draft-decraene-mpls-slid-encoded-entropy-label-id-04

Abstract

This document updates [RFC6790] to extend the use of the TTL field of
the Entropy Label in order to provide a flexible set of flags called
the Entropy Label Control field.

This document also defines a solution to encode a slice identifier in
MPLS in order to distinguish packets that belong to different slices,
to allow enforcing per network slice policies (e.g., QoS).

The slice identification is independent of the topology. It allows
for QoS/DiffServ policy on a per slice basis in addition to the per
packet QoS/DiffServ policy provided by the MPLS Traffic Class field.

In order to minimize the size of the MPLS stack and to ease
incremental deployment the slice identifier is encoded as part of the
Entropy Label.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction .................................................. 3
2. Requirements Language ......................................... 3
3. Entropy Label Control field ................................... 3
4. Slice Identifier ............................................... 4
    4.1. Ingress LSR .............................................. 4
    4.2. Transit LSR ............................................ 5
    4.3. Bandwidth-Allocation Slice ............................. 5
    4.4. Backward Compatibility .................................. 5
    4.5. Benefits ................................................ 6
5. Examples of more ELC usages ................................... 6
    5.1. End to end absolute loss measurements .................. 6
    5.2. Programmed sampling of packets .......................... 6
6. Deployment Considerations ...................................... 7
7. Implementation Status ......................................... 7
8. Security Considerations ....................................... 7
9. IANA Considerations .......................................... 7
10. Changes / Authors Notes ...................................... 7
11. Acknowledgements ............................................ 8
12. References .................................................. 8
    12.1. Normative References ................................... 8
    12.2. Informative References .................................. 8
Authors’ Addresses .............................................. 9
1. Introduction

This document defines a solution to encode a slice identifier in MPLS in order to provide QoS on a per slice basis. It allows for QoS/DiffServ policy on a per slice basis in addition to the per packet QoS/DiffServ policy provided by the MPLS Traffic Class field. The slice identification is independent of the topology and the QoS of the network, thus enabling scalable network slicing.

This document encodes the slice identifier in a portion of the MPLS Entropy Label (EL) defined in [RFC6790]. This has advantages as it avoids the use of additional label which would increase the size of the label stack. This also reuses the data plane processing of the Entropy Label on the egress LSR, the signaling of the Entropy Label capability from the egress to the ingress [RFC9088] [RFC9089], and the signaling capability of transit routers to read this label [RFC8491] which allows for an easier and faster incremental deployment.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. Entropy Label Control field

[RFC6790] defines the MPLS Entropy Label. [RFC6790] section 4.2 defines the use of the Entropy Label Indicator (ELI) followed by the Entropy Label (EL) and the MPLS header fields (Label, TC, S, TTL) in each. [RFC6790] also specifies that the TTL field of the EL must be set to zero by the ingress LSR.

Following the procedures of [RFC6790] EL is never used for forwarding and its TTL is never looked at nor decremented:

* An EL capable Egress LSR performs a lookup on the ELI and as a result pop two labels: ELI and EL.

* An EL non-capable Egress LSR performs a lookup on the ELI and as a result must drop the packet as specified in [RFC3031] for the handling of an invalid incoming label.

Hence essentially the TTL field of the EL behaves as a reserved field which must be set to zero when sent and ignored when received.
This document extends the TTL field of the EL and calls it the Entropy Label Control (ELC) field. The ELC is a set of eight flags: ELC0 for bit 0, ELC1 for bit 1, ..., ELC7 for bit 7.

Given that the MPLS header is very compact (32 bits) with no reserved bits and that MPLS is used within a trusted administrative domain, the semantic of these bits is not standardized but defined on a per administrative domain basis. This allows for increased re-use and flexibility of this scarce resource. As a consequence, an application using one of those buts MUST allow the choice of the bit by configuration by the network operator.

4. Slice Identifier

Each network slice in an MPLS domain is uniquely identified by a Slice Identifier (SLID) [I-D.bestbar-teas-ns-packet]. This section encodes the SLID in a portion of the MPLS Entropy Label defined in [RFC6790].

The number of bits to be used for encoding the SLID in the EL is governed by a local policy and uniform within a network slice policy domain.

4.1. Ingress LSR

When an ingress LSR classifies that a packet belongs to the slice and that the egress has indicated via signaling that it can process EL for the tunnel, the ingress LSR pushes an Entropy Label with the:

* SLID encoded in the most significant bits of the Entropy Label.
* the entropy information encoded in the remaining lower bits of the Entropy Label as described in section 4.2 of [RFC6790].
* SPI bit (SLID Presence Indicator) set in one bit of the ELC field.

The choice of the ELC field used for SPI, and the number of bits to be used for encoding the SLID MUST be configurable by the network operator.

The slice classification method is outside the scope of this document.

The encoding of the Slide ID in the Entropy Label is in line with the specification of the Flow Label as the slide identification _is_ a property of the flow:

* For a given flow it is constant in all packets.
It's a property specific to the flow so would typically be used to determine the Entropy Label.

4.2. Transit LSR

Any LSR that forwards a packet with the SPI bit set MUST use the SLID to select a slice and apply per-slice policies.

There are many different policies that could define a slice for a particular application or service. The most basic of these is bandwidth-allocation, an implementation complying with this specification SHOULD support the bandwidth-allocation slice as defined in the next section.

4.3. Bandwidth-Allocation Slice

A per-slice policy is configured at each interface of each router in the domain, with one traffic shaper per SLID. The bit rate of each shaper is configured to reflect the bandwidth allocation of the per-slice policy.

If shapers are not available, or desirable, an implementation MAY configure one scheduling queue per SLID with a guaranteed bandwidth equal to the bandwidth-allocation for the slice. This option allows a slice to consume more bandwidth than its allocation when available.

Per-slice shapers or queues effectively provides a virtual port per slice. This solution MAY be complemented with a per-virtual-port hierarchical DiffServ policy. Within the context of one specific slice, packets are further classified into children DiffServ queues which hang from the virtual port. The Traffic Class value in the MPLS header SHOULD be used for queue selection.

4.4. Backward Compatibility

The Entropy Label usage described in this document is consistent with [RFC6790] as ingress LSRs freely chooses the EL of a given flow, and transit LSRs treat the EL as an opaque set of bits.

As per [RFC6790] an ingress LSR that does not support this extension has the SPI bit cleared, and thus does not enable the SLID semantic of the Entropy bits. Hence, SLID-aware transit LSRs will not classify these packets into a slice.
4.5. Benefits

From a Segment Routing architecture perspective, this network slice identifier for SR-MPLS is inline with the network slice identifier for SRv6 proposed in [I-D.filslfs-spring-srv6-stateless-slice-id].

From an SR-MPLS perspective, using the EL to carry the network slice identifier has multiple benefits:

* This limits the number of labels pushed on the MPLS stack compared to using a pair of labels (ELI+EL) for flow entropy plus two or three labels for the slice indicator and the slice identifier. This is beneficial for the ingress LSR which may have limitations with regards to the number of labels pushed, for the transit LSR which may have limitations with regards to the label stack depth to be examined during transit in order to read both the entropy and the SLID. This presents additional benefit to network operators by reducing the packet overhead for traffic carried through the network;

* This avoids defining new extensions for the signaling of the egress capability to support the slice indicator and the slice identifier;

* This improves incremental deployment as all egress LSRs supporting EL can be sent the slice identifier from day one, allowing slice classification on transit LSRs.

5. Examples of more ELC usages

5.1. End to end absolute loss measurements

This section describes the usage of a ELC flag to enable packet loss measurements, as described in section 3.1 of [RFC8321].

TBD

5.2. Programmed sampling of packets

This section describes the usage of a ELC flag to detect end to end packet loss.

TBD
6. Deployment Considerations

The number of bits to be used for encoding the SLID in the EL affects the number of effective entropy bits. The total number of raw bits available for encoding entropy is not changed as the slice ID is part of the flow identification and contains some entropy. However this is expected to reduce the effective number of entropy bit as the slice ID is likely to less effectively encode entropy information compared to the use of a good hash function. The effective reduction of entropy depends on how good the [RFC6790] entropy value is computed (which is implementation dependent) and the statistical distribution of the usage of slice identifier. In order to minimize this reduction, network operators should set the size of the field encoding the slice identifier to the minimum size required for the number of slides used in deployment.

7. Implementation Status

The following hardware platforms support "end-to-end" network slicing/partitioning as described in Section 4:

* Cisco NCS platforms based on Broadcom Jericho2 family of ASIC. The support includes the ingress as well as the transit LSRs roles.

8. Security Considerations

The MPLS forwarding plane is insecure. If an adversary can affect the forwarding plane, then they can inject data, remove data, corrupt data, or modify data.

This documents additionally allows an adversary to change the slice of a packet, and to add or remove indicators/flags.

Link-level security mechanisms can help mitigate some on-link attacks, but does nothing to preclude hostile nodes.

9. IANA Considerations

This document has no IANA actions.

10. Changes / Authors Notes

[RFC Editor: Please remove this section before publication]

00: Initial version.

01: New co-author
02: Editorial precision that the slice ID is a component of flow entropy hence inline with the use of entropy label.

03: Refresh.


11. Acknowledgements

Authors would like to thanks Zafar Ali for his contributions.

