this is translated into a "start" property using the server's current time zone information. It MUST NOT be set in addition to a "start" property and it cannot be set inside "recurrenceOverrides"; this MUST be rejected with an invalidProperties SetError.

Similarly, the "utcEnd" property is translated into a "duration" property if set. It MUST NOT be set in addition to a "duration" property and it cannot be set inside "recurrenceOverrides"; this MUST be rejected with an invalidProperties SetError.

The server does not automatically reset the "participationStatus" or "expectReply" properties of a Participant when changing other event details. Clients should either be intelligent about whether the change necessitates resending RSVP requests, or ask the user whether to send them.

The server MAY enforce that all events have an owner, for example in team calendars. If the user tries to create an event without participants in such a calendar, the server MUST automatically add a participant with the "owner" role corresponding to one of the user’s ParticipantIdentities (see Section XXX).

When creating an event with participants, or adding participants to an event that previously did not have participants, the server MUST set the "replyTo" property of the event if not present. Clients SHOULD NOT set the replyTo property for events when the user adds participants; the server is better positioned to add all the methods it supports to receive replies.
5.8.1. Patching

The JMAP "/set" method allows you to update an object by sending a patch, rather than having to supply the whole object. When doing so, care must be taken if updating a property of a CalendarEvent where the value is itself a PatchObject, e.g. inside "localizations" or "recurrenceOverrides". In particular, you cannot add a property with value null to the CalendarEvent using a direct patch on that property, as this is interpreted instead as a patch to remove the property. This is more easily understood with an example. Suppose you have a CalendarEvent object like so:


```json
{
  "id": "123",
  "title": "FooBar team meeting",
  "start": "2018-01-08T09:00:00",
  "recurrenceRules": [
    {
      "@type": "RecurrenceRule",
      "frequency": "weekly"
    }
  ],
  "replyTo": {
    "imip": "mailto:6489-4f14-a57f-c1@schedule.example.com"
  },
  "participants": {
    "dG9tQGZvb2Jhc5x1LmNvbQ": {
      "@type": "Participant",
      "name": "Tom",
      "email": "tom@foobar.example.com",
      "sendTo": {
        "imip": "mailto:6489-4f14-a57f-c1@calendar.example.com"
      },
      "participationStatus": "accepted",
      "roles": {
        "attendee": true
      }
    },
    "em9lQGZvb2GFtcGxlLmNvbQ": {
      "@type": "Participant",
      "name": "Zoe",
      "email": "zoe@foobar.example.com",
      "sendTo": {
        "imip": "mailto:zoe@foobar.example.com"
      },
      "participationStatus": "accepted",
      "roles": {
        "owner": true,
        "attendee": true,
        "chair": true
      }
    }
  },
  "recurrenceOverrides": {
    "2018-03-08T09:00:00": {
      "start": "2018-03-08T10:00:00",
      "participants/dG9tQGZvb2Jhc5x1LmNvbQ/participationStatus": "declined"
    }
  }
}
```
In this example, Tom is normally going to the weekly meeting but has declined the occurrence on 2018-03-08, which starts an hour later than normal. Now, if Zoe too were to decline that meeting, she could update the event by just sending a patch like so:

```json
[[ "CalendarEvent/set", {
   "accountId": "ue150411c",
   "update": {
      "123": {
         "recurrenceOverrides/2018-03-08T09:00:00/
             participants\"em9lQGZvb2GFtcGx1LmNvbQ\"1participationStatus":
               "declined"
      }
   }
}], "0" ]]
```

This patches the "2018-03-08T09:00:00" PatchObject in recurrenceOverrides so that it ends up like this:

```
"recurrenceOverrides": {
   "2018-03-08T09:00:00": {
      "start": "2018-03-08T10:00:00",
      "participants/dG9tQGZvb2Jhci5xlLmNvbQ/participationStatus":
               "declined",
      "participants/em9lQGZvb2GFtcGx1LmNvbQ/participationStatus":
               "declined"
   }
}
```

Now if Tom were to change his mind and remove his declined status override (thus meaning he is attending, as inherited from the top-level event), he might remove his patch from the overrides like so:

```json
[[ "CalendarEvent/set", {
   "accountId": "ue150411c",
   "update": {
      "123": {
         "recurrenceOverrides/2018-03-08T09:00:00/
             participants\"dG9tQGZvb2Jhci5xlLmNvbQ\"1participationStatus": null
      }
   }
}], "0" ]]
```

However, if you instead want to remove Tom from this instance altogether, you could not send this patch:
5.8.2. Sending invitations and responses

If "sendSchedulingMessages" is true, the server MUST send appropriate iTIP [RFC5546] scheduling messages after successfully creating, updating or destroying a calendar event.

When determining which scheduling messages to send, the server must first establish whether it is the _source_ of the event. The server is the source if it will receive messages sent to any of the methods specified in the "replyTo" property of the event.

Messages are only sent to participants with a "scheduleAgent" property set to "server" or omitted. If the effective "scheduleAgent" property is changed:

* to "server" from something else: send messages to this participant as though the event had just been created.
* from "server" to something else: send messages to this participant as though the event had just been destroyed.
* any other change: do not send any messages to this participant.

The server may send the scheduling message via any of the methods defined on the sendTo property of a participant (if the server is the source) or the replyTo property of the event (otherwise) that it supports. If no supported methods are available, the server MUST reject the change with a noSupportedScheduleMethods SetError.

If the server is the source of the event it MUST NOT send messages to any participant corresponding to a ParticipantIdentity in that account (see Section XXX).

If sending via iMIP [RFC6047], the server MAY choose to only send updates it deems "essential" to avoid flooding the recipient’s email with changes they do not care about. For example, changes to the participationStatus of another participant, or changes to events solely in the past may be omitted.

5.8.2.1. REQUEST

When the server is the source for the event, a REQUEST message ([RFC5546], Section 3.2.2) is sent to all current participants if either:

* The event is being created; or
* Any non per-user property (see Section XXX) is updated on the event (including adding/removing participants), except if just modifying the recurrenceOverrides such that CANCEL messages are generated (see the next section).

Note, if the only change is adding an additional instance (not generated by the event’s recurrence rule) to the recurrenceOverrides, this MAY be handled via sending an ADD message ([RFC5546], Section 3.2.4) for the single instance rather than a REQUEST message for the base event. However, for interoperability reasons this is not recommended due to poor support in the wild for this type of message.
The server MUST ensure participants are only sent information about recurrence instances they are added to when sending scheduling messages for recurring events. If the participant is not invited to the full recurring event but only individual instances, scheduling messages MUST be sent for just those expanded occurrences individually. If a participant is invited to a recurring event, but removed via a recurrence override from a particular instance, any scheduling messages to this participant MUST return the instance as "excluded" (if it matches a recurrence rule for the event) or omit the instance entirely (otherwise).

If the event’s "hideAttendees" property is set to true, the recipient MUST be the only attendee in the message; all others are omitted.

5.8.2.2. CANCEL

When the server is the source for the event, a CANCEL message ([RFC5546], Section 3.2.5) is sent if any of:

* A participant is removed from either the base event or a single instance (the message is only sent to this participant; remaining participants will get a REQUEST, as described above).
* The event is destroyed.
* An exclusion is added to recurrenceOverrides to remove an instance generated by the event’s recurrence rule.
* An additional instance (not generated by the event’s recurrence rule) is removed from the recurrenceOverrides.

In each of the latter 3 cases, the message is sent to all participants.

5.8.2.3. REPLY

When the server is _not_ the source for the event, a REPLY message ([RFC5546], Section 3.2.3) is sent for every participant corresponding to one of the user’s ParticipantIdentitities in the account if any of the following changes are made:

* The "participationStatus" property of the participant is changed, either for the base event or a specific instance, to any value other than "needs-action".
* The event is created and the participationStatus is not "needs-action".
* The event is destroyed and the participationStatus was not "needs-action".
If the participationStatus property is changed for just a single instance of the event (i.e., set in recurrenceOverrides), the REPLY message SHOULD be sent for just that recurrence id.

5.9. CalendarEvent/copy

This is a standard "/copy" method as described in [RFC8620], Section 5.4.

5.10. CalendarEvent/query

This is a standard "/query" method as described in [RFC8620], Section 5.5, with two extra arguments:

* *expandRecurrences*: Boolean (default: false) If true, the server will expand any recurring event. If true, the filter MUST be just a FilterCondition (not a FilterOperator) and MUST include both a before and after property. This ensures the server is not asked to return an infinite number of results.
* *timeZone*: String The time zone for before/after filter conditions (default: "Etc/UTC")

If expandRecurrences is true, a separate id will be returned for each instance of a recurring event that matches the query. This synthetic id is opaque to the client, but allows the server to resolve the id + recurrence id for "/get" and "/set" operations. Otherwise, a single id will be returned for matching recurring events that represents the entire event.

There is no necessary correspondence between the ids of different instances of the same expanded event.

The following additional error may be returned instead of the CalendarEvent/query response:

cannotCalculateOccurrences: the server cannot expand a recurrence required to return the results for this query.

5.10.1. Filtering

A *FilterCondition* object has the following properties:

* *inCalendars*: Id[]|null A list of calendar ids. An event must be in ANY of these calendars to match the condition.
* *after*: LocalDate|null The end of the event, or any recurrence of the event, in the time zone given as the timeZone argument, must be after this date to match the condition.
* *before*: LocalDate|null The start of the event, or any recurrence of the event, in the time zone given as the timeZone argument, must be before this date to match the condition.

* *text*: String|null Looks for the text in the _title_, _description_, _locations_ (matching name/description), _participants_ (matching name/email) and any other textual properties of the event or any recurrence of the event.

* *title*: String|null Looks for the text in the _title_ property of the event, or the overridden _title_ property of a recurrence.

* *description*: String|null Looks for the text in the _description_ property of the event, or the overridden _description_ property of a recurrence.

* *location*: String|null Looks for the text in the _locations_ property of the event (matching name/description of a location), or the overridden _locations_ property of a recurrence.

* *owner*: String|null Looks for the text in the name or email fields of a participant in the _participants_ property of the event, or the overridden _participants_ property of a recurrence, where the participant has a role of "owner".

* *attendee*: String|null Looks for the text in the name or email fields of a participant in the _participants_ property of the event, or the overridden _participants_ property of a recurrence, where the participant has a role of "attendee".

* *participationStatus*: Must match. If owner/attendee condition, status must be of that participant. Otherwise any.

* *uid*: String The uid of the event is exactly the given string.

If expandRecurrences is true, all conditions must match against the same instance of a recurring event for the instance to match. If expandRecurrences is false, all conditions must match, but they may each match any instance of the event.

If zero properties are specified on the FilterCondition, the condition MUST always evaluate to true. If multiple properties are specified, ALL must apply for the condition to be true (it is equivalent to splitting the object into one-property conditions and making them all the child of an AND filter operator).

The exact semantics for matching String fields is *deliberately not defined* to allow for flexibility in indexing implementation, subject to the following:

* Text SHOULD be matched in a case-insensitive manner.

 * Text contained in either (but matched) single or double quotes SHOULD be treated as a *phrase search*, that is a match is required for that exact sequence of words, excluding the surrounding quotation marks. Use ",, ‘ and \ to match a literal ",, ’ and \ respectively in a phrase.
* Outside of a phrase, white-space SHOULD be treated as dividing separate tokens that may be searched for separately in the event, but MUST all be present for the event to match the filter.
* Tokens MAY be matched on a whole-word basis using stemming (so for example a text search for bus would match "buses" but not "business").

5.10.2. Sorting

The following properties MUST be supported for sorting:

* start
* uid
* recurrenceId

The following properties SHOULD be supported for sorting:

* created
* updated

5.11. CalendarEvent/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620], Section 5.6.

5.12. Examples

TODO: Add example of how to get event by uid: query uid=foo and backref. Return multiple with recurrenceId set (user invited to specific instances of recurring event).

6. Alerts

Alerts may be specified on events as described in [RFC8984], Section 4.5.

Alerts MUST only be triggered for events in calendars where the user is subscribed and either the user owns the calendar or the calendar account’s "shareesActAs" capability is "self".

When an alert with an "email" action is triggered, the server MUST send an email to the user to notify them of the event. The contents of the email is implementation specific. Clients MUST NOT perform an action for these alerts.
When an alert with a "display" action is triggered, clients SHOULD display an alert in a platform-appropriate manner to the user to remind them of the event. Clients with a full offline cache of events may choose to calculate when alerts should trigger locally. Alternatively, they can subscribe to push events from the server.

6.1. Default alerts

If the "useDefaultAlerts" property of an event is true, the alerts are taken from the "defaultAlertsWithTime" or "defaultAlertsWithoutTime" property of all Calendars the event is in, as described in Section XXX, rather than the "alerts" property of the CalendarEvent.

When using default alerts, the "alerts" property of the event is ignored except for the following:

* The "acknowledged" time for an alert is stored here when a default alert for the event is dismissed. The id of the alert MUST be the same as the id of the default alert in the calendar. See Section XXX on acknowledging alerts.
* If an alert has a relatedTo property where the parent is the id of one of the calendar default alerts, it is processed as normal and not ignored. This is to support snoozing default alerts; see Section XXX.

6.2. Acknowledging an alert

To dismiss an alert, clients set the "acknowledged" property of the Alert object to the current date-time. If the alert was a calendar default, it may need to be added to the event at this point in order to acknowledge it. When other clients fetch the updated CalendarEvent they SHOULD automatically dismiss or suppress duplicate alerts (alerts with the same alert id that triggered on or before the "acknowledged" date-time) and alerts that have been removed from the event.

Setting the "acknowledged" property MUST NOT create a new recurrence override. For a recurring calendar object, the "acknowledged" property of the parent object MUST be updated, unless the alert is already overridden in the "recurrenceOverrides" property.

6.3. Snoozing an alert

Users may wish to dismiss an alert temporarily and have it come back after a specific period of time. To do this, clients MUST:

1. Acknowledge the alert as described in Section XXX.
2. Add a new alert to the event with an AbsoluteTrigger for the date-time the alert has been snoozed until. Add a "relatedTo" property to the new alert, setting the "parent" relation to point to the original alert. This MUST NOT create a new recurrence override; it is added to the same "alerts" property that contains the alert that was acknowledged in step 1.

When acknowledging a snoozed alert (i.e. one with a parent relatedTo pointing to the original alert), the client SHOULD delete the alert rather than setting the "acknowledged" property.

6.4. Push events

Servers that support the urn:ietf:params:jmap:calendars capability MUST support registering for the pseudo-type "CalendarAlert" in push subscriptions and event source connections, as described in [RFC8620], Sections 7.2 and 7.3.

If requested, a CalendarAlert notification will be pushed whenever an alert is triggered for the user. For Event Source connections, this notification is pushed as an event called "calendarAlert".

A *CalendarAlert* object has the following properties:

* *@type*: String This MUST be the string "CalendarAlert".
* *accountId*: String The account id for the calendar in which the alert triggered.
* *calendarEventId*: String The CalendarEvent id for the alert that triggered.
* *uid*: String The uid property of the CalendarEvent for the alert that triggered.
* *recurrenceId*: String|null The recurrenceId for the instance of the event for which this alert is being triggered, or null if the event is not recurring.
* *alertId*: String The id for the alert that triggered.

7. Calendar Event Notifications

The CalendarEventNotification data type records changes made by external entities to events in calendars the user is subscribed to. Notifications are stored in the same Account as the CalendarEvent that was changed.

Notifications are only created by the server; users cannot create them directly. Clients SHOULD present the list of notifications to the user and allow them to dismiss them. To dismiss a notification you use a standard "/set" call to destroy it.
The server SHOULD create a CalendarEventNotification whenever an event is added, updated or destroyed by another user or due to receiving an iTIP [RFC5546] or other scheduling message in a calendar this user is subscribed to. The server SHOULD NOT create notifications for events implicitly deleted due to the containing calendar being deleted.

The CalendarEventNotification does not have any per-user data. A single instance may therefore be maintained on the server for all sharees of the notification. The server need only keep track of which users have yet to destroy the notification.

7.1. Auto-deletion of Notifications

The server MAY limit the maximum number of notifications it will store for a user. When the limit is reached, any new notification will cause the previously oldest notification to be automatically deleted.

The server MAY coalesce events if appropriate, or remove events that it deems are no longer relevant or after a certain period of time. The server SHOULD automatically destroy a notification about an event if the user updates or destroys that event (e.g. if the user sends an RSVP for the event).

7.2. Object Properties

The *CalendarEventNotification* object has the following properties:

* `id`: String The id of the CalendarEventNotification.
* `created`: UTCDate The time this notification was created.
* `changedBy`: Person Who made the change.
 - `name`: String The name of the person who made the change.
 - `email`: String The email of the person who made the change, or null if no email is available.
 - `principalId`: String|null The id of the calendar principal corresponding to the person who made the change, if any. This will be null if the change was due to receiving an iTIP message.
 - `comment`: String|null Comment sent along with the change by the user that made it. (e.g. COMMENT property in an iTIP message).
 - `type`: String This MUST be one of
 - created
 - updated
 - destroyed
* `calendarEventId`: String The id of the CalendarEvent that this notification is about.
* `isDraft`: Boolean (created/updated only) Is this event a draft?
* *event*: JSEvent The data before the change (if updated or destroyed), or the data after creation (if created).
* *event PATCH*: PatchObject (updated only) A patch encoding the change between the data in the event property, and the data after the update.

To reduce data, if the change only affects a single instance of a recurring event, the server MAY set the event and event PATCH properties for the instance; the calendarEventId MUST still be for the base event.

7.3. CalendarEventNotification/get

This is a standard "/get" method as described in [RFC8620], Section 5.1.

7.4. CalendarEventNotification/changes

This is a standard "/changes" method as described in [RFC8620], Section 5.2.

7.5. CalendarEventNotification/set

This is a standard "/changes" method as described in [RFC8620], Section 5.3.

Only destroy is supported; any attempt to create/update MUST be rejected with a forbidden SetError.

7.6. CalendarEventNotification/query

This is a standard "/query" method as described in [RFC8620], Section 5.5.

7.6.1. Filtering

A *FilterCondition* object has the following properties:

* *after*: UTCDate|null The creation date must be on or after this date to match the condition.
* *before*: UTCDate|null The creation date must be before this date to match the condition.
* *type*: String The type property must be the same to match the condition.
* *calendarEventIds*: Id[]|null A list of event ids. The calendarEventId property of the notification must be in this list to match the condition.
7.6.2. Sorting

The "created" property MUST be supported for sorting.

7.7. CalendarEventNotification/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620], Section 5.6.

8. CalendarPreferences

A CalendarPreferences object stores information about the principal’s preferences and defaults.

* *id*: Id (immutable; server-set) The id of the object. There is only ever one CalendarPreferences object, and its id is "singleton".

* *defaultCalendarId*: Id|null The id of the principal’s default calendar. If set, clients should default to this calendar when creating new events in this account, unless overridden by a local preference. When the principal is invited to an event, this is the calendar to which it will be added by the server.

If null, no default is defined and clients/servers may choose any calendar.

* *defaultParticipantIdentityId*: Id|null The default participant identity to use for the principal when adding participants to an event. If set, when the user adds an invitee to an event without an owner, the client should use this participant identity to add the principal as an owner participant of the event.

If null, no default is defined and clients/servers may choose any participant identity.

The following JMAP methods are supported.

8.1. CalendarPreferences/get

This is a standard "/get" method as described in [RFC8620], Section 5.1.

There MUST only be exactly one CalendarPreferences object in an account. It MUST have the id "singleton".
8.2. CalendarPreferences/set

This is a standard "/set" method as described in [RFC8620], Section 5.3. There is always exactly one CalendarPreferences object in an account; it cannot be created or destroyed, only updated.

9. Security Considerations

All security considerations of JMAP [RFC8620] and JSCalendar [RFC8984] apply to this specification. Additional considerations specific to the data types and functionality introduced by this document are described in the following subsections.

9.1. Privacy

Calendars often contain the precise movements, activities, and contacts of people, and is therefore intensely private data. Privacy leaks can have real world consequences, and calendar servers and clients MUST be mindful of the need to keep all data secure.

Servers MUST enforce the ACLs set on calendars to ensure only authorised data is shared. The additional restrictions specified by the "privacy" property of a JSEvent object (see [RFC8984] Section 4.4.3) MUST also be enforced.

Users may have multiple Participant Identities that they use for areas of their life kept private from one another. Using one identity with an event MUST NOT leak the existence of any other identity. For example, sending an RSVP from identity worklife@example.com MUST NOT reveal anything about another identity present in the account such as privatelife@example.org.

Servers SHOULD enforce that invitations sent to external systems are only transmitted via secure encrypted and signed connections to protect against eavesdropping and modification of data.

9.2. Spoofing

When receiving events and updates from external systems, it can be hard to verify that the identity of the author is who they claim to be. When receiving events via email, DKIM [RFC6376] and S/MIME [RFC8551] are two mechanisms that may be used to verify certain properties about the email data, which can be correlated with the event information.
9.3. Denial-of-service

There are many ways in which a calendar user can make a request liable to cause a calendar server to spend an inordinate amount of processing time. Care must be taken to limit resources allocated to any one user to ensure the system does not become unresponsive. The following subsections list particularly hazardous areas.

9.3.1. Expanding Recurrences

Recurrence rules can be crafted to occur as frequently as every second. Servers MUST be careful to not allow resources to be exhausted when expanding, and limit the number of expansions they will create. Equally, rules can be generated that never create any occurrences at all. Servers MUST be careful to limit the work spent iterating in search of the next occurrence.

9.3.2. Firing alerts

An alert firing for an event can cause a notification to be pused to the user’s devices, or to send them an email. Servers MUST rate limit the number of alerts sent for any one user. The combination of recurring events with multiple alerts can in particular define unreasonably frequent alerts, leading to denial of service for either the server processing them or the user’s devices receiving them.

Similarly, clients generating alerts from the data on device must take the same precautions.

The "email" alert type (see RFC8984, Section 4.5.2) causes an email to be sent when triggered. Clients MUST ignore this alert type; the email is sent only by the calendar server. There is no mechanism in JSCalendar to specify a particular email address: the server MUST only allow alerts to be sent to an address it has verified as belonging to the user to avoid this being used as a spamming vector.

9.3.3. Load spikes

Since most events are likely to start on the hour mark, a large spike of activity is often seen at these times, with particularly large spikes at certain common times in the time zone of the server’s user base. In particular, a large number of alerts (across different users and events) will be triggered at the same time. Servers may mitigate this somewhat by adding jitter to the triggering of the alerts; it is RECOMMENDED to fire them slightly early rather than slightly late if needed to spread load.
9.4. Spam

Invitations received from an untrusted source may be spam. If this is added to the user’s calendar automatically it can be very obtrusive, especially if it is a recurring event that now appears every day. Incoming invitations to events should be subject to spam scanning, and suspicious events should not be added to the calendar automatically.

Servers should strip any alerts on invitations when adding to the user’s calendar; the useDefaultAlerts property should be set instead to apply the user’s preferences.

Similarly, a malicious user may use a calendar system to send spam by inviting people to an event. Outbound iTIP should be subject to all the same controls used on outbound email systems, and rate limited as appropriate. A rate limit on the number of distinct recipients as well as overall messages is recommended.

10. IANA Considerations

10.1. JMAP Capability Registration for "calendars"

IANA will register the "calendars" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:calendars

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section XXX

10.2. JMAP Capability Registration for "calendars:preferences"

IANA will register the "calendars:preferences" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:calendars:preferences

Specification document: this document

Intended use: common

Change Controller: IETF
Security and privacy considerations: this document, Section XXX

10.3. JMAP Capability Registration for "principals:availability"

IANA will register the "principals:availability" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:principals:availability

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section XXX

10.4. JSCalendar Property Registrations

IANA will register the following additional properties in the JSCalendar Properties Registry.

10.4.1. id

Property Name: id

Property Type: Id

Property Context: JSEvent, JSTask

Intended Use: Reserved

10.4.2. calendarIds

Property Name: calendarIds

Property Type: Id[Boolean]

Property Context: JSEvent, JSTask

Intended Use: Reserved

10.4.3. isDraft

Property Name: isDraft

Property Type: Boolean
Property Context: JSEvent, JSTask
Intended Use: Reserved

10.4.4. utcStart

Property Name: utcStart
Property Type: UTCDatetime
Property Context: JSEvent, JSTask
Intended Use: Reserved

10.4.5. utcEnd

Property Name: utcEnd
Property Type: UTCDatetime
Property Context: JSEvent, JSTask
Intended Use: Reserved

10.4.6. mayInviteSelf

Property Name: mayInviteSelf
Property Type: Boolean (default: false)
Property Context: JSEvent, JSTask
Reference: This document, Section XXX.
Intended Use: Common

10.4.7. mayInviteOthers

Property Name: mayInviteOthers
Property Type: Boolean (default: false)
Property Context: JSEvent, JSTask
Reference: This document, Section XXX.
Intended Use: Common
10.4.8. hideAttendees

Property Name: hideAttendees

Property Type: Boolean (default: false)

Property Context: JSEvent, JSTask

Reference: This document, Section XXX.

Intended Use: Common

11. Normative References

12. Informative References

Authors’ Addresses

Neil Jenkins (editor)
Fastmail
PO Box 234, Collins St West
Melbourne VIC 8007
Australia
Email: neilj@fastmailteam.com
URI: https://www.fastmail.com

Michael Douglass (editor)
Spherical Cow Group
226 3rd Street
Troy, NY 12180
United States of America
Email: mdouglass@sphericalcowgroup.com
URI: http://sphericalcowgroup.com
JSContact: A JSON representation of contact data
draft-ietf-jmap-jscontact-10

Abstract

This specification defines a data model and JSON representation of contact card information that can be used for data storage and exchange in address book or directory applications. It aims to be an alternative to the vCard data format and to be unambiguous, extendable and simple to process. In contrast to the JSON-based jCard format, it is not a direct mapping from the vCard data model and expands semantics where appropriate.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 July 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
Table of Contents

1. Introduction 3
 1.1. Relation to the xCard and jCard formats 4
 1.2. Terminology 4
 1.3. Vendor-specific Property Extensions and Values 4
 1.4. Type Signatures 5
 1.5. Data types 5
 1.5.1. Context 5
 1.5.2. Id 6
 1.5.3. PatchObject 6
 1.5.4. Preference 7
 1.5.5. UnsignedInt 7
 1.5.6. UTCDateTime 8
 2. Card .. 8
 2.1. Metadata properties 8
 2.1.1. @type 8
 2.1.2. uid 8
 2.1.3. prodId 8
 2.1.4. created 8
 2.1.5. updated 9
 2.1.6. kind 9
 2.1.7. relatedTo 9
 2.1.8. language 10
 2.2. Name and Organization properties 10
 2.2.1. name 10
 2.2.2. fullName 11
 2.2.3. nickNames 11
 2.2.4. organizations 12
 2.2.5. titles 12
 2.2.6. speakToAs 12
 2.3. Contact and Resource properties 13
 2.3.1. emails 13
 2.3.2. phones 14
 2.3.3. online 15
 2.3.4. photos 15
 2.3.5. preferredContactMethod 16
 2.3.6. preferredContactLanguages 16
 2.4. Address and Location properties 17
1. Introduction

This document defines a data model for contact card data normally used in address book or directory applications and services. It aims to be an alternative to the vCard data format [RFC6350] and to provide a JSON-based standard representation of contact card data.

The key design considerations for this data model are as follows:

* Most of the initial set of attributes should be taken from the vCard data format [RFC6350] and extensions ([RFC6473], [RFC6474], [RFC6715], [RFC6869], [RFC8605]). The specification should add new attributes or value types, or not support existing ones, where appropriate. Conversion between the data formats need not fully preserve semantic meaning.

* The attributes of the cards data represented must be described as a simple key-value pair, reducing complexity of its representation.

* The data model should avoid all ambiguities and make it difficult to make mistakes during implementation.
Extensions, such as new properties and components, MUST NOT lead to requiring an update to this document.

The representation of this data model is defined in the I-JSON format [RFC7493], which is a strict subset of the JavaScript Object Notation (JSON) Data Interchange Format [RFC8259]. Using JSON is mostly a pragmatic choice: its widespread use makes Card easier to adopt, and the availability of production-ready JSON implementations eliminates a whole category of parser-related interoperability issues.

1.1. Relation to the xCard and jCard formats

The xCard [RFC6351] and jCard [RFC7095] specifications define alternative representations for vCard data, in XML and JSON format respectively. Both explicitly aim to not change the underlying data model. Accordingly, they are regarded as equal to vCard in the context of this document.

1.2. Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

1.3. Vendor-specific Property Extensions and Values

Vendors MAY add additional properties to the contact object to support their custom features. To avoid conflict, the names of these properties MUST be prefixed by a domain name controlled by the vendor followed by a colon, e.g., "example.com:customprop". If the value is a new JSContact object, it either MUST include an "@type" property, or it MUST explicitly be specified to not require a type designator. The type name MUST be prefixed with a domain name controlled by the vendor.

Some JSContact properties allow vendor-specific value extensions. Such vendor-specific values MUST be prefixed by a domain name controlled by the vendor followed by a colon, e.g., "example.com:customrel".

Vendors are strongly encouraged to register any new property values or extensions that are useful to other systems as well, rather than use a vendor-specific prefix.
1.4. Type Signatures

Type signatures are given for all JSON values in this document. The following conventions are used:

* * - The type is undefined (the value could be any type, although permitted values may be constrained by the context of this value).

* String - The JSON string type.

* Number - The JSON number type.

* Boolean - The JSON boolean type.

* A[B] - A JSON object where the keys are all of type A, and the values are all of type B.

* A[] - An array of values of type A.

* A|B - The value is either of type A or of type B.

1.5. Data types

In addition to the standard JSON data types, a couple of additional data types are common to the definitions of JSContact objects and properties.

1.5.1. Context

Contact information typically is associated with a context in which it should be used. For example, someone might have distinct phone numbers for work and private contexts. The Context data type enumerates common contexts.

Common context values are:

* private: The contact information may be used to contact the card holder in a private context.

* work: The contact information may be used to contact the card holder in a professional context.

Additional allowed values may be defined in the properties or data types that make use of the Context data type, registered in a future RFC, or a vendor-specific value.
1.5.2. Id

Where Id is given as a data type, it means a String of at least 1 and a maximum of 255 octets in size, and it MUST only contain characters from the URL and Filename Safe base64url alphabet, as defined in Section 5 of [RFC4648], excluding the pad character (=). This means the allowed characters are the ASCII alphanumeric characters (A-Za-z0-9), hyphen (-), and underscore (_).

In many places in JSContact a JSON map is used where the map keys are of type Id and the map values are all the same type of object. This construction represents an unordered set of objects, with the added advantage that each entry has a name (the corresponding map key). This allows for more concise patching of objects, and, when applicable, for the objects in question to be referenced from other objects within the JSContact object.