12. References

12.1. Normative References


12.2. Informative References


Authors’ Addresses

Bruno Decraene (editor)
Orange
Email: bruno.decrane@orange.com

Clarence Filsfils
Cisco Systems, Inc.
Belgium
Email: cf@cisco.com

Wim Henderickx
Nokia
Copernicuslaan 50
95134 Antwerp 2018
Belgium
Email: wim.henderickx@nokia.com

Tarek Saad
Juniper Networks
Email: tsaad@juniper.net

Vishnu Pavan Beeram
Juniper Networks
Email: vbeeram@juniper.net

Luay Jalil
Verizon
Email: luay.jalil@verizon.com
MPLS Data Plane Encapsulation for In-situ OAM Data
draft-gandhi-mpls-ioam-sr-06

Abstract

In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the data packet while the packet traverses a path between two nodes in the network. This document defines how IOAM data fields are transported with MPLS data plane encapsulation using new Generic Associated Channel (G-ACh).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 22, 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents.
carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1.  Introduction ........................................ 2
2.  Conventions ........................................ 3
   2.1.  Requirement Language ............................ 3
   2.2.  Abbreviations ................................. 3
3.  MPLS Extensions for IOAM Data Fields ..................... 4
   3.1.  IOAM Generic Associated Channel ................. 4
   3.2.  IOAM Indicator Labels ........................... 5
4.  Edge-to-Edge IOAM ..................................... 5
   4.1.  Edge-to-Edge IOAM Indicator Label ................ 5
   4.2.  Procedure for Edge-to-Edge IOAM .................. 6
   4.3.  Edge-to-Edge IOAM Indicator Label Allocation .... 7
5.  Hop-by-Hop IOAM ....................................... 7
   5.1.  Hop-by-Hop IOAM Indicator Label ................. 7
   5.2.  Procedure for Hop-by-Hop IOAM .................... 8
   5.3.  Hop-by-Hop IOAM Indicator Label Allocation .... 8
6.  Considerations for IOAM Indicator Label ................... 9
   6.1.  Considerations for ECMP ........................ 9
   6.2.  Node Capability ................................ 9
   6.3.  MSD Considerations ............................. 9
   6.4.  Nested MPLS Encapsulation ....................... 10
7.  MPLS Encapsulation with Control Word and Another G-ACh for
   IOAM Data Fields ...................................... 10
8.  Example MPLS Encapsulations ........................... 12
   8.1.  Example SR-MPLS Encapsulation with IOAM ......... 12
9.  Security Considerations ............................... 13
10. IANA Considerations ................................ 13
11. References ........................................... 14
   11.1.  Normative References ......................... 14
   11.2.  Informative References ....................... 15
Acknowledgements ........................................ 16
Contributors ........................................... 16
Authors’ Addresses ...................................... 16

1.  Introduction

In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information within the packet while the packet traverses a particular network domain. The term "in-situ" refers to the fact that the IOAM data fields are added to the data packets rather than being sent within the probe packets specifically
dedicated to OAM or Performance Measurement (PM). The IOAM data fields are defined in [I-D.ietf-ippm-ioam-data], and can be used for various use-cases for OAM and PM. The IOAM data fields are further updated in [I-D.ietf-ippm-ioam-direct-export] for direct export use-cases and in [I-D.ietf-ippm-ioam-flags] for Loopback and Active flags.

This document defines how IOAM data fields are transported with MPLS data plane encapsulations using new Generic Associated Channel (G-ACh).

2. Conventions

2.1. Requirement Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2.2. Abbreviations

Abbreviations used in this document:

ECMP Equal Cost Multi-Path
E2E Edge-To-Edge
G-ACh Generic Associated Channel
HbH Hop-by-Hop
IOAM In-situ Operations, Administration, and Maintenance
MPLS Multiprotocol Label Switching
OAM Operations, Administration, and Maintenance
PM Performance Measurement
POT Proof-of-Transit
PSID Path Segment Identifier
PW PseudoWire
SR Segment Routing
3. MPLS Extensions for IOAM Data Fields

3.1. IOAM Generic Associated Channel

The IOAM data fields are defined in [I-D.ietf-ippm-ioam-data]. The IOAM data fields are carried in the MPLS header as shown in Figure 1. More than one trace options can be present in the IOAM data fields. G-ACh [RFC5586] provides a mechanism to transport OAM and other control messages over MPLS data plane. The IOAM G-ACh header [RFC5586] with new IOAM G-ACh type is added immediately after the MPLS label stack in the MPLS header as shown in Figure 1, before the IOAM data fields.

```
+-----------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1|Version|   Reserved    |          IOAM G-ACh           |  |
|       +-----------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
|       | Reserved      | Block Number  | IOAM-OPT-Type |IOAM HDR Length|  |
|       +-----------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
|       |                                                               |  O  |
|       |                                                               |  A  |
|       |                                                               |  M  |
|       |                                                               |  |
|       +-----------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       |                                                             |  |
|       | IOAM Option and Data Space                                   |  |
|       +-----------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       |                                                             |  |
|       |                                                             |  |
|       +-----------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       |                                                             |  |
|       | Payload + Padding                                           |  |
+-----------------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1: IOAM Generic Associated Channel with IOAM Data Fields
```

The IOAM data fields are encapsulated using the following fields in the MPLS header:

- **IP Version Number 0001b**: The first four octets are IP Version Field part of a G-ACh header, as defined in [RFC5586].
- **Version**: The Version field is set to 0, as defined in [RFC4385].
- **IOAM G-ACh**: Generic Associated Channel (G-ACh) Type (value TBA3) for IOAM [RFC5586].
Reserved: Reserved Bits MUST be set to zero upon transmission and ignored upon receipt.

Block Number: The Block Number can be used to aggregate the IOAM data collected in data plane, e.g. compute measurement metrics for each block of a flow. It is also used to correlate the IOAM data on different nodes.

IOAM-OPT-Type: 8-bit field defining the IOAM Option type, as defined in Section 8.1 of [I-D.ietf-ippm-ioam-data].

IOAM HDR LEN: 8-bit unsigned integer. Length of the IOAM HDR in 4-octet units.

IOAM Option and Data Space: IOAM option header and data is present as defined by the IOAM-OPT-Type field, and is defined in Section 5 of [I-D.ietf-ippm-ioam-data].

3.2. IOAM Indicator Labels

An IOAM Indicator Label is used to indicate the presence of the IOAM data fields in the MPLS header. There are two IOAM types defined in this document: Edge-to-Edge (E2E) and Hop-by-Hop (HbH) IOAM. If only edge nodes need to process IOAM data then E2E IOAM Indicator Label is used so that intermediate nodes can ignore it. If both edge and intermediate nodes need to process IOAM data then HbH IOAM Indicator Label is used. Different IOAM Indicator Labels allow to optimize the IOAM processing on intermediate nodes by checking if IOAM data fields need to be processed.

4. Edge-to-Edge IOAM

4.1. Edge-to-Edge IOAM Indicator Label

The E2E IOAM Indicator Label is used to indicate the presence of the E2E IOAM data fields in the MPLS header as shown in Figure 2.
The E2E IOAM data fields carry the Option-Type(s) that require processing on the encapsulating and decapsulating nodes only. The IOAM Option-Type carried can be IOAM Edge-to-Edge Option-Type [I-D.ietf-ippm-ioam-data]. The E2E IOAM data fields SHOULD NOT carry any IOAM Option-Type that require IOAM processing on the intermediate nodes as it will not be processed by them.

4.2. Procedure for Edge-to-Edge IOAM

The E2E IOM procedure is summarized as following:

- The encapsulating node inserts the E2E IOAM Indicator Label and one or more IOAM data fields in the MPLS header.

- The intermediate nodes do not process IOAM data fields.

- The decapsulating node "punts the timestamped copy" of the received packet as is including the IOAM data fields when the node recognizes the IOAM Indicator Label. The copy of the packet is punted with receive timestamp to the slow path for IOAM data fields processing. The receive timestamp is required by the various E2E OAM use-cases, including streaming telemetry. Note that it is not necessarily punted to the control-plane.

- The decapsulating node processes the IOAM data fields using the procedures defined in [I-D.ietf-ippm-ioam-data]. An example of IOAM processing is to export the data fields, send data fields via streaming telemetry, etc.

- The decapsulating node also pops the IOAM Indicator Label and the IOAM data fields from the received packet. The decapsulated
packet is forwarded downstream or terminated locally similar to the regular data packets.

4.3. Edge-to-Edge IOAM Indicator Label Allocation

The E2E IOAM Indicator Label is used to indicate the presence of the E2E IOAM data fields in the MPLS header. The E2E IOAM Indicator Label can be allocated using one of the following three methods:

- Label assigned by IANA with value TBA1 from the Extended Special-Purpose MPLS Values [I-D.ietf-mpls-spl-terminology].
- Label allocated by a Controller from the global table of the decapsulating node. The Controller provisions the label on both encapsulating and decapsulating nodes.
- Label allocated by the decapsulating node and signalled or advertised in the network. The signaling and/or advertisement extension for this is outside the scope of this document.

5. Hop-by-Hop IOAM

5.1. Hop-by-Hop IOAM Indicator Label

The HbH IOAM Indicator Label is used to indicate the presence of the HbH IOAM data fields in the MPLS header as shown in Figure 3.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Label(1)                             | TC |S|  TTL          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
.                                                               .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Label(n)                             | TC |S|  TTL          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  HbH IOAM Indicator Label             | TC |1|  TTL          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Packet as shown in Figure 1                    |
.                                                               .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 3: MPLS Encapsulation for HbH IOAM

The HbH IOAM data fields carry the Option-Type(s) that require processing at the intermediate and/or encapsulating and decapsulating nodes. The IOAM Option-Type carried can be IOAM Pre-allocated Trace Option-Type, IOAM Incremental Trace Option-Type and IOAM Proof of
Transit (POT) Option-Type, as well as Edge-to-Edge Option-Type [I-D.ietf-ippm-ioam-data].