Unless otherwise specified for a particular property, there are no uniqueness constraints on an Id value (other than, of course, the requirement that you cannot have two values with the same key within a single JSON map). For example, two Card objects might use the same Ids in their respective photos properties. Or within the same Card object the same Id could appear in the emails and phones properties. These situations do not imply any semantic connections among the objects.

1.5.3. PatchObject

A PatchObject is of type String[*], and represents an unordered set of patches on a JSON object. Each key is a path represented in a subset of JSON pointer format [RFC6901]. The paths have an implicit leading /, so each key is prefixed with / before applying the JSON pointer evaluation algorithm.

A patch within a PatchObject is only valid if all of the following conditions apply:

1. The pointer MUST NOT reference inside an array (i.e., you MUST NOT insert/delete from an array; the array MUST be replaced in its entirety instead).

2. All parts prior to the last (i.e., the value after the final slash) MUST already exist on the object being patched.

3. There MUST NOT be two patches in the PatchObject where the pointer of one is the prefix of the pointer of the other, e.g., addresses/1/city and addresses.
4. The value for the patch MUST be valid for the property being set (of the correct type and obeying any other applicable restrictions), or if null the property MUST be optional.

The value associated with each pointer determines how to apply that patch:

* If null, remove the property from the patched object. If the key is not present in the parent, this a no-op.

* If non-null, set the value given as the value for this property (this may be a replacement or addition to the object being patched).

A PatchObject does not define its own @type property. Instead, a @type property in a patch MUST be handled as any other patched property value.

Implementations MUST reject in its entirety a PatchObject if any of its patches is invalid. Implementations MUST NOT apply partial patches.

1.5.4. Preference

This data type allows to define a preference order on same-typed contact information. For example, a card holder may have two email addresses and prefer to be contacted with one of them.

A preference value MUST be an integer number in the range 1 and 100. Lower values correspond to a higher level of preference, with 1 being most preferred. If no preference is set, then the contact information MUST be interpreted as being least preferred.

Note that the preference only is defined in relation to contact information of the same type. For example, the preference orders within emails and phone numbers are independent of each other. Also note that the _preferredContactMethod_ property allows to define a preferred contact method across method types.

1.5.5. UnsignedInt

Where UnsignedInt is given as a data type, it means an integer in the range 0 <= value <= 2^53-1, represented as a JSON Number.
1.5.6. UTCDateTime

This is a string in [RFC3339] date-time format, with the further restrictions that any letters MUST be in uppercase, and the time offset MUST be the character Z. Fractional second values MUST NOT be included unless non-zero and MUST NOT have trailing zeros, to ensure there is only a single representation for each date-time.

For example, 2010-10-10T10:10:10.003Z is conformant, but 2010-10-10T10:10:10.000Z is invalid and is correctly encoded as 2010-10-10T10:10:10Z.

2. Card

MIME type: application/jscontact+json;type=card

A Card object stores information about a person, organization or company.

2.1. Metadata properties

2.1.1. @type

Type: String (mandatory).

Specifies the type of this object. This MUST be Card.

2.1.2. uid

Type: String (mandatory).

An identifier, used to associate the object as the same across different systems, addressbooks and views. [RFC4122] describes a range of established algorithms to generate universally unique identifiers (UUID), and the random or pseudo-random version is recommended. For compatibility with [RFC6350] UIDs, implementations MUST accept both URI and free-form text.

2.1.3. prodId

Type: String (optional).

The identifier for the product that created the Card object.

2.1.4. created

Type: UTCDateTime (optional).
The date and time when this Card object was created.

2.1.5. updated

Type: UTCDateTime (optional).

The date and time when the data in this Card object was last modified.

2.1.6. kind

Type: String (optional). The kind of the entity the Card represents.

The value MUST be either one of the following values, registered in a future RFC, or a vendor-specific value:

* individual: a single person
* org: an organization
* location: a named location
* device: a device, such as appliances, computers, or network elements
* application: a software application

2.1.7. relatedTo

Type: String[Relation] (optional).

Relates the object to other Card and CardGroup objects. This is represented as a map, where each key is the uid of the related Card or CardGroup and the value defines the relation. The Relation object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be Relation.

* relation: String[Boolean] (optional, default: empty Object) Describes how the linked object is related to the linking object. The relation is defined as a set of relation types. If empty, the relationship between the two objects is unspecified. Keys in the set MUST be one of the RELATED property [RFC6350] type parameter values, or an IANA-registered value, or a vendor-specific value. The value for each key in the set MUST be true.
2.1.8. language

Type: String (optional).

This defines the locale in which free-text property values can be assumed to be written in. The value MUST be a language tag as defined in [RFC5646]. Note that such values MAY be localized in the localizations Section 2.5.1 property.

2.2. Name and Organization properties

2.2.1. name

Type: Name (optional).

The name of the entity represented by this Card.

A Name object has the following properties

* @type: Name (mandatory). Specifies the type of this object. This MUST be Name.

* components: NameComponent[] (mandatory). The components making up the name. The component list MUST have at least one entry. Name components SHOULD be ordered such that their values joined by whitespace produce a valid full name of this entity. Doing so, implementations MAY ignore any components of type separator.

* locale: String (optional). The locale of the name. The value MUST be a language tag as defined [RFC5646].

A NameComponent object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be NameComponent.

* value: String (mandatory). The value of this name component.

* type: String (mandatory). The type of this name component. The value MUST be either one of the following values, registered in a future RFC, or a vendor-specific value:

 - prefix. The value is a honorific title(s), e.g. "Mr", "Ms", "Dr".

 - given. The value is a given name, also known as "first name", "personal name".
- surname. The value is a surname, also known as "last name", "family name".
- middle. The value is a middle name, also known as "additional name".
- suffix. The value is a honorific suffix, e.g. "B.A.", "Esq.".
- separator. A formatting separator for two name components. The value property of the component includes the verbatim separator, for example a newline character.

* nth: UnsignedInt (optional, default: 1). Defines the rank of this name component to other name components of the same type. If set, the property value MUST be higher than or equal to 1.

For example, two name components of type surname may have their nth property value set to 1 and 2, respectively. In this case, the first name component defines the surname, and the second name component the secondary surname.

Note that this property value does not indicate the order in which to print name components of the same type. Some cultures print the secondary surname before the first surname, others the first before the second. Implementations SHOULD inspect the locale property of the Name object to determine the appropriate formatting. They MAY print name components in order of appearance in the components property of the Name object.

2.2.2. fullName

Type: String (optional).

The full name (e.g. the personal name and surname of an individual, the name of an organization) of the entity represented by this card. The purpose of this property is to define a name, even if the individual name components are not known. In addition, it is meant to provide alternative versions of the name for internationalisation. Implementations SHOULD prefer using the _name_ property over this one and SHOULD NOT store the concatenated name component values in this property.

2.2.3. nickNames

Type: String[] (optional).

The nick names of the entity represented by this card.
2.2.4. organizations

Type: Id[Organization] (optional).

The companies or organization names and units associated with this card. An Organization object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be Organization.
* name: String (mandatory). The name of this organization.
* units: String[] (optional). Additional levels of organizational unit names.

2.2.5. titles

Type: Id[Title] (optional).

The job titles or functional positions of the entity represented by this card. A Title has object the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be Title.
* title: String (mandatory). The title of the entity represented by this card.
* organization: Id (optional). The id of the organization in which this title is held.

2.2.6. speakToAs

Type: SpeakToAs (optional).

Provides information how to address, speak to or refer to the entity that is represented by this card. A SpeakToAs object has the following properties, of which at least one property other than @type MUST be set:

* @type: String (mandatory). Specifies the type of this object. This MUST be SpeakToAs.
* grammaticalGender: String (optional). Defines which grammatical gender to use in salutations and other grammatical constructs. Allowed values are:
 - animate
- female
- inanimate
- male
- neuter

Note that the grammatical gender does not allow to infer the gender identities or biological sex of the contact.

* pronouns: String (optional). Defines the gender pronouns that the contact chooses to use for themselves. Any value or form is allowed. Examples in English include she/her and they/them/their.

The property values SHOULD be localized in the language defined in the language property. They MAY be overridden in the localizations property (Section 2.5.1).

2.3. Contact and Resource properties

2.3.1. emails

Type: Id[EmailAddress] (optional).

The email addresses to contact the entity represented by this card. An EmailAddress object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be EmailAddress.

* email: String (mandatory). The email address. This MUST be an _addr-spec_ value as defined in Section 3.4.1 of [RFC5322].

* contexts: Context[Boolean] (optional) The contexts in which to use this email address. The value for each key in the object MUST be true.

* pref: Preference (optional) The preference of this email address in relation to other email addresses.

* label: String (optional). A label describing the value in more detail.
2.3.2. phones

Type: Id[Phone] (optional).

The phone numbers to contact the entity represented by this card. A Phone object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be Phone.

* phone: String (mandatory). The phone value, as either a URI or a free-text phone number. Typical URI schemes are the [RFC3966] tel or [RFC3261] sip schemes, but any URI scheme is allowed.

* features: String[Boolean] (optional). The set of contact features that this phone number may be used for. The set is represented as an object, with each key being a method type. The value for each key in the object MUST be true. The method type MUST be either one of the following values, registered in a future RFC, or a vendor-specific value:
 - voice The number is for calling by voice.
 - fax The number is for sending faxes.
 - pager The number is for a pager or beeper.
 - text The number supports text messages (SMS).
 - cell The number is for a cell phone.
 - textphone The number is for a device for people with hearing or speech difficulties.
 - video The number supports video conferencing.

* contexts: Context[Boolean] (optional) The contexts in which to use this number. The value for each key in the object MUST be true.

* pref: Preference (optional) The preference of this number in relation to other numbers.

* label: String (optional). A label describing the value in more detail.
2.3.3. online

Type: Id[Resource] (optional).

The online resources and services that are associated with the entity represented by this card. A Resource object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be Resource.

* resource: String (mandatory). The resource value, where the allowed value form is defined by the the _type_ property. In any case the value MUST NOT be empty.

* type: String (optional). The type of the resource value. Allowed values are:

 - uri The resource value is a URI, e.g. a website link. This MUST be a valid _URI_ as defined in Section 3 of [RFC3986] and updates.

 - username The resource value is a username associated with the entity represented by this card (e.g. for social media, or an IM client). The _label_ property SHOULD be included to identify what service this is for. For compatibility between clients, this label SHOULD be the canonical service name, including capitalisation. e.g. Twitter, Facebook, Skype, GitHub, XMPP. The resource value may be any non-empty free text.

* mediaType: String (optional). Used for URI resource values. Provides the media type [RFC2046] of the resource identified by the URI.

* contexts: Context[Boolean] (optional) The contexts in which to use this resource. The value for each key in the object MUST be true.

* pref: Preference (optional) The preference of this resource in relation to other resources.

* label: String (optional). A label describing the value in more detail.

2.3.4. photos

Type: Id[File] (optional).
A map of photo ids to File objects that contain photographs or images associated with this card. A typical use case is to include an avatar for display along the contact name.

A File object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be File.

* href: String (mandatory). A URI where to fetch the data of this file.

* mediaType: String (optional). The content-type of the file, if known.

* size: UnsignedInt (optional). The size, in octets, of the file when fully decoded (i.e., the number of octets in the file the user would download), if known.

* pref: Preference (optional) The preference of this photo in relation to other photos.

* label: String (optional). A label describing the value in more detail.

2.3.5. preferredContactMethod

Type : String (optional)

Defines the preferred method to contact the holder of this card. The value MUST be the property names: emails, phones, online.

2.3.6. preferredContactLanguages

Type : String[ContactLanguage[]} (optional)

Defines the preferred languages for contacting the entity associated with this card. The keys in the object MUST be [RFC5646] language tags. The values are a (possibly empty) list of contact language preferences for this language. A valid ContactLanguage object MUST have at least one of its properties set.

A ContactLanguage object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be ContactLanguage.
* context: Context (optional). Defines the context in which to use this language.

* pref: Preference (optional). Defines the preference of this language in relation to other languages of the same context.

Also see the definition of the VCARD LANG property (Section 6.4.4., [RFC6350]).

2.4. Address and Location properties

2.4.1. addresses

Type: Id[Address] (optional).

A map of address ids to Address objects, containing physical locations. An Address object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be Address.

* fullAddress: String (optional). The complete address, excluding type and label. This property is mainly useful to represent addresses of which the individual address components are unknown, or to provide localized representations.

* street: StreetComponent[] (optional). The street address. The concatenation of the component values, separated by whitespace, SHOULD result in a valid street address for the address locale. Doing so, implementations MAY ignore any separator components. The StreetComponent object type is defined in the paragraph below.

* locality: String (optional). The city, town, village, post town, or other locality within which the street address may be found.

* region: String (optional). The province, such as a state, county, or canton within which the locality may be found.

* country: String (optional). The country name.

* postcode: String (optional). The postal code, post code, ZIP code or other short code associated with the address by the relevant country’s postal system.

* countryCode: String (optional). The ISO-3166-1 country code.

* timeZone: String (optional) Identifies the time zone this address is located in. This either MUST be a time zone name registered in the IANA Time Zone Database (https://www.iana.org/time-zones), or it MUST be a valid TimeZoneId as defined in [RFC8984]. For the latter, a corresponding time zone MUST be defined in the timeZones property.

* contexts: Context[Boolean] (optional). The contexts of the address information. In addition to the common contexts, allowed values are:
 - billing An address to be used for billing.
 - postal An address to be used for delivering physical items. The value for each key in the object MUST be true.

* pref: Preference (optional) The preference of this address in relation to other addresses.

* label: String (optional). A label describing the value in more detail.

A StreetComponent object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be StreetComponent.

* type: String (mandatory). The type of this street component. The value MUST be either one of the following values, registered in a future RFC, or a vendor-specific value:
 - name. The street name.
 - number. The street number.
 - apartment. The apartment number or identifier.
 - room. The room number or identifier.
 - extension. The extension designation or box number.
 - direction. The cardinal direction, e.g. "North".
 - building. The building or building part this address is located in.
 - floor. The floor this address is located on.
- postOfficeBox. The post office box number or identifier.

- separator. A separator for two street components. The value property of the component includes the verbatim separator, for example a newline character.

- unknown. A name component value for which no type is known.

 * value: String (mandatory). The value of this street component.

2.5. Multilingual properties

2.5.1. localizations

Type: String[PatchObject] (optional).

A map of language tags [RFC5646] to patches, which localize a property value into the locale of the respective language tag. The paths in the PatchObject keys are relative to the Card object that includes the localizations property. A patch MUST NOT target the localizations property.

The following example shows a Card object, where one of its addresses Tokyo is localized for the jp locale.

```
"@type": "Card",
...
"addresses": {
  "addr1": {
    "@type": "Address",
    "locality": "Tokyo",
  }
},
"localizations": {
  "jp": {
    "addresses/addr1/locality": ""
  }
}
```

Figure 1

2.6. Additional properties

2.6.1. anniversaries

Type: Id[Anniversary] (optional).
These are memorable dates and events for the entity represented by this card. An Anniversary object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be Anniversary.

* type: String (optional). Specifies the type of the anniversary. This RFC predefines the following types, but implementations MAY use additional values:
 - birth: a birth day anniversary
 - death: a death day anniversary

* date: String (mandatory). The date of this anniversary, in the form "YYYY-MM-DD" (any part may be all 0s for unknown) or a [RFC3339] timestamp.

* place: Address (optional). An address associated with this anniversary, e.g. the place of birth or death.

* label: String (optional). A label describing the value in more detail.

2.6.2. personalInfo

Type: Id[PersonalInformation] (optional).

Defines personal information about the entity represented by this card. A PersonalInformation object has the following properties:

* @type: String (mandatory). Specifies the type of this object. This MUST be PersonalInformation.