5.2. Procedure for Hop-by-Hop IOAM

The HbH IOAM procedure is summarized as following:

- The encapsulating node inserts the HbH IOAM Indicator Label and one or more IOAM data fields in the MPLS header.
- The intermediate node enabled with HbH IOAM functions processes the data packet including the IOAM data fields as defined in [I-D.ietf-ippm-ioam-data] when the node recognizes the HbH IOAM Indicator Label present in the MPLS header. The intermediate node may 'punt the timestamped copy' of the received data packet including the IOAM data fields as required by the IOAM data fields processing. The copy of the packet is punted with receive timestamp to the slow path for IOAM processing.
- The intermediate node forwards a copy of the processed data packet downstream.
- The decapsulating node "punts the timestamped copy" of the received data packet as is including the IOAM data fields when the node recognizes the IOAM Indicator Label. The copy of the packet is punted with receive timestamp to the slow path for IOAM data fields processing. The receive timestamp is required by the various E2E OAM use-cases, including streaming telemetry. Note that it is not necessarily punted to the control-plane.
- The decapsulating node processes the IOAM data fields using the procedures defined in [I-D.ietf-ippm-ioam-data]. An example of IOAM processing is to export the data fields, send data fields via streaming telemetry, etc.
- The decapsulating node also pops the IOAM Indicator Label and the IOAM data fields from the received packet. The decapsulated packet is forwarded downstream or terminated locally similar to the regular data packets.

5.3. Hop-by-Hop IOAM Indicator Label Allocation

The HbH IOAM Indicator Label is used to indicate the presence of the HbH IOAM data fields in the MPLS header. The HbH IOAM Indicator Label can be allocated using one of the following three methods:

- Label assigned by IANA with value TBA2 from the Extended Special-Purpose MPLS Values [I-D.ietf-mpls-spl-terminology].

Label allocated by a Controller from the network-wide global table. The Controller provisions the labels on all nodes participating in IOAM functions along the data traffic path.

Labels allocated by the intermediate and decapsulating nodes and signalled or advertised in the network. The signaling and/or advertisement extension for this is outside the scope of this document.

6. Considerations for IOAM Indicator Label

6.1. Considerations for ECMP

The encapsulating node needs to make sure the IOAM data fields do not start with a well-known IP Version Number (e.g. 0x4 for IPv4 and 0x6 for IPv6) as that can alter the hashing function for ECMP that uses the IP header. This is achieved by using the IOAM G-ACh with IP Version Number 0001b after the MPLS label stack [RFC5586].

Note that the hashing function for ECMP that uses the labels from the MPLS header may now include the IOAM Indicator Label.

When entropy label [RFC6790] is used for hashing function for ECMP, the procedure defined in this document does not alter the hashing function.

6.2. Node Capability

The decapsulating node that has to pop the IOAM Indicator Label, data fields, and perform the IOAM function may not be capable of supporting it. The encapsulating node needs to know if the decapsulating node can support the IOAM function. The signaling extension for this capability exchange is outside the scope of this document.

The intermediate node that is not capable of supporting the IOAM functions defined in this document, can simply skip the IOAM processing of the MPLS header.

6.3. MSD Considerations

The SR path computation needs to know the Maximum SID Depth (MSD) that can be imposed at each node/link of a given SR path [RFC8664]. This ensures that the SID stack depth of a computed path does not exceed the number of SIDs the node is capable of imposing. The MSD used for path computation MUST include the IOAM Indicator Label.
6.4. Nested MPLS Encapsulation

The data packets with IOAM data fields carry only one IOAM Indicator Label in the MPLS header. Any intermediate node that adds additional MPLS encapsulation in the MPLS header may further update the IOAM data fields in the header without inserting another IOAM Indicator Label. When a packet is received with a HbH IOAM Indicator Label, the nested MPLS encapsulating node can add a HbH and/or E2E IOAM Option-Type. However, when a packet is received with an E2E IOAM Indicator Label, the nested MPLS encapsulating node SHOULD NOT add a HbH IOAM Option-Type, as intermediate nodes will not process it.

7. MPLS Encapsulation with Control Word and Another G-ACh for IOAM Data Fields

The IOAM data fields, including IOAM G-ACh header are added in the MPLS encapsulation immediately after the MPLS header. Any Control Word [RFC4385] or another G-ACh [RFC5586] MUST be added after the IOAM data fields in the packet as shown in the Figure 4 and Figure 5, respectively. This allows the intermediate nodes to easily access the HbH IOAM data fields located immediately after the MPLS header. The decapsulating node can remove the MPLS encapsulation including the IOAM data fields and then process the Control Word or another G-ACh following it.
<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOAM Indicator Label</td>
</tr>
<tr>
<td>+-----------------------------------------+</td>
</tr>
<tr>
<td>TC</td>
</tr>
<tr>
<td>+-----------------------------------------+</td>
</tr>
<tr>
<td>0 0 0 1</td>
</tr>
<tr>
<td>+-----------------------------------------+</td>
</tr>
<tr>
<td>Reserved</td>
</tr>
<tr>
<td>+-----------------------------------------+</td>
</tr>
<tr>
<td>0 0 0 0</td>
</tr>
<tr>
<td>+-----------------------------------------+</td>
</tr>
<tr>
<td>Payload + Padding</td>
</tr>
<tr>
<td>+-----------------------------------------+</td>
</tr>
</tbody>
</table>

Figure 4: Example MPLS Encapsulation with Generic PW Control Word with IOAM
8. Example MPLS Encapsulations

8.1. Example SR-MPLS Encapsulation with IOAM

Segment Routing (SR) technology leverages the source routing paradigm [RFC8660]. A node steers a packet through a controlled set of instructions, called segments, by pre-pending the packet with an SR header. In the SR with MPLS data plane (SR-MPLS), the SR header is instantiated through a label stack.

An example of data packet with SR-MPLS encapsulation containing Path Segment Identifier (PSID) [I-D.ietf-spring-mpls-path-segment] and E2E IOAM data fields is shown in Figure 6. The PSID allows to identify the path associated with the data traffic being monitored for IOAM on the decapsulating node.
9. Security Considerations

The security considerations of IOAM in general are discussed in [I-D.ietf-ippm-ioam-data].

IOAM is considered a "per domain" feature, where one or several operators decide on leveraging and configuring IOAM according to their needs. Still, operators need to properly secure the IOAM domain to avoid malicious configuration and use, which could include injecting malicious IOAM packets into a domain.

Routers that support G-ACh are subject to the same security considerations as defined in [RFC4385] and [RFC5586].

10. IANA Considerations

IANA maintains the "Special-Purpose Multiprotocol Label Switching (MPLS) Label Values" registry (see <https://www.iana.org/assignments/mpls-label-values/mpls-label-values.xml>). IANA is requested to allocate IOAM Indicator Label value from the "Extended Special-Purpose MPLS Label Values" registry:

---

Figure 6: Example SR-MPLS Encapsulation with E2E IOAM Data Fields
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA1</td>
<td>E2E IOAM Indicator Label</td>
<td>This document</td>
</tr>
<tr>
<td>TBA2</td>
<td>HbH IOAM Indicator Label</td>
<td>This document</td>
</tr>
</tbody>
</table>

Table 1: IOAM Indicator Label Values

IANA maintains G-ACh Type Registry (see <https://www.iana.org/assignments/g-ach-parameters/g-ach-parameters.xhtml>). IANA is requested to allocate a value for IOAM G-ACh Type from "MPLS Generalized Associated Channel (G-ACh) Types (including Pseudowire Associated Channel Types)" registry.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA3</td>
<td>IOAM G-ACh Type</td>
<td>This document</td>
</tr>
</tbody>
</table>

Table 2: IOAM G-ACh Type

11. References

11.1. Normative References

[I-D.ietf-ippm-ioam-data]

[I-D.ietf-ippm-ioam-direct-export]

[I-D.ietf-ippm-ioam-flags]
11.2. Informative References


Acknowledgements

The authors would like to thank Patrick Khordoc, Shwetha Bhandari and Vengada Prasad Govindan for the discussions on IOAM. The authors would also like to thank Tarek Saad, Loa Andersson, Greg Mirsky, Stewart Bryant, Xiao Min, and Cheng Li for providing many useful comments. The authors would also like to thank Mach Chen, Andrew Malis, Matthew Bocci, and Nick Delregno for the MPLS-RT reviews.

Contributors

Sagar Soni
Cisco Systems, Inc.

Email: sagsoni@cisco.com

Authors’ Addresses

Rakesh Gandhi (editor)
Cisco Systems, Inc.
Canada

Email: rgandhi@cisco.com

Zafar Ali
Cisco Systems, Inc.

Email: zali@cisco.com

Clarence Filsfils
Cisco Systems, Inc.
Belgium

Email: cf@cisco.com

Frank Brockners
Cisco Systems, Inc.
Hansaallee 249, 3rd Floor
DUESSELDORF, NORDRHEIN-WESTFALEN  40549
Germany

Email: fbrockne@cisco.com
Bin Wen
Comcast

Email: Bin_Wen@cable.comcast.com

Voitek Kozak
Comcast

Email: Voitek_Kozak@comcast.com
LSP Ping/Traceroute for Prefix SID in Presence of Multi-Algorithm/Multi-Topology Networks
draft-iqbal-spring-mpls-ping-algo-02

Abstract

[RFC8287] defines the extensions to MPLS LSP Ping and Traceroute for Segment Routing IGP-Prefix and IGP-Adjacency Segment Identifier (SIDs) with an MPLS data plane. The machinery defined in [RFC8287] works well in single topology, single algorithm deployments where each Prefix SID is only associated with a single IP prefix. In multi-topology networks, or networks deploying multiple algorithms for the same IP Prefix, MPLS echo request needs to carry additional information in the Target FEC Stack sub-TLVs to properly validate IGP Prefix SID.