* type: String (mandatory). Specifies the type for this personal information. Allowed values are:
 - expertise: a field of expertise or credential
 - hobby: a hobby
 - interest: an interest

* value: String (mandatory). The actual information. This generally is free-text, but future specifications MAY restrict allowed values depending on the type of this PersonalInformation.
2.6.3. notes

Type: String (optional).

Arbitrary notes about the entity represented by this card.

2.6.4. categories

Type: String[Boolean] (optional). The set of free-text or URI categories that relate to the card. The set is represented as an object, with each key being a category. The value for each key in the object MUST be true.

2.6.5. timeZones

Type: String[TimeZone] (optional). Maps identifiers of custom time zones to their time zone definitions. For a description of this property see the timeZones property definition in [RFC8984].

3. CardGroup

MIME type: application/jscontact+json;type=cardgroup

A CardGroup object represents a group of cards. Its members may be Cards or CardGroups.

3.1. Group properties

3.1.1. @type

Type: String (mandatory).

Specifies the type of this object. This MUST be CardGroup.

3.1.2. uid

Type: String (mandatory). The uid of this group. Both CardGroup and Card share the same namespace for the uid property.
3.1.3. members

Type: String[Boolean] (mandatory). The members of this group.

The set is represented as an object, with each key being the uid of another Card or CardGroup. The value for each key in the object MUST be true.

3.1.4. name

Type: String (optional). The user-visible name for the group, e.g. "Friends". This may be any UTF-8 string of at least 1 character in length and maximum 255 octets in size. The same name may be used by two different groups.

3.1.5. card

Type: Card (optional). The card that represents this group.

4. Implementation Status

NOTE: Please remove this section and the reference to [RFC7942] prior to publication as an RFC. This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [RFC7942]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist. According to [RFC7942], "this will allow reviewers and working groups to assign due consideration to documents that have the benefit of running code, which may serve as evidence of valuable experimentation and feedback that have made the implemented protocols more mature. It is up to the individual working groups to use this information as they see fit".

4.1. IIT-CNR/Registro.it

* Responsible Organization: Institute of Informatics and Telematics of National Research Council (IIT-CNR)/Registro.it

* Location: https://rdap.pubtest.nic.it/ (https://rdap.pubtest.nic.it/)
* Description: This implementation includes support for RDAP queries using data from the public test environment of .it ccTLD. The RDAP server returns responses including Card in place of jCard when queries contain the parameter jscard=1.

* Level of Maturity: This is an "alpha" test implementation.

* Coverage: This implementation includes all of the features described in this specification.

* Contact Information: Mario Loffredo, mario.loffredo@iit.cnr.it

5. IANA Considerations

TBD

6. Security Considerations

TBD

7. References

7.1. Normative References

7.2. Informative References

Internet-Draft JSContact January 2022

Authors’ Addresses
Robert Stepanek
FastMail
PO Box 234, Collins St West
Melbourne VIC 8007
Australia

Email: rsto@fastmailteam.com

Mario Loffredo
IIT-CNR
Via Moruzzi,1
56124 Pisa
Italy

Email: mario.loffredo@iit.cnr.it
Abstract

This document defines how to convert contact information as defined in the JSContact [draft-ietf-jmap-jscontact] specification from and to vCard.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 July 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.
Table of Contents

1. Introduction .. 3
 1.1. Motivation .. 3
 1.2. Scope and Caveats .. 4
 1.3. Conventions Used in This Document 4
 1.4. Extensions ... 4
2. Translating vCard properties to JSContact 5
 2.1. Common Parameters .. 5
 2.2. Unmapped JSContact Information 5
 2.3. General Properties 5
 2.3.1. BEGIN and END 6
 2.3.2. SOURCE .. 6
 2.3.3. KIND ... 6
 2.3.4. XML ... 7
 2.4. Identification Properties 7
 2.4.1. FN .. 7
 2.4.2. N and NICKNAME 7
 2.4.3. PHOTO ... 9
 2.4.4. BDAY, BIRTHPLACE, DEATHDATE, DEATHPLACE,
 ANNIVERSARY 9
 2.4.5. GENDER ... 11
 2.5. Delivery Addressing Properties 12
 2.5.1. ADR .. 12
 2.6. Communications Properties 15
 2.6.1. TEL ... 15
 2.6.2. EMAIL ... 15
 2.6.3. IMPP ... 16
 2.6.4. LANG ... 17
 2.7. Geographical Properties 18
 2.7.1. Time Zone Representation 18
 2.8. Organizational Properties 19
 2.8.1. TITLE and ROLE 19
 2.8.2. LOGO ... 20
 2.8.3. ORG .. 20
 2.8.4. MEMBER ... 21
 2.8.5. RELATED ... 23
 2.8.6. CONTACT-URI 24
 2.9. Personal Information Properties 24
 2.9.1. EXPERTISE ... 25
 2.9.2. HOBBY .. 25
 2.9.3. INTEREST ... 26
 2.9.4. ORG-DIRECTORY 27
 2.10. Explanatory Properties 28
 2.10.1. CATEGORIES 28
 2.10.2. NOTE ... 29
 2.10.3. PRODID .. 30
 2.10.4. REV ... 30
1. Introduction

1.1. Motivation

The JSContact specification [draft-ietf-jmap-jscontact] has been defined to represent contact card information as a more efficient alternative to vCard [RFC6350] and its JSON-based version named jCard [RFC7095].

While new applications might adopt JSContact as their main format to exchange contact card data, they are likely to interoperate with services and clients that just support vCard/jCard. Similarly, existing contact data providers and consumers already using vCard/jCard might want to represent their data also according to the JSContact specification.
To facilitate this, this document defines how to convert contact information as defined in the JSContact [draft-ietf-jmap-jscontact] specification from and to vCard.

1.2. Scope and Caveats

JSContact and vCard have a lot of semantics in common, however some differences must be outlined:

* The JSContact data model defines some contact information that doesn’t have a direct mapping with vCard properties. In particular, unlike vCard, JSContact distinguishes between a single contact card, named Card, and a group of contact cards, named CardGroup.

* The properties that can be present multiple times in a vCard are represented through different collections in JSContact; mainly as maps, sometimes as lists, in some cases condensed in a single value.

1.3. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

In the following of this document, the vCard features, namely properties and parameters, are written in uppercase while the Card/CardGroup features are written in camel case wrapped in double quotes.

1.4. Extensions

While translating vCard to JSContact, any vCard property that doesn’t have a direct counterpart in JSContact MUST be converted into a property whose name is prefixed by "ietf.org:<RFC defining the extension>:" (e.g. "ietf.org:rfc6350:").

Any custom extension MAY be added and its name MUST be prefixed with a specific domain name to avoid conflict, e.g. "example.com:customprop".

Likewise, while translating JSContact to vCard, a JSContact property that doesn’t have a direct counterpart in vCard MUST be converted into a property whose name is prefixed with "X-" as specified in Section 6.10 of [RFC6350].
2. Translating vCard properties to JSContact

This section contains the translation rules from vCard to Card/ CardGroup. The vCard properties are grouped according to the categories as defined in [RFC6350].

If a vCard represents a group of contacts, those vCard properties which don't have a counterpart in CardGroup are converted into related properties of the "CardGroup.card" object. In this case, the "uid" member of both the resulting CardGroup object and its "card" member MUST have the same value.

2.1. Common Parameters

The following mapping rules apply to parameters that are common to most of the vCard properties:

* The generic values of the TYPE parameter are mapped to the values of the "Context" type as defined in Section 1.5.1 of [draft-ietf-jmap-jscontact]. The "home" value corresponds to the "private" key. The mapping of those specific TYPE values used in the TEL and RELATED properties are defined in Section 2.6.1 and Section 2.8.5.
* The PREF parameter is mapped to the "pref" property.
* The MEDIATYPE parameter is mapped to the "mediaType" property. As described in Section 5.7 of [RFC6350], the media type of a resource can be identified by its URI. For example, "image/gif" can be derived from the ".gif" extension of a GIF image URI. JSContact producers MAY provide the media type information even when it is not specified in the vCard.
* The ALTID and LANGUAGE parameters are used in combination for associating the language-dependent alternatives with a given property. Such alternatives are represented by using the "localizations" map: the "localizations" key is the LANGUAGE value, the key of the related PatchObject map is the JSON pointer of the JSContact member matching the vCard property while the value is the JSContact member itself.

2.2. Unmapped JSContact Information

The rules to generate a map key of type Id as well as a value for "created", "language" and "preferredContactMethod" properties are out of the scope of this document.

2.3. General Properties
2.3.1. BEGIN and END

The BEGIN and END properties don’t have a direct match with a JSContact feature.

2.3.2. SOURCE

A SOURCE property is represented as an entry of the "online" map (Figure 1). The entry value is a "Resource" object whose "type" member is set to "uri", the "label" member is set to "source" and the "resource" member is the SOURCE value.

The PREF and MEDIATYPE parameters are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
...
SOURCE:http://directory.example.com/addressbooks/jdoe/Jean%20Dupont.vcf
...
END:VCARD

{
...
"online":{
...
"a-source":{
 "type": "uri",
 "label": "source",
 "resource": "http://directory.example.com/addressbooks/jdoe/Jean%20Dupont.vcf"
},
...
},
...
}

Figure 1: SOURCE mapping example

2.3.3. KIND

The KIND property is mapped to the "kind" member (Figure 2). Allowed values are those described in Section 6.1.4 of [RFC6350] and extended with the values declared in [RFC6473] and [RFC6869]. The value "group" is reserved for a CardGroup instance.
BEGIN:VCARD
VERSION:4.0
...
KIND:individual
...
END:VCARD
{
...
"kind": "individual",
...
}

Figure 2: KIND mapping example

2.3.4. XML

The XML property doesn’t have a direct match with a JSContact feature.

2.4. Identification Properties

2.4.1. FN

All the FN instances are represented through the "fullName" member (Figure 3). The presence of multiple instances is implicitly associated with the full name translations in various languages regardless of the presence of the ALTID parameter. Each translation is mapped according to the rules as defined in Section 2.1.

If the vCard represents a group of contacts, implementers MAY convert the FN property into either "CardGroup.card.fullName" or "CardGroup.name" or both properties.

2.4.2. N and NICKNAME

The N instances are converted into equivalent items of the "components" array of the "name" property (Figure 3): the N components are transformed into related "NameComponent" objects as presented in Table 1. Name components SHOULD be ordered such that their values joined by whitespace produce a valid full name of this entity.

Each NICKNAME instance is mapped to an item of "nickNames" array.
Table 1: N components mapping

<table>
<thead>
<tr>
<th>N component</th>
<th>"type" value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honorific Prefixes</td>
<td>prefix</td>
</tr>
<tr>
<td>Given Names</td>
<td>personal</td>
</tr>
<tr>
<td>Family Names</td>
<td>surname</td>
</tr>
<tr>
<td>Additional Names</td>
<td>additional</td>
</tr>
<tr>
<td>Honorific Suffixes</td>
<td>suffix</td>
</tr>
</tbody>
</table>

BEGIN:VCARD
VERSION:4.0
...
FN:Mr. John Q. Public\, Esq.
N:Public;John;Quinlan;Mr.;Esq.
NICKNAME:Johnny
...
END:VCARD

{
 ...
 "fullName": { "value": "Mr. John Q. Public, Esq." },
 "name": {
 "components": [
 { "value": "Mr.", "type": "prefix" },
 { "value": "John", "type": "personal" },
 { "value": "Public", "type": "surname" },
 { "value": "Quinlan", "type": "additional" },
 { "value": "Esq.", "type": "suffix" }
]
 },
 "nickNames": [
 { "value": "Johnny" }
],
 ...
}

Figure 3: FN, N, NICKNAME mapping example
2.4.3. PHOTO

A PHOTO property is represented as an entry of the "photos" map (Figure 4). The entry value is a "File" object whose "href" member is the PHOTO value.

The PREF and MEDIATYPE parameters are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
...
PHOTO:http://www.example.com/pub/photos/jqpublic.gif
...
END:VCARD

{
...
"photos":{
...
"a-photo":{
 "href": "http://www.example.com/pub/photos/jqpublic.gif"
},
...
},
...
}

Figure 4: PHOTO mapping example

2.4.4. BDAY, BIRTHPLACE, DEATHDATE, DEATHPLACE, ANNIVERSARY

The BDAY and ANNIVERSARY properties and the extensions BIRTHPLACE, DEATHDATE, DEATHPLACE described in [RFC6350] are represented as "Anniversary" objects included in the "anniversaries" map (Figure 5):

* BDAY and BIRTHPLACE are mapped to "date" and "place" where "type" is set to "birth";
* DEATHDATE and DEATHPLACE are mapped to "date" and "place" where "type" is set to "death";
* ANNIVERSARY is mapped to "date" where "type" is empty and "label" is set to a value describing in detail the kind of anniversary (e.g. "marriage date" for the wedding anniversary).

Both birth and death places are represented as instances of the "Address" object.
The BIRTHPLACE and DEATHPLACE properties that are represented as geo URIs are converted into "Address" instances including only the "coordinates" member. If the URI value is not a geo URI, the place is ignored.

The ALTID and LANGUAGE parameters of both BIRTHPLACE and DEATHPLACE properties are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
...
BDAY:19531015T231000Z
BIRTHPLACE:Mail Drop: TNE QB\n123 Main Street\nAny Town, CA 91921-1234\nU.S.A.
DEATHDATE:19960415
DEATHPLACE:4445 Courtright Street\nNew England, ND 58647\nU.S.A.
ANNIVERSARY:19860201
...
END:VCARD

{
...
"anniversaries": {
"ANNIVERSARY-1": {
"type": "birth",
"date": "1953-10-15T23:10:00Z",
"place":{
"fullAddress":{
"value": "Mail Drop: TNE QB\n123 Main Street\nAny Town, CA 91921-1234\nU.S.A."
}
}
},
"ANNIVERSARY-2": {
"type": "birth",
"date": "1953-10-15T23:10:00Z",
"place":{
"fullAddress":{
"value": "4445 Courtright Street\nNew England, ND 58647\nU.S.A."
}
}
},
"ANNIVERSARY-3": {
"label": "marriage date",
"date": "1986-02-01"
}
},
...
}
2.4.5. GENDER

The GENDER property is a single structured value with two optional components: the biological sex and the gender information. The former is represented as an enumerated value, while the latter as a free-form text. As opposed to such a representation, the JSContact specification includes the "SpeakToAs" object just to represent how to address, speak to or refer to the contact. In particular, some pre-defined values are allowed for the "grammaticalGender" member.

For the reasons stated above, the GENDER property doesn’t have a direct match with the "SpeakToAs" object. However, on the assumption that the GENDER property doesn’t store the actual biological sex of the contact, implementations MAY use the conversion rules shown in Table 2 and Table 3.

<table>
<thead>
<tr>
<th>GENDER value</th>
<th>"SpeakToAs.grammaticalGender" value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>male</td>
</tr>
<tr>
<td>F</td>
<td>female</td>
</tr>
<tr>
<td>N</td>
<td>neuter</td>
</tr>
<tr>
<td>O</td>
<td>animate</td>
</tr>
<tr>
<td>U</td>
<td>SpeakToAs = null</td>
</tr>
</tbody>
</table>

Table 2: GENDER to SpeakToAs conversion
Table 3: SpeakToAs to GENDER conversion

<table>
<thead>
<tr>
<th>SpeakToAs property</th>
<th>GENDER value</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>M</td>
</tr>
<tr>
<td>female</td>
<td>F</td>
</tr>
<tr>
<td>neuter</td>
<td>N</td>
</tr>
<tr>
<td>animate</td>
<td>O</td>
</tr>
<tr>
<td>inanimate</td>
<td>N; inanimate</td>
</tr>
</tbody>
</table>

2.5. Delivery Addressing Properties

2.5.1. ADR

An ADR property is represented as an entry of the "addresses" map (Figure 6). The entry value is an "Address" object.

The ADR components are transformed into the "Address" members as presented in Table 4 and Table 5.

The "street address" and "extended address" ADR components MAY be converted into either a single StreetComponent item or a combination of StreetComponent items.

Table 4: ADR components vs. Address members mapping

<table>
<thead>
<tr>
<th>ADR component</th>
<th>Address member</th>
</tr>
</thead>
<tbody>
<tr>
<td>locality</td>
<td>locality</td>
</tr>
<tr>
<td>region</td>
<td>region</td>
</tr>
<tr>
<td>postal code</td>
<td>postcode</td>
</tr>
<tr>
<td>country name</td>
<td>country</td>
</tr>
<tr>
<td>ADR component</td>
<td>Single StreetComponent item</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>post office box</td>
<td>postOfficeBox</td>
</tr>
<tr>
<td>extended address</td>
<td>extension</td>
</tr>
<tr>
<td>street address</td>
<td>name</td>
</tr>
</tbody>
</table>

Table 5: ADR components vs. StreetComponent items mapping

The LABEL parameter is converted into the "fullAddress" member.

The GEO parameter is converted into the "coordinates" member.

The TZ parameter is converted into the "timeZone" member.

The CC parameter as defined in [RFC8605] is converted into the "countryCode" member.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.

The ALTID and LANGUAGE parameters are mapped according to the rules as defined in Section 2.1. Each possible language-dependent alternative is represented as an entry of the PatchObject map where the key references the "fullAddress" member.
BEGIN:VCARD
VERSION:4.0
...
ADR;TYPE=work;CC=US;;54321 Oak St;Reston;VA;20190;USA
ADR;TYPE=home;CC=US;;12345 Elm St;Reston;VA;20190;USA
...
END:VCARD

{
...
"addresses":{
 "work-address" :{
 "contexts":{ "work": true },
 "fullAddress":{
 "value": "54321 Oak St\nReston\nVA\n20190\nUSA"
 },
 "street": [
 { "name": "Oak St" },
 { "number" : "54321" }
],
 "locality": "Reston",
 "region": "VA",
 "country": "USA",
 "postcode": "20190",
 "countryCode": "US"
 },
 "private-address":{
 "contexts":{ "private": true },
 "fullAddress":{
 "value": "12345 Elm St\nReston\nVA\n20190\nUSA"
 },
 "street": [
 { "name": "Elm St" },
 { "number" : "12345" }
],
 "locality": "Reston",
 "region": "VA",
 "country": "USA",
 "postcode": "20190",
 "countryCode": "US"
 }
},
...

Figure 6: ADR mapping example
2.6. Communications Properties

2.6.1. TEL

A TEL property is represented as an entry of the "phones" map (Figure 7). The entry value is a "Phone" object. The TEL-specific values of the TYPE parameter are mapped to the "features" map keys. The values that don’t match a key are represented as comma-separated values of the "label" member. The "phone" member is set to the TEL value.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
...
TEL;VALUE=uri;PREF=1;TYPE="voice,home":tel:+1-555-555-5555;ext=5555
TEL;VALUE=uri;TYPE=home:tel:+33-01-23-45-67
...
END:VCARD
{
...
"phones":{
 "a-phone":{
 "contexts":{ "private": true },
 "features":{ "voice": true },
 "phone": "tel:+1-555-555-5555;ext=5555",
 "pref": 1
 },
 "another-phone":{
 "contexts":{ "private": true },
 "phone": "tel:+33-01-23-45-67"
 }
},
...
}

Figure 7: TEL mapping example

2.6.2. EMAIL

An EMAIL property is represented as an entry of the "emails" map (Figure 8). The entry value is an "EmailAddress" object. The "email" member is set to the EMAIL value.
The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
...
EMAIL;TYPE=work:jqpublic@xyz.example.com
EMAIL;PREF=1:jane_doe@example.com
...
END:VCARD

{
...
"emails":{
 "work-email":{
 "contexts":{ "work": true },
 "email": "jqpublic@xyz.example.com"
 },
 "private-email":{
 "contexts":{ "private": true },
 "email": "jane_doe@example.com",
 "pref": 1
 }
},
...
}

Figure 8: EMAIL mapping example

2.6.3. IMPP

An IMPP property is represented as an entry of the "online" map (Figure 9). The entry value is a "Resource" object whose "type" member is set to "username", the "label" member is set to "XMPP" and the "resource" member is the IMPP value.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.
BEGIN:VCARD
VERSION:4.0
...
IMPP;PREF=1:xmpp:alice@example.com
...
END:VCARD
{
...
"online":{
...
{
 "type": "username",
 "label": "XMPP",
 "value": "alice@example.com"
},
...
},
...
}

2.6.4. LANG

A LANG property is represented as an entry of the "preferredContactLanguages" map (Figure 10). The entry keys correspond to the language tags, the corresponding entry values are arrays of "ContactLanguage" objects.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.

If both PREF and TYPE parameters are missing, the array of "ContactLanguage" objects MUST be empty.
BEGIN:VCARD
VERSION:4.0
...
LANG;TYPE=work;PREF=1:en
LANG;TYPE=work;PREF=2:fr
LANG;TYPE=home:fr
...
END:VCARD
{
...
"preferredContactLanguages":{
"en":[
{
 "context": "work",
 "pref": 1
}
],
"fr":[
{
 "context": "work",
 "pref": 2
},
{
 "context": "private"
}
]
},
...

Figure 10: LANG mapping example

2.7. Geographical Properties

The GEO and TZ properties are not directly mapped to topmost Card members because the same information is represented through equivalent "Address" members.

The ALTID parameter is used for associating both GEO and TZ properties with the related address information. When the ALTID parameter is missing, the matched members SHOULD be included in the first "Address" object.

2.7.1. Time Zone Representation

As specified in Section 6.5.1 of [RFC6350], the time zone information can be represented as a time zone name, as a UTC offset or as a URI.
* If the TZ value is defined in the IANA timezone database, it is directly matched by the "timeZone" member in JSContact.
* An UTC offset MUST be converted into the related "Etc/GMT" time zone (e.g. the value "-0500" converts to "Etc/GMT+5"). If the UTC offset value contains minutes information or is not an IANA timezone name, it requires special handling.
* Since there is no URI scheme defined for time zones [uri-schemes], any implementation that does use some a custom URI for a time zone is not interoperable anyway. In this case, if the URI corresponds to an IANA time zone [time-zones], this latter SHOULD be used. Otherwise, the URI value is dumped into a string.

2.8. Organizational Properties

2.8.1. TITLE and ROLE

Both TITLE and ROLE properties are represented as entries of the "titles" map (Figure 11). The entry value is a "Title" object whose "title" member includes information about the title or role. The rules to set the "organization" member are out of the scope of this document.

The ALTID and LANGUAGE parameters are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
...
TITLE:Research Scientist
ROLE:Project Leader
...
END:VCARD

{
...
"titles":{
 "a-title":{
 "title":{ "value" : "Project Leader" }
 },
 "another-title":{
 "title":{ "value" : "Research Scientist" }
 }
},
...

Figure 11: TITLE and ROLE mapping example
2.8.2. LOGO

A LOGO property is represented as an entry of the "online" map (Figure 12). The entry value is a "Resource" object whose "type" member is set to "uri", the "label" member is set to "logo" and the "resource" member is the LOGO value.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
...
LOGO:http://www.example.com/pub/logos/abccorp.jpg
...
END:VCARD

{
...
"online":{
...
"a-logo":{
 "type": "uri",
 "label": "logo",
 "resource": "http://www.example.com/pub/logos/abccorp.jpg"
},
...
},
...
}

Figure 12: LOGO mapping example

2.8.3. ORG

An ORG property is represented as an entry of the "organizations" map (Figure 13). The entry value is an "Organization" object whose "name" member contains the organizational name and the "units" member contains the organizational units.

The ALTID and LANGUAGE parameters are mapped according to the rules as defined in Section 2.1.
BEGIN:VCARD
VERSION:4.0
...
ORG:ABC, Inc.;North American Division;Marketing
...
END:VCARD
{
...
"organizations":{
 "an-organization":{
 "name":{ "value": "ABC, Inc." },
 "units":[
 { "value": "North American Division" },
 { "value": "Marketing" }
]
 }
},
...
}

Figure 13: ORG mapping example

2.8.4. MEMBER

According to the JSContact specification, a group of contact cards is represented through a CardGroup (Figure 14). The uids of the contact cards composing the group are included in the "members" map.

In this case, the PREF parameter has not a JSContact counterpart; however, the implementers MAY insert the map entries by order of preference.
BEGIN:VCARD
VERSION:4.0
KIND:group
FN:The Doe family
MEMBER:urn:uuid:03a0e51f-d1aa-4385-8a53-e29025acd8af
MEMBER:urn:uuid:b8767877-b4a1-4c70-9acc-505d3819e519
END:VCARD

{
 "kind": "group",
 "fullName": { "value": "The Doe family" },
 "uid": "urn:uuid:ab4310aa-fa43-11e9-8f0b-362b9e155667",
 "members":{
 "urn:uuid:03a0e51f-d1aa-4385-8a53-e29025acd8af": true,
 "urn:uuid:b8767877-b4a1-4c70-9acc-505d3819e519": true
 }
}

Figure 14: Group example

Only if the GROUP contains properties that don’t have a mapping to CardGroup properties, then the CardGroup.card property MAY contain the optional Card object of this group.

{
 "name": "The Doe family",
 "uid": "urn:uuid:ab4310aa-fa43-11e9-8f0b-362b9e155667",
 "members":{
 "urn:uuid:03a0e51f-d1aa-4385-8a53-e29025acd8af": true,
 "urn:uuid:b8767877-b4a1-4c70-9acc-505d3819e519": true
 },
 "card": {
 "fullName": { "value": "The Doe family" },
 "uid": "urn:uuid:ab4310aa-fa43-11e9-8f0b-362b9e155667",
 "photos":{
 "a-photo":{
 "href": "http://www.example.com/pub/photos/jqpublic.gif"
 }
 }
 }
}

Figure 15: card member of CardGroup object
2.8.5. RELATED

All the RELATED instances are converted into the "relatedTo" map (Figure 16): an entry for each entity the entity described by the Card is associated with. The map keys are the "uid" values of the associated cards.

Each map value is a "Relation" object including only the "relation" member represented as a set of the RELATED-specific values of the TYPE parameter as defined in Section 6.6.6 of [RFC6350].

If the relation type is unspecified, the "relation" member MUST be empty.

BEGIN:VCARD
VERSION:4.0
...
RELATED;TYPE=friend;urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6
RELATED;TYPE=contact:http://example.com/directory/jdoe.vcf
RELATED;VALUE=text:Please contact my assistant Jane Doe for any inquiries.
...
END:VCARD

{
...
"relatedTo":{

 "urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6":{
 "relation":{ "friend": true }

 },

 "http://example.com/directory/jdoe.vcf":{
 "relation":{ "contact": true }

 },

 "Please contact my assistant Jane Doe for any inquiries.":{
 "relation":{
 }

 },

 ...
}

Figure 16: RELATED mapping example
2.8.6. CONTACT-URI

A CONTACT-URI property as defined in [RFC8605] is represented as an entry of the "online" map (Figure 17). The entry value is a "Resource" object whose "type" member is set to "uri", the "label" member is set to "contact-uri" and the "resource" member is the CONTACT-URI value.

The PREFIX and TYPE parameters are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
... CONTACT-URI;PREFIX=1:mailto:contact@example.com
... END:VCARD

{
...
"online":{
...
"a-contact-uri":{
 "type": "uri",
 "label": "contact-uri",
 "resource": "mailto:contact@example.com",
 "pref": 1
},
...}
}

Figure 17: CONTACT-URI mapping example

2.9. Personal Information Properties

The LEVEL parameter as defined in [RFC6715] is directly mapped to the "level" property of the "PersonalInformation" type apart from when LEVEL is used in the EXPERTISE property; in this case, the values are converted as in the following:

* "beginner" is converted into "low";
* "average" is converted into "medium";
* "expert" is converted into "high".
2.9.1. EXPERTISE

An EXPERTISE property as defined in [RFC6715] is represented as a "PersonalInformation" object in the "personalInfo" map (Figure 18). The "type" member is set to "expertise".

The INDEX parameter is represented as the index of the expertise among the declared expertises.

```vcardschema
BEGIN:VCARD
VERSION:4.0
...
EXPERTISE;LEVEL=beginner;INDEX=2:chinese literature
EXPERTISE;INDEX=1;LEVEL=expert:chemistry
...
END:VCARD
{
...
"personalInfo":{
...
"PERSINFO-1" : {
  "type": "expertise",
  "value": "chemistry",
  "level": "high"
},
"PERSINFO-2" : {
  "type": "expertise",
  "value": "chinese literature",
  "level": "low"
},
...}
...
}
```

Figure 18: EXPERTISE mapping example

2.9.2. HOBBY

A HOBBY property as defined in [RFC6715] is represented as a "PersonalInformation" object in the "personalInfo" map (Figure 19). The "type" member is set to "hobby".

The INDEX parameter is represented as the index of the hobby among the declared hobbies.

```vcardschema
```
BEGIN:VCARD
VERSION:4.0
...
HOBBY;INDEX=1;LEVEL=high:reading
HOBBY;INDEX=2;LEVEL=high:sewing
...
END:VCARD
{
...
"personalInfo":{
...
"PERSINFO-1" : {
 "type": "hobby",
 "value": "reading",
 "level": "high"
},
"PERSINFO-2" : {
 "type": "hobby",
 "value": "sewing",
 "level": "high"
},
...
},
...
}

Figure 19: HOBBY mapping example

2.9.3. INTEREST

An INTEREST property as defined in [RFC6715] is represented as a "PersonalInformation" object in the "personalInfo" map (Figure 20). The "type" member is set to "interest".

The INDEX parameter is represented as the index of the interest among the declared interests.
BEGIN:VCARD
VERSION:4.0
...
INTEREST;INDEX=1;LEVEL=medium:r&b music
INTEREST;INDEX=2;LEVEL=high:rock n roll music
...
END:VCARD
{
...
"personalInfo":{
...
"PERSINFO-1": {
 "type": "interest",
 "value": "r&b music",
 "level": "medium"
},
"PERSINFO-2": {
 "type": "interest",
 "value": "rock n roll music",
 "level": "high"
},
...}
,...
}

Figure 20: INTEREST mapping example

2.9.4. ORG-DIRECTORY

An ORG-DIRECTORY property is represented as an entry of the "online" map (Figure 21). The entry value is a "Resource" object whose "type" member is set to "uri", the "label" member is set to "org-directory" and the "resource" member is the ORG-DIRECTORY value.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.

The INDEX parameter is represented as the index of the directory among the online resources with the "org-directory" label.
BEGIN:VCARD
VERSION:4.0
...
ORG-DIRECTORY;INDEX=1:http://directory.mycompany.example.com
ORG-DIRECTORY;PREF=1:ldap://ldap.tech.example/o=Example%20Tech,ou=Engineering
...
END:VCARD
{
...
"online":{
...
"an-org-directory":{
 "type": "uri",
 "label": "org-directory",
 "resource": "http://directory.mycompany.example.com"
},
"another-org-directory":{
 "type": "uri",
 "label": "org-directory",
 "resource": "ldap://ldap.tech.example/o=Example%20Tech,ou=Engineering",
 "pref": 1
},
...
},
...
}

Figure 21: ORG-DIRECTORY mapping example

2.10. Explanatory Properties

2.10.1. CATEGORIES

A CATEGORIES property is converted into a set of entries of the "categories" map (Figure 22). The keys are the comma-separated text values of the CATEGORIES property.