This document updates [RFC8287] by modifying IPv4 and IPv6 IGP-Prefix Segment ID FEC sub-TLVs to also include algorithm identification while maintaining backwards compatibility. This document also introduces new Target FEC Stack sub-TLVs for Prefix SID validation in multi-topology networks.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
1. Introduction ................................................. 3
2. Conventions .................................................. 3
3. Motivation .................................................... 4
4. Algorithm Identification for IGP-Prefix SID Sub-TLVs .... 5
   4.1. IPv4 IGP-Prefix Segment ID Sub-TLV ................. 5
   4.2. IPv6 IGP-Prefix Segment ID Sub-TLV ................. 5
5. Multi-topology Support for IGP Prefix SID ............... 6
   5.1. Multi-topology IPv4 IGP-Prefix Segment ID Sub-TLV .. 6
   5.2. Multi-Topology IPv6 IGP-Prefix Segment ID Sub-TLV .. 7
6. Procedures .................................................. 7
   6.1. Single-Topology Networks .............................. 8
     6.1.1. Initiator Node Procedures ...................... 8
     6.1.2. Responder Node Procedures .................... 8
   6.2. Multi-Topology Networks ............................. 8
     6.2.1. Initiator Node Procedures .................... 8
     6.2.2. Responding Node Procedures ................... 9
7. IANA Considerations ...................................... 9
1. Introduction

[RFC8287] defines the extensions to MPLS LSP Ping and Traceroute for Segment Routing IGP-Prefix SID and IGP-Adjacency SID with an MPLS data plane. [RFC8287] proposes 3 Target FEC Stack Sub-TLVs to carry this information. [I-D.ietf-lsr-flex-algo] introduces the concept of Flexible Algorithm that allows IGPs (ISIS, OSPFv2 and OSPFv3) to compute constraint-based path over an MPLS network. The constraint-based paths enables the IGP of a router to associate one or more Segment Routing Prefix-SID with a particular Flexible Algorithm, and steer packets along the constraint-based paths. Multiple Flexible Algorithms are assigned to the same IPv4/IPv6 Prefix while each utilizing a different MPLS Prefix SID label. Similarly, operators may deploy same IP prefix across multiple topologies in the network using IGP Multi-topology ID (MT-ID). As Flexible-Algorithm based deployments in particular, and multi-topology networks in general, become more common, existing OAM machinery requires updates to correctly diagnose network faults.

Segment Routing architecture [RFC8402] defines the context for IGP Prefix SID as a unique tuple comprised of prefix, topology, and algorithm. Existing MPLS Ping/Traceroute machinery for SR Prefix SIDs, defined in [RFC8287], carries prefix, prefix length, and IGP protocol. To correctly identify and validate a Prefix-SID, the validating device also requires algorithm and topology identification to be supplied in the FEC Stack sub-TLV. This document extends SR-IGP IPv4 and IPv6 Prefix SID FECs to validate a particular algorithm in a single-topology network, while maintaining backwards compatibility with existing implementations of [RFC8287]. It also introduces new Target FEC Stack sub-TLVs to perform MPLS Ping and Traceroute for IGP Prefix SIDs in multi-topology, multi-algorithm deployments.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
The term "Must Be Zero" (MBZ) is used in object descriptions for reserved fields. These fields MUST be set to zero when sent and ignored on receipt.

Since this document refers to the MPLS Time to Live (TTL) far more frequently than the IP TTL, the authors have chosen the convention of using the unqualified "TTL" to mean "MPLS TTL" and using "IP TTL" for the TTL value in the IP header.

3. Motivation

In presence of multiple algorithms, a single IGP Prefix may be associated with zero or more IGP Prefix SIDs in addition to the default (Shortest Path First) Prefix SID. Each Prefix SID will have a distinct Prefix SID label and may possibly have a distinct set of next-hops based on associated constraint-based path calculation criteria. This means that to reach the same destination, an non-default algorithm IGP-Prefix SID may take a different path than default IGP Prefix SID algorithm.

```
R3------R6
  /          \
 R1----R2    R7----R8
  \          /\n R4------R5
```

Figure above, which is a simplification of the diagram used in [RFC8287] illustrates this point through an example. Node Segment IDs for R1, R2, R3, R4, R5, R6, R7, and R8 for the default algorithm are 5001, 5002, 5003, 5004, 5005, 5006, 5007, and 5008, respectively. Nodes R1, R2, R4, R5, R7, and R8 also participate in Flexible Algorithm 128. Their corresponding Node Segment IDs for the algorithm are 5801, 5802, 5804, 5805, 5807, and 5808, respectively.

Now consider an MPLS LSP Traceroute request to validate the path to reach node R8 through Flexible Algorithm 128. The TTL of the first echo request packet expires at node R2 with incoming label 5808. Node R2 attempts to validate IGP-Prefix SID Target FEC stack sub-TLV from the echo request. However, this TFS sub-TLV does not contain information identifying the algorithm. As a result, R2 will attempt validation with default algorithm which expects the echo packet to arrive with Prefix SID label 5008. The validation fails, and node R2 responds with error code 10 resulting in a false negative.

Carrying algorithm identification in the Target FEC Stack sub-TLV of MPLS echo request will help avoid such false negatives. It will also...
help detect forwarding deviations such as when the packet for a particular destination is incorrectly forwarded to a device that is participating in the default algo but does not participate in a given Flexible Algorithm.

The above problem statement can also be extended to apply in Multi-Topology networks. In such networks, the Target FEC Stack sub-TLV MUST carry Multi-Topology ID (MT-ID) in addition to prefix, its length, IGP identification, and algorithm.

4. Algorithm Identification for IGP-Prefix SID Sub-TLVs

Section 5 of [RFC8287] defines 3 different Segment ID Sub-TLVs that will be included in Target FEC Stack TLV defined in [RFC8029]. This section updates IPv4 IGP-Prefix Segment ID Sub-TLV and IPv6 IGP-Prefix Segment ID Sub-TLV to also include an additional field identifying the algorithm.

4.1. IPv4 IGP-Prefix Segment ID Sub-TLV

The Sub-TLV format for IPv4 IGP-Prefix Segment ID MUST be set as shown in the below TLV format:

```
0                   1                   2                   3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          IPv4 prefix                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Prefix Length  |    Protocol   |      Algo     |   Reserved    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Algo field MUST be set to 0 if the default algorithm is used. Algo field is set to 1 if Strict Shortest Path First (Strict-SPF) algorithm is used. For Flex-Algo, the Algo field MUST be set with the algorithm value (values can be 128-255).

4.2. IPv6 IGP-Prefix Segment ID Sub-TLV

The Sub-TLV format for IPv6 IGP-Prefix Segment ID MUST be set as shown in the below TLV format:
5. Multi-topology Support for IGP Prefix SID

IGP Prefix SID TLVs defined above assume a single-topology network for path validation. For Multi-Topology networks, this section introduces new Multi-Topology IGP IPv4 Prefix SID and Multi-Topology IGP IPv6 Prefix SID sub-TLVs in the Target FEC Stack TLV of MPLS echo request. These sub-TLVs carry MT-ID for OSPF and IS-IS protocols as specified in [RFC4915] and [RFC5120] respectively.

5.1. Multi-topology IPv4 IGP-Prefix Segment ID Sub-TLV

The Sub-TLV format for Multi-topology IPv4 IGP-Prefix Segment ID MUST be set as shown in the below TLV format:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 prefix |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MT-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prefix Length | Protocol | Algo | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

MT-ID identifies the Multi-Topology ID associated with the Prefix SID. MT-ID is set in trailing 12 bits of the field when the Protocol is set to IS-IS. Leading 4-bits of the MT-ID MUST be all zeroes for IS-IS. MT-ID is set to trailing 8 bits when the protocol is specified as OSPF. The leading octet MUST be set to all zeroes for OSPF. MBZ MUST be set to all zeroes.
The Protocol field MUST be set 1 if the responder MUST perform FEC validation using OSPF as the IGP protocol and MT-ID is an OSPF Multi-Topology ID. Protocol is set to 2 if the responder MUST perform FEC validation using IS-IS as the IGP protocol, and the MT-ID is IS-IS Multi-Topology ID. Protocol MUST not be set to 0 when using Multi-Topology IPv4 IGP Prefix SID sub-TLV.

5.2. Multi-Topology IPv6 IGP-Prefix Segment ID Sub-TLV

The Sub-TLV format for IPv6 IGP-Prefix Segment ID MUST be set as shown in the below TLV format:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                          IPv6 prefix                          |
|                                                               |
|                                                               |
|Prefix Length |    Protocol   |      Algo     |   Reserved    |                  |
|---------------|---------------|---------------|---------------|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|        MT-ID                  |               MBZ             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

MT-ID identifies the Multi-Topology ID associated with the Prefix SID. MT-ID is set in trailing 12 bits of the field when the Protocol is set to IS-IS. Leading 4-bits of the MT-ID MUST be all zeroes for IS-IS. MT-ID is trailing 8 bits when the protocol is specified as OSPF. The leading octet MUST be set to all zeroes for OSPF. MBZ MUST be set to all zeroes.

The Protocol field MUST be set 1 if the responder MUST perform FEC validation using OSPF as the IGP protocol and MT-ID is an OSPF Multi-Topology ID. Protocol is set to 2 if the responder MUST perform FEC validation using IS-IS as the IGP protocol, and the MT-ID is IS-IS Multi-Topology ID. Protocol MUST not be set to 0 when using Multi-Topology IPv6 IGP Prefix SID sub-TLV.

6. Procedures

The below section describes LSP Ping and Traceroute procedures beyond the text specified in LSP
6.1. Single-Topology Networks

An array of network operators may deploy flexible algorithms in their network for constraint-based shortest paths, without deploying multi-topology. The updated FEC definitions for IGP Prefix SID allows operator to achieve LSP Ping and Traceroute in these networks while maintaining backwards compatibility with existing devices in the network. Below text highlights the handling procedures and initiator and responder for the updated FEC definitions.

6.1.1. Initiator Node Procedures

A node initiating LSP echo request packet for the Node Segment ID MUST identify and include the algorithm associated with the IGP Prefix SID in the Target FEC Stack sub-TLV. If the initiating node is not aware of the algorithm, the default algorithm (id 0) of Shortest Path First is assumed.

6.1.2. Responder Node Procedures

This section updates the procedures defined in Section 7.4 of [RFC8287] for IPv4/IPv6 IGP Prefix SID FEC. If the algorithm is 0, the procedures from [RFC8287] do not require any change. For any other algorithm value, if the responding node is validating the FEC stack, it MUST also validate the IGP Prefix SID advertisement for the algorithm defined in Algo field.

If the responding node is including IGP Prefix SID FEC in the FEC stack due to FEC Stack Change operation, it MUST also include algorithm associated with the Prefix SID.

6.2. Multi-Topology Networks

In presence of Multi-Topology networks, the operators can use the new Multi-Topology IGP IPv4/IPv6 Prefix SID FEC definitions to achieve path validation and fault isolation. Below text describes handling procedures for Multi-Topology networks for initiator and responder. The procedures defined in [RFC8287] are still applicable and the text below updates them instead of replacing them.

6.2.1. Initiator Node Procedures

A node initiating LSP echo request packet for Single-Topology network MAY use Multi-Topology IGP IPv4/IPv6 Prefix SID defined above. A node initiating LSP echo request for Multi-Topology networks MUST use Multi-Topology IGP IPv4/IPv6 Prefix SID defined above. The node MUST identify and include both the IGP MT-ID and the algorithm associated with the IGP prefix SID in addition to prefix, prefix length, and the
protocol. If the initiating node is not aware of the algorithm, the default algorithm (id 0) of Shortest Path First is assumed. The protocol MUST be set to 1 if the responding node is running OSPF, and 2 if the responding node is running IS-IS.

6.2.2. Responding Node Procedures

This section updates the procedures defined in Section 7.4 of [RFC8287] for Multi-Topology IPv4/IPv6 IGP Prefix SID FEC. Upon reception of the sub-TLV, responding node MUST validate that Protocol field is not 0 to correctly parse MT-ID. In addition to procedures defined in [RFC8287], if responding node is validating the FEC Stack, it MUST validate the IGP Prefix SID advertisement for the algorithm and the MT-ID described in the incoming FEC sub-TLV.

If the responding node is including Multi-Topology IGP Prefix SID FEC in the FEC stack due to a FEC Stack Change operation, it MUST also include the algorithm and MT-ID associated with the Prefix SID, and set the Protocol to 1 or 2, based on the corresponding IGP.

7. IANA Considerations

7.1. New Target FEC tack Sub-TLV

IANA is requested to assign two new Sub-TLVs from "Sub-TLVs for TLV Types 1, 16 and 21" sub-registry from the "Multi-Protocol Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters" (IANA-MPLS-LSP-PING) registry.

<table>
<thead>
<tr>
<th>Sub-Type</th>
<th>Sub-TLV Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD1</td>
<td>Multi-topology IPv4 IGP-Prefix Segment ID</td>
<td>This document</td>
</tr>
<tr>
<td>TBD2</td>
<td>Multi-topology IPv6 IGP-Prefix Segment ID</td>
<td>This document</td>
</tr>
</tbody>
</table>

7.2. Algorithm in the Segment ID Sub-TLV

IANA is requested to create a new "Algorithm in the Segment ID Sub-TLV" registry under the "Multi-Protocol Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters" registry. The initial entries are requested as below:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Default Algorithm</td>
<td>This document</td>
</tr>
<tr>
<td>1</td>
<td>Strict Shortest Path First (Strict-SPF)</td>
<td>This document</td>
</tr>
</tbody>
</table>
8. Security Considerations

This document updates [RFC8287] and does not introduce any security considerations.

9. Acknowledgements

TBA.

10. Contributors

TBA

11. References

11.1. Normative References


11.2. Informative References


Authors’ Addresses

Nagendra Kumar (editor)
Cisco Systems, Inc.

Email: naikumar@cisco.com

Zafar Ali
Cisco Systems, Inc.

Email: zali@cisco.com

Carlos Pignataro
Cisco Systems, Inc.

Email: cpignata@cisco.com

Faisal Iqbal
Arista Networks

Email: faisal.ietf@gmail.com

Deepti
Juniper Networks Inc.

Email: deeptir@juniper.net
Shraddha
Juniper Networks Inc.

Email: shraddha@juniper.net
Abstract

The MPLS architecture introduced Special Purpose Labels (SPLs) to indicate special forwarding actions and offered a few simple examples, such as Router Alert. In the two decades since the original architecture was crafted, the range, complexity and sheer number of such actions has grown; in addition, there now is need for "associated data" for some of the forwarding actions. Likewise, the capabilities and scale of forwarding engines has also improved vastly over the same time period. There is a pressing need to match the needs with the capabilities to deliver the next generation of MPLS architecture.

In this memo, we propose an alternate mechanism whereby a single SPL can encode multiple forwarding actions and carry data (if any) associated with the actions, some in the label stack and some after the label stack. This proposal also solves the problem of scarcity of base SPLs.

As proof of its utility and flexibility, this approach can immediately address several use cases:

* to carry an Entropy Label for better load balancing;
* to carry a Flow-Aggregate Selector for IETF network slicing;
* to signal that further fast reroute may have harmful consequences;
* to indicate that there is relevant data after the label stack;
* among others.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
1. Introduction ............................................ 3
   1.1. Conventions and Definitions .......................... 3
   1.2. Revision History .................................... 4
       1.2.1. Changes from -00 to -01 .......................... 4
       1.2.2. Changes from -01 to -02 .......................... 4
       1.2.3. Changes from -02 to -03 .......................... 5
   2. Multi-purpose bSPL: the Forwarding Actions Indicator .... 5
       2.1. The FAI bSPL ....................................... 6