In this case, the PREF parameter has not a JSContact counterpart; however, implementers MAY use a map preserving the order of insertion and the map entries can be inserted by order of preference.
BEGIN:VCARD
VERSION:4.0
...
CATEGORIES:INTERNET,IETF,INDUSTRY,INFORMATION TECHNOLOGY
...
END:VCARD
{
...
"categories":{
 "INTERNET": true,
 "IETF": true,
 "INDUSTRY": true,
 "INFORMATION TECHNOLOGY": true
},
...
}

Figure 22: CATEGORIES mapping example

2.10.2. NOTE

A NOTE property is mapped to the "notes" property (Figure 23). All the NOTE instances are condensed into a single note and separated by newline.

The ALTID and LANGUAGE parameters are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
...
NOTE:This fax number is operational 0800 to 1715 EST, Mon-Fri.
...
END:VCARD
{
...
"notes": {
 "value": "This fax number is operational 0800 to 1715 EST, Mon-Fri."
},
...
}

Figure 23: NOTE mapping example
2.10.3. PRODID

The PRODID property is converted into the "prodId" member (Figure 24).

```plaintext
BEGIN:VCARD
VERSION:4.0
...
PRODID:-//ONLINE DIRECTORY//NONSGML Version 1//EN
...
END:VCARD
{
...
"prodId": "-//ONLINE DIRECTORY//NONSGML Version 1//EN",
...
}
```

Figure 24: PRODID mapping example

2.10.4. REV

The REV property is transformed into the "updated" member (Figure 25).

```plaintext
BEGIN:VCARD
VERSION:4.0
...
REV:19951031T222710Z
...
END:VCARD
{
...
"updated": "1995-10-31T22:27:10Z",
...
}
```

Figure 25: REV mapping example

2.10.5. SOUND

A SOUND property is represented as an entry of the "online" map (Figure 26). The entry value is a "Resource" object whose "type" member is set to "uri", the "label" member is set to "sound" and the "resource" member is the SOUND value.

```plaintext
```
The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
...
SOUND:CID:JOHNQPUBLIC.part8.19960229T080000.xyzMail@example.com
...
END:VCARD

{
...
"online":{
...
"a-sound":{
 "type": "uri",
 "label": "sound",
 "resource": "CID:JOHNQPUBLIC.part8.19960229T080000.xyzMail@example.com"
 },
...
},
...
}

Figure 26: SOUND mapping example

2.10.6. UID

The UID property corresponds to the "uid" property (Figure 27) in both Card and CardGroup.

BEGIN:VCARD
VERSION:4.0
...
UID:urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6
...
END:VCARD

{
...
"uid": "urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6",
...
}

Figure 27: UID mapping example
2.10.7. CLIENTPIDMAP and PID Parameter

The CLIENTPIDMAP property and the PDI parameter don’t have a direct match with a Card feature.

2.10.8. URL

An URL property is represented as an entry of the "online" map (Figure 28). The entry value is a "Resource" object whose "type" member is set to "uri", the "label" member is set to "url" and the "resource" member is the URL value.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.

BEGIN:VCARD
VERSION:4.0
...
URL:http://example.org/restaurant.french/~chezchic.html
...
END:VCARD

{
...
"online":{
...
"an-url":{
 "type": "uri",
 "label": "url",
 "resource": "http://example.org/restaurant.french/~chezchic.html"
},
...
},
...
}

Figure 28: URL mapping example

2.10.9. VERSION

The VERSION property doesn’t have a direct match with a JSContact feature.

2.11. Security Properties
2.11.1. KEY

A KEY property is represented as an entry of the "online" map (Figure 29). The entry value is a "Resource" object whose "type" member is set to "uri", the "label" member is set to "key" and the "resource" member is the KEY value.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.

```
BEGIN:VCARD
VERSION:4.0
...
KEY:http://www.example.com/keys/jdoe.cer
...
END:VCARD
{
...
"online":{
...
"a-key":{
   "type": "uri",
   "label": "key",
   "resource": "http://www.example.com/keys/jdoe.cer"
 },
...
}
...
}
```

Figure 29: KEY mapping example

2.12. Calendar Properties

2.12.1. FBURL

An FBURL property is represented as an entry of the "online" map (Figure 30). The entry value is a "Resource" object whose "type" member is set to "uri", the "label" member is set to "fburl" and the "resource" member is the FBURL value.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.
BEGIN:VCARD
VERSION:4.0
...
FBURL;PREF=1:http://www.example.com/busy/janedoe
FBURL;MEDIATYPE=text/calendar:ftp://example.com/busy/project-a.ifb
...
END:VCARD

{
...
"online":{
...
"an-fburl":{
 "type": "uri",
 "label": "fburl",
 "resource": "http://www.example.com/busy/janedoe",
 "pref": 1
},
"another-fburl":{
 "type": "uri",
 "label": "fburl",
 "resource": "ftp://example.com/busy/project-a.ifb",
 "mediaType": "text/calendar"
},
...
},
...
}

Figure 30: FBURL mapping example

2.12.2. CALADRURI

A CALADRURI property is represented as an entry of the "online" map (Figure 31). The entry value is a "Resource" object whose "type" member is set to "uri", the "label" member is set to "caladruri" and the "resource" member is set to the CALADRURI value.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.
BEGIN:VCARD
VERSION:4.0
...
CALADRURI;PREF=1:mailto:janedoe@example.com
CALADRURI:http://example.com/calendar/jdoe
...
END:VCARD

{
...
"online":{
...
"a-caladruri":{
 "type": "uri",
 "label": "caladruri",
 "resource": "mailto:janedoe@example.com",
 "pref": 1
},
"another-caladruri":{
 "type": "uri",
 "label": "caladruri",
 "resource": "http://example.com/calendar/jdoe"
},
...
...}

Figure 31: CALADRURI mapping example

2.12.3. CALURI

A CALURI property is represented as an entry of the "online" map (Figure 32). The entry value is a "Resource" object whose "type" member is set to "uri", the "label" member is set to "caluri" and the "resource" member is the CALURI value.

The PREF and TYPE parameters are mapped according to the rules as defined in Section 2.1.
BEGIN:VCARD
VERSION:4.0
...
CALURI;PREF=1:http://cal.example.com/calA
CALURI;MEDIATYPE=text/calendar:ftp://ftp.example.com/calA.ics
...
END:VCARD
{
...
"online":{
...
"a-caluri":{
 "type": "uri",
 "label": "caluri",
 "resource": "http://cal.example.com/calA",
 "pref": 1
},
"another-caluri":{
 "type": "uri",
 "label": "caluri",
 "resource": "ftp://ftp.example.com/calA.ics",
 "mediaType": "text/calendar"
},
...
},
...
}

Figure 32: CALURI mapping example

2.13. vCard Unmatched Properties

The unmatched vCard properties MAY be converted into JSContact properties whose name contains the prefix "ietf.org:rfc6350:" followed by property name in uppercase (i.e. ietf.org:rfc6350:CLIENTPIDMAP”).

While converting a vCard into a Card/CardGroup, only the topmost "uid" member is mandatory. Implementers are REQUIRED to set it when it is missing.
3. Translating JSContact properties to vCard

In most of the cases, the rules about the translation from Card/CardGroup to vCard can be derived by reversing the rules presented in Section 2. The remaining cases are treated in the following of this section.

3.1. Id

Where a map key is of type Id, implementers are free to either ignore it or preserve it as a vCard information (e.g. a vCard parameter).

3.2. Localizations

Each PatchObject entry value of each "localizations" entry is converted into a instance of the vCard property matching the JSContact member referenced by the PatchObject entry key. The LANGUAGE parameter of such alternative MUST be set to the value of the given "localizations" entry. The LANGUAGE parameter of a vCard property presenting, at least, a language-dependent alternative MUST be set to the value of the JSContact "language" property if it is valued. Implementers MAY set the ALTID parameter to group language-based alternatives of the same value.

Note also that the components of some vCard values and their language-dependent alternatives are split into different JSContact values. For example, the "name" and "units" values for a given language must be grouped to make a single ORG value where components are separated by ";".

3.3. Date and Time Representations

The JSContact spec defines the "UTCDatetime" type to represent [RFC3339] "date-time" format with further restrictions. This means that the matched vCard format for a "UTCDatetime" value MUST be one of the formats shown in Section 4.3.5 of [RFC6350] (i.e. "19961022T140000Z").

In addition to such format, the "date" member of the "Anniversary" type allows to specify both dates without the time and partial dates. In such cases, the corresponding vCard format is that defined in Section 4.3.1.

3.4. Time Zone

The time zone name as represented by the "timeZone" property is mapped to the TZ parameter.
Implementers MAY map an "Etc/GMT" time zone either preserving the
time zone name or converting it into a UTC offset.

3.5. JSContact Types Matching Multiple vCard Properties

3.5.1. Title

The "titles" property contains information about the job, the
position or the role of the entity the card represents. In vCard,
such information is split into the TITLE and the ROLE properties.
This specification defines TITLE as the default target property when
converting the "titles" property.

3.5.2. Resource

The "online" property includes resources that are usually represented
through different vCard properties. The matched vCard property of a
"Resource" object can be derived from the value of its "label"
member.

Any resource included in the "online" map that doesn’t match a vCard
property MAY be converted into a vCard extended property.

3.6. CardGroup

A CardGroup object is converted into a vCard by merging its
properties with the properties of "CardGroup.card" object. If the
"CardGroup.card.fullName" property exists, it MUST be used to set the
FN value.

3.7. Card Unmatched Properties

Both the "preferredContactMethod" and "created" members don’t match
any vCard property. Implementers MAY represent them as vCard
extended properties.

3.8. vCard Required Properties

While converting a Card/CardGroup into a vCard, only the FN property
is required. Since both the "Card.fullName" and "CardGroup.name"
properties are optional, implementers are REQUIRED to generate an FN
value when it is missing.

4. IANA Considerations

This document has no actions for IANA.
5. Implementation Status

NOTE: Please remove this section and the reference to RFC 7942 prior to publication as an RFC.

This section records the status of known implementations of the protocol as defined in this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [RFC7942]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist.

According to RFC 7942, "this will allow reviewers and working groups to assign due consideration to documents that have the benefit of running code, which may serve as evidence of valuable experimentation and feedback that have made the implemented protocols more mature. It is up to the individual working groups to use this information as they see fit".

5.1. CNR

* Responsible Organization: National Research Council (CNR) of Italy
* Location: https://github.com/consiglionazionaledellericerche/jscontact-tools
* Description: This implementation includes tools for JSContact creation, validation, serialization/deserialization, and conversion from vCard, xCard and jCard.
* Level of Maturity: This is an "alpha" test implementation.
* Coverage: This implementation includes all of the features described in this specification.
* Contact Information: Mario Loffredo, mario.loffredo@iit.cnr.it

6. Security Considerations

This document doesn't present any security consideration.

7. References

7.1. Normative References
7.2. Informative References

"JSContact: A JSON representation of contact data",

"Uniform Resource Identifier (URI) Schemes",

Authors’ Addresses

Mario Loffredo
IIT-CNR/Registro.it
Via Moruzzi,1
56124 Pisa
Italy

Email: mario.loffredo@iit.cnr.it
URI: http://www.iit.cnr.it

Robert Stepanek
FastMail
PO Box 234, Collins St West
Melbourne VIC 8007
Australia

Email: rsto@fastmailteam.com
URI: https://www.fastmail.com
Abstract

This document specifies a data model for managing Sieve scripts on a server using the JSON Meta Application Protocol (JMAP).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction .. 2
1. Introduction

JMAP [RFC8620] (JSON Meta Application Protocol) is a generic protocol for synchronizing data, such as mail, calendars or contacts, between a client and a server. It is optimized for mobile and web environments, and aims to provide a consistent interface to different data types.

This specification defines a data model for managing Sieve [RFC5228] scripts on a server using JMAP. The data model is designed to allow a server to provide consistent access to the same scripts via ManageSieve [RFC5804] as well as JMAP, however the functionality offered over the two protocols may differ.
1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Type signatures, examples, and property descriptions in this document follow the conventions established in Section 1.1 of [RFC8620]. Data types defined in the core specification are also used in this document.

Servers MUST support all properties specified for the new data type defined in this document.

For compatibility with publishing requirements, line breaks have been inserted inside long JSON strings, with the following continuation lines indented. To form the valid JSON example, any line breaks inside a string must be replaced with a space and any other white space after the line break removed.

1.2. Terminology

The same terminology is used in this document as in the core JMAP specification, see [RFC8620], Section 1.6.

The term SieveScript (with this specific capitalization) is used to refer to the data type defined in this document and instances of those data types.

1.3. Addition to the Capabilities Object

The capabilities object is returned as part of the JMAP Session object; see [RFC8620], Section 2. This document defines one additional capability URI.

1.3.1. urn:ietf:params:jmap:sieve

This represents support for the SieveScript data type and associated API methods. The value of this property in the JMAP Session capabilities property is an empty object.

The value of this property in an account’s accountCapabilities property is an object that MUST contain the following information on server capabilities:

* *maxSizeScriptName*: UnsignedInt
The maximum length, in (UTF-8) octets, allowed for the name of a SieveScript. For compatibility with ManageSieve, this MUST be at least 512 (up to 128 Unicode characters).

* *maxSizeScript*: UnsignedInt|null

The maximum size (in octets) of a Sieve script the server is willing to store for the user, or null for no limit.

* *maxNumberScripts*: UnsignedInt|null

The maximum number of Sieve scripts the server is willing to store for the user, or null for no limit.

* *maxNumberRedirects*: UnsignedInt|null

The maximum number of Sieve "redirect" actions a script can perform during a single evaluation or null for no limit. Note that this is different from the total number of "redirect" actions a script can contain.

* *sieveExtensions*: String[]

A list of case-sensitive Sieve capability strings (as listed in Sieve "require" action; see [RFC5228], Section 3.2) indicating the extensions supported by the Sieve engine.

* *notificationMethods*: String[]|null

A list of URI schema parts [RFC3986] for notification methods supported by the Sieve "enotify" [RFC5435] extension, or null if the extension is not supported by the Sieve engine.

* *externalLists*: String[]|null

A list of URI schema parts [RFC3986] for externally stored list types supported by the Sieve "extlists" [RFC6134] extension, or null if the extension is not supported by the Sieve engine.

* *supportsTest*: Boolean

If true, the server supports the SieveScript/test (Section 2.5) method.

2. Sieve Scripts

A *SieveScript* object represents a single Sieve [RFC5228] script for filtering email messages at time of final delivery.
A *SieveScript* object has the following properties:

* *id*: Id (immutable; server-set)

 The id of the script.

* *name*: String|null (optional; default is server-dependent)

 User-visible name for the SieveScript. If non-null, this MUST be a Net-Unicode [RFC5198] string of at least 1 character in length, subject to the maximum size given in the capability object. For compatibility with ManageSieve, servers MUST reject names that contain control characters. Servers MAY reject names that violate server policy (e.g., names containing slash (/)). The name MUST be unique among all SieveScripts within an account.

* *blobId*: Id

 The id of the blob containing the raw octets of the script.