           2.1.1. ISD vs PSD .................................... 6
       2.2. Format of the FAI label stack ....................... 6
           2.2.1. The FAI Label Stack Entry (LSE) ................. 7
           2.2.2. The In-Stack Data Header ........................ 8
   3. Forwarding Action Flags ................................ 9
       3.1. No Further Fast Re-Route (NFFRR) .................... 9
       3.2. Entropy and Slice information (EG) .................. 9
   4. Rules for Processing .................................. 10
       4.1. Processing the FAI Flags and the ISD ................. 10
       4.2. Example of the FAI .................................. 10
   5. Issues to be Resolved .................................. 11
       5.1. Preventing FAI From Reaching Top of Stack .......... 11
1. Introduction

Base Special Purpose Labels (bSPLs) [RFC3031], [RFC7274], [RFC9017] are a precious commodity; there are only 16 such values, of which 8 have already been allocated. There are currently five requests for bSPLs that the authors are aware of; this document proposes another use case for a bSPL, in all consuming nearly all the remaining values. This document suggests a method whereby a single bSPL can be used for all the purposes currently requested. This leads to perhaps the more valuable long-term contribution of this document: an approach to the definition and use of bSPLs (and SPLs in general) whereby a single value can be used for multiple purposes, and provide a flexible yet efficient means of carrying associated data.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

FAI: Forwarding Actions Indicator

ISD: In-Stack Data

sISD: Standard ISD

uISD: User-Defined ISD

ISDH: In-Stack Data Header
LSE: Label stack entry
PSD: Post-Stack Data
SPL: Special-purpose label
bSPL: Base special-purpose label

1.2. Revision History

This section (to be removed before publication) offers highlights from the draft’s revision history.

1.2.1. Changes from -00 to -01

1. This section added.
2. Added a section discussing when data should be put in the LS FAD vs in the PL FAD.
3. Tweaked the bits in the FAI. Added a field "edist".
4. Elaborated on the use of the H bit and the FAH data.
5. Updated the processing of the LS FAD.
6. Added processing of edist.
7. Updated the FAI example.
8. Updated the Issues section.

1.2.2. Changes from -01 to -02

1. Updated Abstract and Introduction to focus on FAI; moved description of use cases to separate section.
2. Added terminology.
3. Changed terminology: LS FAD and PL FAD to ISD and PSD, respectively.
4. Updated text on criteria for putting associated data in ISD.
5. Introduced the terms FAI Block, FFB Block, sISD Block and uISD Block. Introduced an "end of block" bit, s. Updated flag bits; updated processing of ISD.
6. Removed field edist.

7. Updated the section on preventing the FAI from reaching the Top of Stack.

8. Updated the section on Readable Stack Depth

1.2.3. Changes from -02 to -03

1. Separated the discussion of the LSE format from the flag definitions.

2. Replaced continuation bits with explicit length fields for easier parsing.

2. Multi-purpose bSPL: the Forwarding Actions Indicator

This document proposes the use of a single bSPL to tell routers one or more forwarding actions they should take on a packet, e.g.: 

* to treat a packet according to its flow-aggregate, given its G-FAS;

* to load balance a packet, given its entropy;

* whether or not to perform fast reroute on a failure [I-D.kompella-mpls-nffrr];

* whether or not a packet has metadata relevant to intermediate hops along the path;

* and perhaps other functions in the future.

This bSPL is called the "Forwarding Actions Indicator" (FAI). There are other suggestions for this name, including "Network Functions Indicator" and "Network Actions Indicator". We’ll let WG consensus determine the final choice of name, but for now, we’ll continue to use FAI.

The FAI uses the label’s TC bits and TTL field to inform the forwarding plane of the required actions. Each of these actions may have associated data. This data may be carried in the label stack as "In-Stack Data" (ISD) or after the label stack as "Post-Stack Data" (PSD).
2.1. The FAI bSPL

The design of the bSPL hinges on two key insights: forwarding engines
do not interpret the TC bits or the TTL field for labels that are not
at the top of the label stack (ToS); nor do they do so for SPLs. For
non-ToS labels, the important bit fields are the label value field
(to compute entropy and identify SPLs) and the End of Stack (S) bit
(to know when the label stack ends). [If you know of a forwarding
engine that looks at other bit fields of labels below the ToS, please
contact the authors.] This means that for a bSPL that will never
appear at the ToS, the TC bits and the TTL bits can be used to carry
additional information. Furthermore, for the ISD, the entire 4-octet
label stack entry, the S bit excepted, can be used to carry data. We
use this technique to make the FAI bSPL multipurpose, and to make the
ISD words compact and efficient.

2.1.1. ISD vs PSD

A pertinent question is when one should put data in the ISD versus in
the PSD. One alternative is to put all such data in the PSD.
However, this would mean that accessing such information would
require finding the End of Stack, and parsing the PSD. For certain
types of data, this would be a severe burden on the packet forwarding
engine. Examples of such data are the Entropy label (needed for
efficient load balancing) and the G-FAS (needed for accurate packet
forwarding). Having any of this data in the PSD would hurt
forwarding performance.

This memo suggests that data that is required for accurate and
optimal forwarding should be put in the ISD, and data that is
optional from a forwarding point of view should be put in the PSD.
Furthermore, each flag bit should have no more than one word of
associated ISD. The EG flag can thus have up to 2 words of
associated data.

By the above criteria, this memo suggests that in-situ OAM data and
the Flow ID be carried in the PSD.

2.2. Format of the FAI label stack

The format of a label stack that includes an FAI has the structure:
The flags and data associated with the FAI come in three forms:

1. **Forwarding Actions Flags and Data**; these flags are in the FAI LSE. These are defined in this document.

2. **Standard In-Stack Flags and Data**; these flags are in the In-Stack Data Header. These MUST be defined in a Standards-track document.

3. **User-defined In-Stack Flags and Data**; these flags are also in the In-Stack Data Header. These are perforce user-defined and not subject to standardization.

The format of the PSD is out of scope for this document.

### 2.2.1. The FAI Label Stack Entry (LSE)

The format of the FAI LSE is:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         Forwarding Actions Indicator  |I|h|R|S|Flags|  Tsize  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

**Figure 1:** Format for the FAI label stack entry
The FAI LSE’s label value MUST be the IANA allocated value. The remaining fields are defined as follows:

I: In-Stack Data Header (ISDH) is present (1) or not (0).

h: If set, the PSD contains hop-by-hop information. Every node in the path SHOULD attempt to process the hop-by-hop information, but not at the expense of exceeding the processing time budget, which could cause this (or other) packet(s) to be dropped. If clear, no hop-by-hop data exists in the PSD: either the PSD is empty, or it contains only end-to-end data (to be processed by the egress).

R: Reserved for future use (SHOULD be ignored by receivers).

S: MUST be set if the FAI LSE is the end of stack, and clear otherwise.

Flags: Each bit in the Flags field represents a forwarding action. Except for the flags defined herein, the semantics of a forwarding action are out of scope for this document. Each flag is allocated from the Forwarding Actions Flag Registry (Section 11.1) and is assigned an index. Flag indices 0 to 2 correspond to bits 24 to 26 within the FAI LSE. Flags continue into the In-Stack Data Header, if present.

Tsize: This is the total size of the FAI block, i.e., the FAI LSE and all associated data, in four-octet words.

2.2.2. The In-Stack Data Header

If the I flag is set, the label stack contains an In-Stack Data Header (ISDH) following a FAI LSE. The format of the ISDH is:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Ssize  |        sISD Flags       |  Usize  |S|   uISD Flags  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 2: Format for the Forwarding Actions Header

The fields in the Forwarding Actions Header are:

Ssize: This is the size of the Standard ISD (sISD) in four-octet words.

sISD Flags: This is a continuation of the Flags field from the
preceeding FAI LSE, i.e., flag indices 3 to 15 correspond to bits 5 to 17 in the ISDH.

Usize: This is the size of the user-defined ISD (uISD) in four-octet words.

S: MUST be set if the ISDH is the end of stack, and clear otherwise.

uISD Flags: These correspond to user-defined flags, and are not subject to standardization.

3. Forwarding Action Flags

This document defines the following Forwarding Action Flags.

3.1. No Further Fast Re-Route (NFFRR)

Index: 0
ISD: None

If set, do not perform fast re-route on this traffic.

3.2. Entropy and Slice information (EG)

These are two flags that have joint semantics:

Indices: 1, 2

ISD: 0, 1, or 2 ISD LSEs, depending on the values of the flags:

00: No Entropy or G-FAS present

01: ISD 0 contains 16 bits of Entropy in the high order 16 bits and 15 bits of G-FAS in the low order 16 bits (S bit excepted).

10: ISD 0 contains 20 bits of Entropy in the high order 20 bits and 11 bits of G-FAS in the low order 12 bits (S bit excepted).

11: ISD 0 contains the 31-bit Entropy; ISD 1 contains the 31-bit G-FAS. In ISD 0, the S bit MUST be 0; the packet forwarding engine may choose to use the S bit as part of the Entropy, as it doesn’t affect the outcome. In ISD 1, the S bit may be 0 or 1.
4. Rules for Processing

4.1. Processing the FAI Flags and the ISD

Here’s how the Standard ISD is parsed. One must keep track of Ssize to know when the Standard ISD data ends, and the S bit to know when the stack ends. The Standard ISD data appears in the order of the corresponding flags.

It is an error if the label stack ends while there are more ISD words to process.

1. Set CL ("current label") to the FAI label. LL is the last label (End of Stack); PL ("payload") is the first 4-octet word of the payload.

2. If I is 0, there is no associated ISDH; set Ssize = Usize = 0. Otherwise, note the values of Ssize and Usize; increment CL.

3. Process Forwarding Actions Flags and Data:
   1. Process N. CL is unchanged.
   2. Process EG:
      1. If EG is 00, CL is unchanged.