 The script MUST be UTF-8 [RFC3629] content of at least 1 character in length, subject to the syntax of Sieve [RFC5228]. The script MUST NOT contain any "require" statement(s) mentioning Sieve capability strings not present in the capability (Section 1.3.1) object. Note that if the Sieve "ihave" [RFC5463] capability string is present in the capability object, the script MAY mention unrecognized/unsupported extensions in the "ihave" test.

* *isActive*: Boolean (server-set; default: false)

 A user may have multiple SieveScripts on the server, yet only one script may be used for filtering of incoming messages. This is the active script. Users may have zero or one active script. The SieveScript/set (Section 2.2) method is used for changing the active script or disabling Sieve processing.

2.1. SieveScript/get

 This is a standard ";/get" method as described in [RFC8620], Section 5.1. The _ids_ argument may be null to fetch all at once.

 This method provides similar functionality to the GETSCRIPT and LISTSCRIPTS commands in [RFC5804].

2.1.1. Examples

 Request (and response) to list all scripts:
Request (and response) to download the script (assuming that the JMAP Download URL has been advertised in the JMAP Session object as having a path of "/jmap/download/{accountId}/{blobId}/{name}?accept={type}"). Note that the request-line has been wrapped for presentation purposes only.
GET
/jmap/download/ken/S123/test1.siv?accept=application/sieve
HTTP/1.1
Host: jmap.example.com
Authorization: Basic a2VuOnBhc3N3b3Jk

HTTP/1.1 200 OK
Date: Fri, 22 Oct 2021 15:27:38 GMT
Content-Type: application/sieve; charset=utf-8
Content-Disposition: attachment; filename="test1.siv"
Content-Length: 49

require ["fileinto"];
fileinto "INBOX.target";

Request (and response) to fetch the content of a single script:

{
 "using": ["urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:blob",
 "urn:ietf:params:jmap:sieve"],
 "methodCalls": [
 ["SieveScript/get", {
 "accountId": "ken",
 "ids": ["2d647053-dded-418d-917a-63eda3ac8f7b"],
 }, "0"],
 ["Blob/get", {
 "accountId": "ken",
 "#ids": {
 "resultOf": "0",
 "name": "SieveScript/get",
 "path": "/list/*/blobId"
 }
 }, "1"]
]
}

{
 "methodResponses": [
 ["SieveScript/get",
 {
 "state": "1634915373.240633104-120",
 "list": [
 {
 "id": "2d647053-dded-418d-917a-63eda3ac8f7b",
 "name": "test1",
 "isActive": true,
 "isPartial": false
 }
]
 }]
]
}
2.2. SieveScript/set

This is a standard "/set" method as described in [RFC8620], Section 5.3 but with the following additional request argument, which may be omitted:

* **onSuccessActivateScript**: Id|null (optional)

If null, the currently active SieveScript (if any) will be deactivated if and only if all of the creations, modifications, and destructions (if any) succeed. Otherwise, the id of the SieveScript to activate if and only if all of the creations, modifications, and destructions (if any) succeed. (For references to SieveScript creations, this is equivalent to a creation-reference, so the id will be the creation id prefixed with a "#".) If this argument is not present in the request, the currently active SieveScript (if any) will remain as such.
The id of any activated SieveScript MUST be reported in either the "created" or "updated" argument in the response as appropriate. The id of any deactivated SieveScript MUST be reported in the "updated" argument in the response.

This method provides similar functionality to the PUTSCRIPT, DELETESCRIPT, RENAMESCRIPT, and SETACTIVE commands in [RFC5804].

Script content must first be uploaded as a blob using either the standard upload mechanism (see [RFC8620] Section 6.1) or the JMAP Blob management extension (see [I-D.ietf-jmap-blob] Section 3.1).

If the SieveScript can not be created or updated because it would result in two SieveScripts with the same name, the server MUST reject the request with an "alreadyExists" SetError. An "existingId" property of type "Id" MUST be included on the SetError object with the id of the existing SieveScript.

If the SieveScript can not be created or updated because its size exceeds the "maxSizeScript" limit, the server MUST reject the request with a "tooLarge" SetError.

If the Sieve Script can not be created because it would exceed the "maxNumberOfScripts" limit, the server MUST reject the request with an "overQuota" SetError.

The active SieveScript MUST NOT be destroyed unless it is first deactivated in a separate SieveScript/set method call.

The following extra SetError types are defined:

For "create" and "update":

* *invalidScript*:

The SieveScript content violates the Sieve [RFC5228] grammar and/or one or more extensions mentioned in the script’s "require" statement(s) are not supported by the Sieve interpreter. The _description_ property on the SetError object SHOULD contain a specific error message giving at least the line number of the first error.

For "destroy":

* *scriptIsActive*:

The SieveScript is active.
2.2.1. Examples

Request (and response) to upload a script requiring the Imap4Flags [RFC5232] Extension (assuming that the JMAP Upload URL has been advertised in the JMAP Session object as having a path of "/jmap/upload/{accountId}/"):

```
POST /jmap/upload/ken/ HTTP/1.1
Host: jmap.example.com
Authorization: Basic a2VuOnBhc3N3b3Jk
Content-Type: application/sieve
Content-Length: 98

require "imapflags";

if address :is ["To", "Cc"] "jmap@ietf.org" {
    setflag "Flagged"
}
```

HTTP/1.1 201 Created
Date: Thu, 10 Dec 2020 17:14:31 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 171

```
{
    "accountId": "ken",
    "blobId": "Gabcc83e44a6e19991c4568d0b94e1767c83dd123",
    "type": "application/sieve",
    "size": 98
}
```

Request (and response) to create and activate a script using the uploaded blob:
Request (and response) to update script content using the JMAP Blob management extension [I-D.ietf-jmap-blob]:

```
{
  "using": [ "urn:ietf:params:jmap:core",
             "urn:ietf:params:jmap:sieve" ],
  "methodCalls": [
    ["SieveScript/set", {
      "accountId": "ken",
      "create": { "A": {
        "name": null,
        "blobId": "Gabcc83e44a6e19991c4568d0b94e1767c83dd123"
      },
      "onSuccessActivateScript": "#A"
    }, "0"]
  ]
}
{
  "methodResponses": [
    ["SieveScript/set",
     {
      "oldState": "1603741717.50737918-4096",
      "newState": "1603741751.227268529-4096",
      "created": {
        "A": {
          "id": "dd1b164f-8cdc-448c-9f54",
          "name": "ken-20201210T171432-0",
          "blobId": "Sdd1b164f-8cdc-448c-9f54",
          "isActive": true
        }
      },
      "updated": null,
      "destroyed": null,
      "notCreated": null,
      "notUpdated": null,
      "notDestroyed": null,
      "accountId": "ken"
    }, "0"
  ]
}
```

Request (and response) to update script content using the JMAP Blob management extension [I-D.ietf-jmap-blob]:
```json
{
   "using": [ "urn:ietf:params:jmap:core",
              "urn:ietf:params:jmap:blob",
              "urn:ietf:params:jmap:sieve" ],
   "methodCalls": [
      ["Blob/upload", {
         "accountId": "ken",
         "create": { "B": {
            "data": [ "data:asText": "redirect \ken@example.com
\r\n;"
           ],
            "type": "application/sieve"
         }
      }, "1"],
      ["SieveScript/set", {
         "accountId": "ken",
         "update": { "dd1b164f-8cdc-448c-9f54": { "blobId": "#B"
      }
      }, "2"
   ]
   ],
   "methodResponses": [
      ["Blob/set", {
         "oldState": null,
         "newState": "1603741700.309607123-0128",
         "created": { "B": {
            "id": "G969c83e44a6e10871c4568d0b94e1767c83ddeae",
            "blobId": "G969c83e44a6e10871c4568d0b94e1767c83ddeae",
            "type": "application/sieve",
            "size": 29
         }
      },
      "updated": null,
      "destroyed": null,
      "notCreated": null,
      "notUpdated": null,
      "notDestroyed": null,
      "accountId": "ken"
   },
   "1"
   ],
   ["SieveScript/set",
```
Request (and response) to update script name and deactivate:


```
{
  "using": [ "urn:ietf:params:jmap:core",
             "urn:ietf:params:jmap:sieve" ],
  "methodCalls": [
    ["SieveScript/set", {
      "accountId": "ken",
      "update": { "dd1b164f-8cdc-448c-9f54": {
                    "name": "myscript"
                },
      "onSuccessActivateScript": null
    }, "3"]
  ]
}

"methodResponses": [
  ["SieveScript/set", {
    "oldState": "1603742603.309607868-4096",
    "newState": "1603742967.852315428-4096",
    "created": null,
    "updated": { "dd1b164f-8cdc-448c-9f54": {
                    "isActive": false
                },
    "destroyed": null,
    "notCreated": null,
    "notUpdated": null,
    "notDestroyed": null,
    "accountId": "ken"
  },
  "3"
]}
}
```

Request (and response) to activate a script:
Requests (and responses) to deactivate and destroy the active script:

```json
{
  "using": [ "urn:ietf:params:jmap:core",
             "urn:ietf:params:jmap:sieve" ],
  "methodCalls": [
    ["SieveScript/set", {
      "accountId": "ken",
      "onSuccessActivateScript": "dd1b164f-8cdc-448c-9f54",
    }, "4"],
    ["SieveScript/set", {
      "accountId": "ken",
      "onSuccessActivateScript": "dd1b164f-8cdc-448c-9f54",
      "destroy": [ "dd1b164f-8cdc-448c-9f54" ]
    }, "5"]
  ]
}
```
"methodResponses": [
 "SieveScript/set",
 {
 "oldState": "1603744637.575375572-4096",
 "newState": "1603744637.854390875-4096",
 "created": null,
 "updated": null,
 "updated": {
 "dd1b164f-8cdc-448c-9f54": {"isActive": false
 },
 "destroyed": null,
 "notCreated": null,
 "notUpdated": null,
 "notDestroyed": null,
 "accountId": "ken"
 },
 "5"
],
"SieveScript/set",
{ "oldState": "1603744637.854390875-4096",
 "newState": "1603744637.854390875-4096",
 "created": null,
 "updated": null,
 "destroyed": ["dd1b164f-8cdc-448c-9f54"
],
 "notCreated": null,
 "notUpdated": null,
 "notDestroyed": null,
 "accountId": "ken"
},
"6"
2.3. SieveScript/query

This is a standard "/query" method as described in [RFC8620], Section 5.5. A _FilterCondition_ object has the following properties, either of which may be omitted:

* *name*: String

 The SieveScript "name" property contains the given string.

* *isActive*: Boolean

 The "isActive" property of the SieveScript must be identical to the value given to match the condition.

The following SieveScript properties MUST be supported for sorting:

* *name*
* *isActive*

2.4. SieveScript/validate

This method is used by the client to verify Sieve script validity without storing the script on the server, providing similar functionality to the CHECKSCRIPT command in [RFC5804].

The method takes the following arguments:

* *accountId*: Id

 The id of the account to use.

* *blobId*: Id

 The id of the blob containing the raw octets of the script to validate, subject to the same requirements in Section 2.

The response has the following arguments:

* *accountId*: Id

 The id of the account used for this call.

* *error*: SetError|null

 A "invalidScript" SetError object if the script content is invalid (see Section 2.2), or null if the script content is valid.
As with the SieveScript/set (Section 2.2) method, script content must first be uploaded as a blob using either the standard upload mechanism (see [RFC8620] Section 6.1) or the JMAP Blob management extension (see [I-D.ietf-jmap-blob] Section 3.1).

2.5. SieveScript/test

This method is used by the client to ask the Sieve interpreter to evaluate a Sieve script against a set of emails and report the actions that would be performed for each.

When calling this method the "using" property of the Request object MUST contain the capabilities "urn:ietf:params:jmap:sieve" and "urn:ietf:params:jmap:mail". The latter is required due to the use of blob ids which may reference Email objects and the use of the Envelope object, as described below.

The *SieveScript/test* method takes the following arguments:

* accountId*: Id
 The id of the account to use.

* scriptBlobId*: String
 The id of the blob containing the raw octets of the script to validate, subject to the same requirements in Section 2.

* emailBlobIds*: Id[]
 The ids representing the raw octets of the [RFC5322] messages to test against.

* envelope*: Envelope|null
 Information that the Sieve interpreter should assume was present in the SMTP transaction that delivered the message when evaluating "envelope" tests. If null, all "envelope" tests MUST evaluate to false. See Section 7 of [RFC8621] for the contents of the Envelope object.

* lastVacationResponse*: UTCDate|null
 The UTC date-time at which the Sieve interpreter should assume that it last auto-replied to the sender of the message, or null if the Sieve interpreter should assume that it has not auto-replied to the sender.
The response has the following arguments:

* *accountId*: Id

 The id of the account used for this call.

* *completed*: Id[Action[]]|null

 A map of the blob id to a set of _Action_ objects for each message successfully processed by the script, or null if none. The _Action_ object has the following properties:

 - *action*: String

 The name of the Sieve action (e.g., "keep").

 - *taggedArgs*: String[*]

 An object containing any named (tagged) arguments for the action. The name MUST be the tag for the argument as given in the specification of the action (e.g., ":flags"). This may be an empty object if the action does not have any tagged arguments, or none were specified in the Sieve script (e.g., discard [RFC5228] or ereject [RFC5429] action).

 - *positionalArgs*: *[]

 An array containing any positional arguments for the action in the order as given in the specification of the action. This may be an empty array if the action does not have any positional arguments (e.g., discard [RFC5228] or keep [RFC5228] action).

* *notCompleted*: Id[SetError]|null

 A map of the blob id to a SetError object for each message that was not successfully processed by the script, or null if none. A "serverFail" SetError (see Section 3.6.2 of [RFC8620]) MUST be used to indicate a Sieve interpreter run-time error.

The JSON data type to use for each argument value is a direct mapping from its Sieve data type, per the following table:
Recommendations for constructing the list of arguments are as follows:

* Optional arguments in which the value is supplied by the Sieve interpreter SHOULD be included (e.g., ":from" and ":subject" arguments to the "vacation" [RFC5230] action).

* Optional arguments in which the value is implicitly supplied by a Sieve variable SHOULD be included (e.g., "keep" or "fileinto" actions without an explicit ":flags" argument, but "imap4flags" [RFC5232] have been set on the internal variable).

* Optional arguments in which the value is the specified default MAY be omitted.

* Tagged arguments that are only used to determine whether the action will be executed and have no impact on the result of the action MAY be omitted (e.g., ":days" and ":addresses" arguments to the vacation action).

The following additional errors may be returned instead of the "SieveScript/test" response:

* "invalidScript": The script content is invalid (see Section 2.2).

* "notFound": The script referenced by the id could not be found.

* "rateLimit": The number of recent test method calls has reached a server-defined limit.

* "requestTooLarge": The total number of emailBlobIds exceeds the maximum number the server is willing to process in a single test method call.
* "serverFail": The script failed preparation to be executed for some other reason.

2.5.1. Example

Assume that the following script has been created and has blob id "S123".

```
require [ "imapflags", "editheader", "vacation", "fcc" ];
setflag "$SieveFiltered";
addheader :last "X-Sieve-Filtered" "yes";
vacation :days 3 :fcc "INBOX.Sent" :flags "\Answered" text:
Gone fishing.
```

Assume that the following email has been uploaded and assigned blob id "B456".

```
From: "Some Example Sender" <example@example.net>
To: ken@example.com
Subject: test email
Date: Wed, 23 Sep 2020 12:11:11 -0500
Content-Type: text/plain; charset="UTF-8"
MIME-Version: 1.0

This is a test email.

The following request executes the script against the email and provides envelope information for use by the "vacation" action.
```
The following response lists the actions that would be performed by the script.
{"methodResponses": [
"SieveScript/test", {
"completed": {
"B456": [
{"action": "addheader",
"taggedArgs": {
":last": true,
"positionalArgs": ["X-Sieve-Filtered", "yes"]
},
{"action": "vacation",
"taggedArgs": {
":fcc": "INBOX.Sent",
":flags": ["\\answered"
],
":subject": "Auto: test email",
":from": "ken@example.com"
},
"positionalArgs": ["Gone fishing."]
},
{"action": "keep",
"taggedArgs": {
":flags": ["$SieveFiltered"
]
},
"positionalArgs": []
}
},

"notCompleted": null,
"accountId": "ken",
"R1"
]}
}
3. Compatibility with JMAP Vacation Response

Section 8 of [RFC8621] defines a VacationResponse object to represent an autoresponder to incoming email messages. Servers that implement the VacationResponse as a Sieve script that resides amongst other user scripts are subject to the following requirements:

* MUST allow the VacationResponse Sieve script to be fetched by the SieveScript/get (Section 2.1) method.

* MUST allow the VacationResponse Sieve script to be [de]activated via the "onSuccessActivateScript" argument to the SieveScript/set (Section 2.2) method.

* MUST NOT allow the VacationResponse Sieve script to be destroyed or have its content updated by the SieveScript/set (Section 2.2) method. Any such request MUST be rejected with a "forbidden" SetError. A "description" property MAY be present with an explanation that the script can only be modified by a VacationResponse/set method.

4. Security Considerations

All security considerations of JMAP [RFC8620] and Sieve [RFC5228] apply to this specification.

5. IANA Considerations

5.1. JMAP Capability Registration for "sieve"

IANA will register the "sieve" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:sieve

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section 4

5.2. JMAP Error Codes Registry

The following sub-sections register two new error codes in the JMAP Error Codes registry, as defined in [RFC8620].
5.2.1. invalidScript

JMAP Error Code: invalidScript

Intended use: common

Change controller: IETF

Reference: This document, Section 2.2

Description: The SieveScript violates the Sieve grammar [RFC5228] and/or one or more extensions mentioned in the script’s "require" statement(s) are not supported by the Sieve interpreter.

5.2.2. scriptIsActive

JMAP Error Code: scriptIsActive

Intended use: common

Change controller: IETF

Reference: This document, Section 2.2

Description: The client tried to destroy the active SieveScript.

6. Acknowledgments

The concepts in this document are based largely on those in [RFC5804]. The author would like to thank the authors of that document for providing both inspiration and some borrowed text for this document.

The author would also like to thank the following individuals for contributing their ideas and support for writing this specification: Bron Gondwana, Neil Jenkins, Alexey Melnikov, and Ricardo Signes.

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Change History (To be removed by RFC Editor before publication)

Changes since ietf-07:
* Updated example to use Blob/upload rather than Blob/set.

Changes since ietf-06:
* None (refreshed to avoid expiration).

Changes since ietf-05:
* Converted source from xml2rfc v2 to v3.
* Added examples for SieveScript/get.
* Miscellaneous editorial changes.

Changes since ietf-04:
* SieveScript/test: Switched from using a JSON array for each completed action and its args to a JSON object.

* Switched to referencing draft-ietf-jmap-blob.

* Miscellaneous editorial changes.

Changes since ietf-03:

* SieveScript/test: Moved positional arguments into their own array (because the specifications don’t use a consistent method for defining the action syntax or naming of positional arguments).

Changes since ietf-02:

* Removed open issues.

* Reverted back to using only blob ids for script content.

* Added "rateLimit" and "requestTooLarge" to the list of possible error codes for /set method.

* Added Compatibility with JMAP Vacation Response section.

* Added RFC5228 to Security Considerations.

* Miscellaneous editorial changes.

Changes since ietf-01:

* Removed normative references to ManageSieve (RFC 5804).

* Added the 'maxSizeScriptName' capability.

* Made the 'name' property in the SieveScript object optional.

* Added requirements for the 'name' property in the SieveScript object.

* Removed the 'blobId' property from the SieveScript object.

* Removed the 'replaceOnCreate' argument from the /set method.

* Removed the 'blobId' argument from the /validate method.

* Removed the 'scriptBlobId' argument from, and added the 'scriptContent' argument to, the /test method.
* Editorial fixes from Neil Jenkins and Ricardo Signes.

* Other miscellaneous text reorganization and editorial fixes.

Changes since ietf-00:

* Specified that changes made by onSuccessActivateScript MUST be reported in the /set response as created and/or updated as appropriate.

* Reworked and specified more of the /test response based on implementation experience.

Changes since murchison-01:

* Explicitly stated that Sieve capability strings are case-sensitive.

* errorDescription is now String|null.

* Added /query method.

* Added /test method.

Changes since murchison-00:

* Added IANA registration for "scriptIsActive" JMAP error code.

* Added open issue about /set(create) with an existing script name.

Author’s Address

Kenneth Murchison
Fastmail US LLC
1429 Walnut Street - Suite 1201
Philadelphia, PA 19102
United States of America
Email: murch@fastmailteam.com
Abstract

This document specifies a data model for sharing data between users using JMAP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 June 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 2
1. Introduction

JMAP ([RFC8620] - JSON Meta Application Protocol) is a generic protocol for synchronizing data, such as mail, calendars or contacts, between a client and a server. It is optimized for mobile and web environments, and aims to provide a consistent interface to different data types.

This specification defines a data model to represent entities in a collaborative environment and a framework for sharing data between them that can be used to provide a consistent sharing model for different data types. It does not define _what_ may be shared, or the granularity of permissions, as this will depend on the data in question.
1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Type signatures, examples, and property descriptions in this document follow the conventions established in Section 1.1 of [RFC8620]. Data types defined in the core specification are also used in this document.

1.2. Terminology

The same terminology is used in this document as in the core JMAP specification, see [RFC8620], Section 1.6.

The terms Principal, and ShareNotification (with these specific capitalizations) are used to refer to the data types defined in this document and instances of those data types.

1.3. Data Model Overview

A Principal (see Section XXX) represents an individual, team or resource (e.g., a room or projector). The object contains information about the entity being represented, such as a name, description and time zone. It may also hold domain-specific information. A Principal may be associated with zero or more Accounts (see [RFC8620], Section 1.6.2) containing data belonging to the principal. Managing the set of principals within a system is out of scope for this specification, as it is highly domain specific.

Data types may allow users to share data with others by assigning permissions to principals. When a user’s permissions are changed, a ShareNotification object is created for them so a client can inform the user of the changes.

1.4. Subscriptions

Permissions determine whether a user _may_ access data, but not whether they _want_ to. Some shared data is of equal importance as the user’s own, while other data is just there should the user wish to explicitly go find it. Clients will often want to differentiate the two; for example, a company may share mailing list archives for all departments with all employees, but a user may only generally be interested in the few they belong to. They would have _permission_ to access many mailboxes, but can _subscribe_ to just the ones they
care about. The client would provide separate interfaces for reading mail in subscribed mailboxes and browsing all mailboxes they have permission to access in order to manage their subscriptions.

The JMAP Session object (see [RFC8620], Section 2) typically includes an object in the "accounts" property for every account that the user has access to. Collaborative systems may share data between a very large number of Principals, most of which the user does not care about day-to-day. The Session object MUST only include Accounts where either the user is subscribed to at least one record (see [RFC8620], Section 1.6.3) in the account, or the account belongs to the user. StateChange events for changes to data SHOULD only be sent for data the user has subscribed to and MUST NOT be sent for any Account where the user is not subscribed to any records in the account, except where that account belongs to the user.

The server MAY reject the user’s attempt to subscribe to some resources even if they have permission to access them, e.g., a calendar representing a location.

A user may query the set of Principals they have access to with "Principal/query" (see Section XXX). The Principal object may then provide Account objects if the user has permission to access data for that principal, even if they are not yet subscribed.

1.5. Addition to the Capabilities Object

The capabilities object is returned as part of the JMAP Session object; see [RFC8620], Section 2. This document defines two additional capability URIs.

1.5.1. urn:ietf:params:jmap:principals

Represents support for the Principal and ShareNotification data types and associated API methods.

The value of this property in the JMAP Session capabilities property is an empty object.

The value of this property in an account’s accountCapabilities property is an object that MUST contain the following information on server capabilities and permissions for that account:

* *currentUserPrincipalId*: "Id|null" The id of the principal in this account that corresponds to the user fetching this object, if any.
1.5.2. urn:ietf:params:jmap:principals:owner

This URI is solely used as a key in an account’s accountCapabilities property; it does not appear in the JMAP Session capabilities. Support is implied by the "urn:ietf:params:jmap:principals" session capability.

If present, the account (and data therein) is owned by a principal. Some accounts may not be owned by a principal (e.g., the account that contains the data for the principals themselves), in which case this property is omitted.

The value of this property is an object with the following properties:

- *accountIdForPrincipal*: "Id" The id of an account with the "urn:ietf:params:jmap:principals" capability that contains the corresponding Principal object.
- *principalId*: "Id" The id of the principal that owns this account.

2. Principals

A Principal represents an individual, group, location (e.g. a room), resource (e.g. a projector) or other entity in a collaborative environment. Sharing in JMAP is generally configured by assigning rights to certain data within an account to other principals, for example a user may assign permission to read their calendar to a principal representing another user, or their team.

In a shared environment such as a workplace, a user may have access to a large number of principals.

In most systems the user will have access to a single Account containing Principal objects, but they may have access to multiple if, for example, aggregating data from different places.

A *Principal* object has the following properties:

- *id*: "Id" The id of the principal.
- *type*: "String" This MUST be one of the following values:
 - "individual": This represents a single person.
 - "group": This represents a group of people.
- "resource": This represents some resource, e.g. a projector.
- "location": This represents a location.
- "other": This represents some other undefined principal.

* *name*: "String" The name of the principal, e.g. "Jane Doe", or "Room 4B".

* *description*: "String|null" A longer description of the principal, for example details about the facilities of a resource, or null if no description available.

* *email*: "String|null" An email address for the principal, or null if no email is available.

* *timeZone*: "String|null" The time zone for this principal, if known. If not null, the value MUST be a time zone id from the IANA Time Zone Database TZDB (https://www.iana.org/time-zones).

* *capabilities*: "String[Object]" A map of JMAP capability URIs to domain specific information about the principal in relation to that capability, as defined in the document that registered the capability.

2.1. Principal/get

This is a standard "/get" method as described in [RFC8620], Section 5.1.

2.2. Principal/changes

This is a standard "/changes" method as described in [RFC8620], Section 5.2.

2.3. Principal/set

This is a standard "/set" method as described in [RFC8620], Section 5.3.

Users SHOULD be allowed to update the "name", "description" and "timeZone" properties of the Principal with the same id as the "currentUserPrincipalId" in the Account capabilities.

However, the server may, and probably will, reject any change with a "forbidden" SetError. Managing principals is likely tied to a directory service or some other vendor-specific solution, and may occur out-of-band, or via an additional capability defined elsewhere.
2.4. Principal/query

This is a standard "/query" method as described in [RFC8620], Section 5.5

2.4.1. Filtering

A *FilterCondition* object has the following properties:

* *accountIds*: "String[]" A list of account ids. The Principal matches if the value for its accountId property is in this list.
* *email*: "String" Looks for the text in the email property.
* *name*: "String" Looks for the text in the name property.
* *text*: "String" Looks for the text in the name, email, and description properties.
* *type*: "String" The type must be exactly as given to match the condition.
* *timeZone*: "String" The timeZone must be exactly as given to match the condition.

All conditions in the FilterCondition object must match for the Principal to match.

2.5. Principal/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620], Section 5.6.

3. Share Notifications

The ShareNotification data type records when the user’s permissions to access a shared object changes. ShareNotification are only created by the server; users cannot create them explicitly. Notifications are stored in the same Account as the Principals.

Clients SHOULD present the list of notifications to the user and allow them to dismiss them. To dismiss a notification you use a standard "/set" call to destroy it.

The server SHOULD create a ShareNotification whenever the user’s permissions change on an object. It SHOULD NOT create a notification for permission changes to a group principal, even if the user is in the group.
3.1. Auto-deletion of Notifications

The server MAY limit the maximum number of notifications it will store for a user. When the limit is reached, any new notification will cause the previously oldest notification to be automatically deleted.

The server MAY coalesce notifications if appropriate, or remove notifications that it deems are no longer relevant or after a certain period of time. The server SHOULD automatically destroy a notification about an object if the user subscribes to that object.

3.2. Object Properties

The *ShareNotification* object has the following properties:

* *id*: "String" The id of the ShareNotification.
* *created*: "UTCDate" The time this notification was created.
* *changedBy*: "Person" Who made the change.
 - *name*: "String" The name of the person who made the change.
 - *email*: "String|null" The email of the person who made the change, or null if no email is available.
 - *principalId*: "String|null" The id of the Principal corresponding to the person who made the change, or null if no associated principal.
* *objectType*: "String" The name of the data type for the object whose permissions have changed, e.g. "Calendar" or "Mailbox".
* *objectAccountId*: "String" The id of the account where this object exists.
* *objectId*: "String" The id of the object that this notification is about.
* *name*: "String" The name of the object at the time the notification was made.
* *oldRights*: "Object|null" The "myRights" property of the object for the user before the change.
* *newRights*: "Object|null" The "myRights" property of the object for the user after the change.
3.3. ShareNotification/get

This is a standard "/get" method as described in [RFC8620], Section 5.1.

3.4. ShareNotification/changes

This is a standard "/changes" method as described in [RFC8620], Section 5.2.

3.5. ShareNotification/set

This is a standard "/set" method as described in [RFC8620], Section 5.3.

Only destroy is supported; any attempt to create/update MUST be rejected with a "forbidden" SetError.

3.6. ShareNotification/query

This is a standard "/query" method as described in [RFC8620], Section 5.5.

3.6.1. Filtering

A *FilterCondition* object has the following properties:

* *after*: "UTCDate|null" The creation date must be on or after this date to match the condition.
* *before*: "UTCDate|null" The creation date must be before this date to match the condition.
* *objectType*: "String" The objectType value must be identical to the given value to match the condition.
* *objectAccountId*: "String" The objectAccountId value must be identical to the given value to match the condition.

3.6.2. Sorting

The "created" property MUST be supported for sorting.

3.7. ShareNotification/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620], Section 5.6.
3.8. Framework for shared data

Shareable data types SHOULD define the following three properties:

* *isSubscribed*: "Boolean" Has the user indicated they wish to see this data? The initial value for this when data is shared by another user is implementation dependent, although data types may give advice on appropriate defaults.

* *myRights*: "Rights" The set of permissions the user currently has. Appropriate permissions are domain specific and must be defined per data type.

* *shareWith*: "Id[Rights]" A map of principal id to rights to give that principal. The account id for the principal id can be found in the capabilities of the Account this object is in (see Section XXX). Users with appropriate permission may set this property to modify who the data is shared with. The principal that owns the account this data is in MUST NOT be in the set of sharees; their rights are implicit.

4. Security Considerations

All security considerations of JMAP [RFC8620] apply to this specification.

TODO.

5. IANA Considerations

5.1. JMAP Capability Registration for "principals"

IANA will register the "principals" JMAP Capability as follows:

Capability Name: "urn:ietf:params:jmap:principals"

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section XXX

5.2. JMAP Capability Registration for "principals:owner"

IANA will register the "principals:owner" JMAP Capability as follows:
Capability Name: "urn:ietf:params:jmap:principals:owner"

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section XXX

6. Normative References

Author’s Address

Neil Jenkins (editor)
Fastmail
PO Box 234, Collins St West
Melbourne VIC 8007
Australia

Email: neilj@fastmailteam.com
URI: https://www.fastmail.com