      2. If EG is 01 or 10, increment CL. CL now contains both G-FAS and Entropy.
      3. If EG is 11, CL+1 contains Entropy; CL+2 contains G-FAS. Increment CL by 2.

4. If I == 1, process sISD Flags; increment CL by 1 for each (upto Ssize; skip any remaining sISD Flags once Ssize LSEs have been processed).

5. If I == 1, process uISD Flags; increment CL by 1 for each (upto Usize).

Note that how the uISD is used is not defined here; this is up to the user. All that is included here is how a forwarding engine can tell the size of uISD.

4.2. Example of the FAI
5. Issues to be Resolved

This section captures issues to be resolved, in this memo and others. As the issues are fixed, they should be removed from here; ideally, this section should be empty before publication.

5.1. Preventing FAI From Reaching Top of Stack

As was said earlier, the FAI MUST NOT be at the top of stack, since its TC and TTL bits have been repurposed. There are two ways to prevent this. If an LSR X pops a label and the next label is the FAI, X MUST pop Tsize LSEs to remove the FAI LSE and associated data. This implies that the LSR MUST be able to recognize the FAI LSE and at least parse the Tsize field. This can be used in conjunction with Section 5.2.

Figure 3: Example of FAI + ISD + hop-by-hop PSD

The real payload starts after the PSD.
In case it is desired to preserve the FAI+FAD until the egress, X should push an explicit NULL (label value 0 or 2) onto the stack above the FAI, with the correct TC and TTL values.

Other options may be pursued; however, we believe this is an adequate resolution.

5.2. Repeating the FAI at "Readable Stack Depth"

For LSRs which cannot parse the entire label stack, or would prefer not to unless needed, it is possible to repeat the FAI at "readable stack depth" (rsd). Say the rsd is 10 LSEs, and the FAI block contains 3 LSEs. Then, the FAI block can be repeated every 7 labels, allowing all forwarding engines in the path to process it. When a forwarding label is popped and the FAI block exposed, it is deleted in its entirety, since the same (or potentially different) FAI block is again within the rsd.

Other options were considered in [RFC8662], Section 10, and are discussed briefly in Section 8.

6. PSD

Currently, CW, ...

The format of the PSD, whether or not a Control Word is present, and handling of the first nibble, is outside the scope of this document. The FAI will not contain details about the contents of the PSD, besides the single flag on whether or not the PSD contains information relevant to (most) intermediate hops. It is assumed that another memo will document the format of the PSD, and that that memo will provide a means of parsing the PSD (e.g., a TLV structure) and thus determining its contents.

The PSD memo should also comment on the impact of processing the PSD on forwarding performance, especially in the case of hop-by-hop info.

7. Appendix 1 (normative) Use Cases

7.1. Flow-Aggregate Selector

Network slicing is an important ongoing effort both for network design, as well as for standardization, in particular at the IETF [I-D.nsdt-teas-ns-framework]. A key issue is identifying which slice a packet belongs to, by means of a "slice selector" carried in the packet header. [I-D.ietf-teas-ns-ip-mpls] describes several such methods for MPLS networks, of which the Global Identifier for Flow-Aggregate Selector (G-FAS) is one of the more practical solutions.
This document shows how to realize the G-FAS using a base special purpose label (bSPL).

In MPLS networks, a G-FAS is a data plane construct identifying packets belonging to a slice aggregate (the set of packets that belong to the slice). The G-FAS dictates forwarding actions for the slice aggregate: QoS behavior and next hop selection. The purpose of the G-FAS is detailed in [I-D.ietf-teas-ns-ip-mpls]. To embed a G-FAS in a label stack, one must preface it with a bSPL identifying it as such. For reasons that will become apparent, this bSPL is called the Forwarding Actions Indicator (FAI).

7.2. Entropy Label

7.3. No Further Fast Re-Route

8. Appendix 2 (non-normative): Positioning of the FAI Block

9. Contributors

Many thanks to Colby Barth, Chandra Ramachandran and Srihari Sangli for their contributions to this draft.

10. Acknowledgments

We’d like to acknowledge the helpful discussions with Swamy SRK and folks from the Broadcom team on the impacts to existing and future forwarding engines.

11. IANA Considerations

If this draft is deemed useful and adopted as a WG document, the authors request the allocation of a bSPL for the FAI. We suggest the early allocation of label 8 for this.

11.1. The Forwarding Actions Flag Registry

A new registry is needed for the allocation of the Forwarding Action flags. This registry should be called the "Forwarding Action Flags Registry" within the "Multiprotocol Label Switching Architecture (MPLS)" protocol registry. The policy for allocating new flags is Standards Action. Each flag MUST have a name, a brief description and the length of the associated ISD. IANA should allocate an index for each flag, starting with zero.

The initial contents of the registry should contain:
12. Security Considerations

A malicious or compromised LSR can insert the FAI and associated data into a label stack, preventing (for example) FRR from occurring. If so, protection will not kick in for failures that could have been protected, and there will be unnecessary packet loss. Similarly, inserting or removing a Fragmentation Header means that a packet’s contents cannot be accurately reconstructed. Inserting or changing a G-FAS means that the packet will be misclassified, perhaps leaving or entering a high-value slice and causing damage.

13. References

13.1. Normative References

[I-D.ietf-teas-ns-ip-mpls]

[I-D.kompella-mpls-nffrr]

13.2. Informative References


Authors’ Addresses

Kireeti Kompella
Juniper Networks
1133 Innovation Way
Sunnyvale, CA 94089
United States
Email: kireeti.ietf@gmail.com
Carrying Virtual Transport Network Identifier in MPLS Packet

draft-li-mpls-enhanced-vpn-vtn-id-02

Abstract

A Virtual Transport Network (VTN) is a virtual network which has a
customized network topology and a set of dedicated or shared network
resources allocated from the underlying network infrastructure.
Multiple VTNs can be created by network operator for using as the
underlay for one or a group of VPNs services to provide enhanced VPN
(VPN+) services. In packet forwarding, some fields in the data
packet needs to be used to identify the VTN the packet belongs to, so
that the VTN-specific processing can be executed. In the context of
network slicing, a VTN can be instantiated as a Network Resource
Partition (NRP).

This document proposes a mechanism to carry the VTN-ID in an MPLS
packet to identify the VTN the packet belongs to. The procedure for
processing the VTN ID is also specified.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.
1. Introduction

Virtual Private Networks (VPNs) provide different groups of users with logically isolated connectivity over a common shared network infrastructure. With the introduction of 5G, new service types may require connectivity services with advanced characteristics comparing to traditional VPNs, such as strict isolation from other services or guaranteed performance. These services are referred to as "enhanced VPNs" (VPN+). [I-D.ietf-teas-enhanced-vpn] describes a framework and candidate component technologies for providing VPN+ services.

The enhanced properties of VPN+ require integration between the overlay connectivity and the characteristics provided by the underlay network. To meet the requirement of enhanced VPN services, a number of Virtual Transport Networks (VTNs) need to be created, each consists of a subset of the underlay network topology and a set of network resources allocated from the underlay network to meet the requirement of one or a group of VPN+ services. In the network, traffic of different VPN+ services may be processed separately based on the topology and the network resources associated with the corresponding VTN. [I-D.ietf-teas-ietf-network-slices] introduces
the concept Network Resource Partition (NRP) as a set of network resources that are available to carry traffic and meet the SLOs and SLEs. In the context of network slicing, a VTN can be instantiated as a Network Resource Partition (NRP).

For network scenarios where a large number of VTNs need to be created and maintained, [I-D.dong-teas-nrp-scalability] describes the scalability considerations for VTN. One approach to improve the data plane scalability is introducing a dedicated VTN Identifier (VTN-ID) in data packets to identify the VTN the packets belong to, so that VTN-specific packet processing can be performed by network nodes.

This document proposes a mechanism to carry the VTN Identifier (VTN-ID) and the related information in MPLS [RFC3031] data packets, so that the packet will be processed by network nodes using the set of network resources allocated to the corresponding VTN. The procedure for processing the VTN-ID is also specified. The forwarding path of the MPLS LSP is determined using the MPLS label stack in the packet, and the set of local network resources used for processing the packet is determined by the VTN-ID. The mechanism introduced in this document is applicable to both MPLS networks with RSVP-TE [RFC3209] or LDP [RFC5036] LSPs, and MPLS networks with Segment Routing (SR) [RFC8402] [RFC8660].

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP14 RFC 2119 [RFC2119] RFC 8174 [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. Carrying VTN Information in MPLS Packet

This document defines a new VTN extension header which is used to carry the VTN-ID and other VTN related information. In an MPLS packet, The VTN extension header follows the MPLS label stack, and precedes the header and payloads in the upper layer. The format of VTN extension header is shown as below:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nibble | Length | Flags | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 1. The format of MPLS VTN Extension Header
Where:

* Nibble: The first 4-bit field is set to the binary value 0010. This is to ensure that the VTN extension header will not be interpreted as an IP header or the ACH of pseudowire packet.

* Length: Indicate the length of the VTN extension header in 32-bit words.

* Flags: 8-bit Flags field. All the flags are reversed for future use. This field SHOULD be set to zero on transmission and MUST be ignored on receipt.

* Reserved: 16-bit field reserved for future use.

A new VTN-ID Option is defined in this document, other option types may be defined in future documents. The format of the VTN-ID Option is shown as below:

```
| BBCTTTTT | 00000100 | VTN-ID |
```

Figure 2. The format of VTN-ID Option

Option Type: 8-bit identifier of the type of option. The type of VTN-ID option is to be assigned by IANA. The highest-order bits of the type field are defined as below:

* BB 00 The highest-order 2 bits are set to 00 to indicate that a node which does not recognize this type will skip over it and continue processing the header.

* C 1 The third highest-order bit are set to 1 to indicate this option may change en route.

Opt Data Len: 8-bit unsigned integer indicates the length of the option Data field of this option, in octets. The value of Opt Data Len of the VTN-ID option SHOULD be set to 4.

Option Data: 4-octet identifier which uniquely identifies a VTN within a network domain.
A new MPLS special-purpose label or extended special-purpose label is defined as the VTN Extension Header Indicator (VEHI), its value is to be assigned by IANA. The VEHI label is used to indicate the existence of the VTN Extension Header after the MPLS label stack in the packet. The position of the VEHI label in the MPLS label stack is not limited.

The benefit of introducing the MPLS VTN Extension Header to carry the VTN-ID and the related information is that it provides the flexibility to encode information which cannot be accommodated in an MPLS label (20-bit), and the length of the header can be variable.

4. Procedures

4.1. VTN Header Insertion

When the ingress node of an LSP receives a packet, according to traffic classification or mapping policy, the packet is steered into one of the VTNs in the network, then a VTN header SHOULD be inserted into the packet, and the VTN-ID which the packet is mapped to SHOULD be carried in the VTN header. The ingress node SHOULD also encapsulates the packet with an MPLS label stack which are used to determine the path traversed by the LSP. The VHI label SHOULD be inserted in the label stack to identify the existence of the VTH header.

4.2. VTN based Packet Forwarding

On receipt of a MPLS packet which carries the VHL and the VTN header, network nodes which support the mechanism defined in this document SHOULD scan the label stack to figure out the existence of the VHL. If there is a VHL in the label stack, then the network node SHOULD parse the VTN header and use the VTN-ID to identify the VTN the packet belongs to, and use the local resources allocated to the VTN to process and forward the packet. The forwarding behavior is based on both the top MPLS label and the VTN-ID. The top MPLS label is used for the lookup of the next-hop, and the VTN-ID can be used to determine the set of network resources allocated by the network nodes for processing and sending the packet to the next-hop.

There can be different approaches used for allocating network resources on each network node to the VTNs. For example, on one interface, a subset of forwarding plane resource (e.g. bandwidth and the associated buffer/queuing/scheduling resources) allocated to a particular VTN can be considered as a virtual layer-2 sub-interface with dedicated bandwidth and the associated resources. In packet forwarding, the top MPLS label of the received packet is used to
identify the next-hop and the outgoing Layer 3 interface, and the VTN-ID is used to further identify the virtual sub-interface which is associated with the VTN on the outgoing interface.

Network nodes which do not support the mechanism in this document SHOULD ignore the VHL and the VTN header, and forward the packet only based on the top MPLS label.

The egress node of the MPLS LSP SHOULD pop the VEHL together with other LSP labels, and decapsulate the VTN header.

5. Capability Advertisement and Negotiation

Before inserting the VTN header into an MPLS packet, the ingress node MAY need to know whether the nodes along the LSP can process the VTN header properly according to the mechanisms defined in this document. This can be achieved by introducing the capability advertisement and negotiation mechanism for the VTN header. The ingress node also need to know whether the egress node of the LSP can remove the VTN header properly before parsing the upper layer and send the packet to the next hop. The capability advertisement and negotiation mechanism will be described in a future version of this document.

6. IANA Considerations

IANA is requested to assign a new special-purpose label from the "Special-Purpose MPLS Label Values" or "Extended Special-Purpose MPLS Label Values" registry.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>VTN Extension Header Indicator</td>
<td>this document</td>
</tr>
</tbody>
</table>

IANA is requested to assign a new option type of the MPLS VTN extension header:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>VTN-ID</td>
<td>this document</td>
</tr>
</tbody>
</table>

7. Security Considerations

TBD

8. Contributors

Zhibo Hu
Email: huzhibo@huawei.com
9. Acknowledgements

TBD.

10. References

10.1. Normative References


10.2. Informative References

[I-D.dong-teas-nrp-scalability] Dong, J., Li, Z., Gong, L., Yang, G., Guichard, J. N., Mishra, G., Qin, F., Saad, T., and V. P. Beeram,


Authors’ Addresses

Zhenbin Li
Huawei Technologies
Huawei Campus, No. 156 Beiqing Road
Beijing
100095
China
Email: lizhenbin@huawei.com

Jie Dong
Huawei Technologies
Huawei Campus, No. 156 Beiqing Road
Beijing
100095
China
Email: jie.dong@huawei.com
MPLS-based Service Function Path (SFP) Consistency Verification
draft-lm-mpls-sfc-path-verification-03

Abstract

This document describes extensions to MPLS LSP ping mechanisms to support verification between the control/management plane and the data plane state for SR-MPLS service programming and MPLS-based NSH SFC.

This document defines the signaling of the Generic Associated Channel (G-ACh) over a Service Function Path (SFP) with an MPLS forwarding plane using the basic unit defined in RFC 8595. The document updates RFC 8595 in respect to SFF’s handling TTL expiration. The document also describes the processing of the G-ACh by the elements of the SFP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
1. Introduction

Service Function Chain (SFC) defined in [RFC7665] as an ordered set of service functions (SFs) to be applied to packets and/or frames, and/or flows selected as a result of classification.

SFC can be achieved through a variety of encapsulation methods, such as NSH [RFC8300], SR service programming [I-D.ietf-spring-sr-service-programming] and MPLS-based NSH SFC [RFC8595].

This document describes extensions to MPLS LSP ping [RFC8029] mechanisms to support verification between the control/management plane and the data plane state for both SR-MPLS service programming and MPLS-based NSH SFC.
An MPLS LSP ping is a component of the MPLS Operation, Administration, and Maintenance (OAM) toolset. OAM packets used to monitor a specific Service Function Path (SFP) can be transported over a Generic Associated Channel (G-ACh). This document defines the signaling of the G-ACh over an SFP with an MPLS forwarding plane using the basic unit defined in [RFC8595]. The document updates [RFC8595] in respect to SFF's handling TTL expiration. The document also describes the processing of the G-ACh by the elements of the SFP.

[Editor’s note:] LSP ping for SR-SFC will be discussed in a separate draft in the future, leaving this document focusing on LSP ping for SFC-MPLS. As for LSP ping for SFC-MPLS, although GAL and G-ACh are used currently, the proposal will follow the architecture of MNA [I-D.andersson-mpls-mna-fwk] in the future version.

2. Conventions used in this document

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2.2. Terminology and Acronyms

SFC: Service Function Chain

SFF: Service Function Forwarder

SF: Service Function

SFI: Instance of an SF

SFP: Service Function Path

RSP: Rendered Service Path

SFC-MPLS: SFC over an MPLS forwarding plane introduced in [RFC8595]

SR-SFC: SFC achieved by SR service programming [I-D.ietf-spring-sr-service-programming]

NSH-SR: SFC based on the integration of Network Service Header (NSH) and SR for SFC [I-D.ietf-spring-nsh-sr]

SPL: Special-Purpose Label
bSPL: Base SPL  
eSPL: Extended SPL  
GAL: Generic Associated Channel Label  
ELI: Entropy Label Indicator  
OAM: Operation, Administration, and Maintenance  
G-ACh: Generic Associated Channel  
GAL: Generic Associated Channel Label

3. MPLS-based SFP Consistency Verification

MPLS echo request and reply messages [RFC8029] can be extended to support the verification of the consistency of an MPLS-based Service Function Path (SFP).

SR-MPLS/MPLS can be used to realize an SFP. Two methods have been defined:

* [I-D.ietf-spring-sr-service-programming] describes how to achieve service function chaining in SR-enabled MPLS and IPv6 networks. In an SR-MPLS network, each SF is associated with an MPLS label. As a result, an SFP can be encoded as a stack of MPLS labels and pushed on top of the packet.

* [RFC8595] provides another method to realize SFC in an MPLS network by means of using a logical representation of the Network Service Header (NSH) in an MPLS label stack. This method, throughout this document, is referred to as SFC over an MPLS data plane (SFC-MPLS). When an MPLS label stack is used to carry a logical NSH, a basic unit of representation is used, which can be present one or more times in the label stack. This unit comprises two MPLS labels, one carries a label to provide a context within the SFC scope (the SFC Context Label), and the other carries a label to show which SF is to be enacted (the SF Label). SFC forwarding can be achieved by label swapping, label stacking, or the mix of both. When an SFF receives a packet containing an MPLS label stack, it examines the top basic unit of the MPLS label stack for SFC, {SPI, SI} or {context label, SFI index}, to determine where to send the packet next.

In MPLS Label Switched Paths (LSPs), MPLS LSP ping [RFC8029] is used to check the correctness of the data plane functioning and to verify the data plane against the control plane.
The proposed extension of MPLS LSP ping allows verification of the
correlation between the control/management (if data model-based
central controller used) plane and the data plane state in SR-MPLS/
MPLS-based SFC.

As for NSH-SR, OAM defined for NSH in [draft-ietf-sfc-multi-layer-
.oam] can be re-used and it is out of the scope of this document.

4. LSP Ping in SFC-MPLS

In SFC-MPLS, SFFs are responsible for MPLS echo request processing.
there’re two reasons:

* In SFC-MPLS, the packet forwarding decision is made by SFFs based
on the basic unit. SFs are not aware of the FEC of the basic unit.

* Generally, except for the designed specific functions, the packet
processing functions supported by SFs are limited. SFs may not
support control and/or management protocols operated over the
G-ACh defined in [RFC5586], e.g., MPLS OAM protocols like LSP
ping. Such packets may be mishandled.

To support that processing, the basic unit can use the mechanism
described in Section 4.1.

4.1. Special-purpose Label in SFC-MPLS Environment

When an SFC-MPLS is used, an SFF needs to identify an OAM packet with
the SFP scope. To achieve that, this specification first defines the
use of a base special-purpose label (bSPL) [RFC3032] or an extended
special-purpose label (eSPL) [RFC7274] (referred to in this document
as SPL Unit) with the basic unit defined in [RFC8595]. And based on
that, the use of Generic Associated Channel Label (GAL) [RFC5586]
with the basic unit in the SFC-MPLS environment.

Special-purpose label (SPL), whether bSPL or eSPL, has special
significance in the data and control planes. An ability to use an
SPL in the basic unit allows for a closer functional match between
the NSH-based SFC and SFC-MPLS. For example, Entropy Label Indicator
(ELI) [RFC6790] with the basic unit can be used as the Flow ID TLV
[I-D.ietf-sfc-nsh-tlv] to allow an SFF to balance SFC flows among SFs
of the same type. An SPL MAY be used with the basic unit in SFC-
MPLS, as displayed in Figure 1. Note that an SPL unit MAY be present
in one or more basic units when MPLS label stacking is used to carry
the SFC information.
4.1.1. G-ACh over SFC-MPLS

SFC-MPLS environment could include instances of an SF (SFI) or SFC proxies that cannot properly process control and/or management protocol messages that are exchanged between nodes over the G-ACh associated with the particular SFP. To support OAM over G-ACh, it is beneficial to avoid handing over a test packet to the SFI or SFC proxy. Hence, this specification defines that if the Generic Associated Channel Label (GAL) immediately follows the SFC Context label [RFC8595], then the packet is recognized as an SFP OAM packet.

Below are the processing rules of an SFP OAM packet by an SFF:

* An SFF MUST NOT pass the packet to a local SFI or SFC proxy.

* The SFF MUST decrement SF Label entry’s TTL value. If the resulting value equals zero, the SFF MUST pass the SFP OAM packet to the control plane for processing. An implementation that supports this specification MUST provide control to limit the rate of SFP OAM packets passed to the control plane for processing.

* If the TTL value is not zero, the SFP OAM packet is processed as defined in Section 6, Section 7, and Section 8 [RFC8595], according to the type of MPLS forwarding used in the SFP.

4.2. SFC Basic Unit FEC Sub-TLV

Unlike standard MPLS forwarding, based on a single label, packet forwarding defined in [RFC8595] is based on the basic unit of MPLS label stack for SFC(SFC Context Label+SF Label). A new SFC Basic Unit FEC sub-TLV with Type value (TBA1) is defined in this document. The SFC Basic Unit FEC sub-TLV MAY be used to carry the corresponding FEC of the basic unit.
Figure 2: SFC Basic Unit sub-TLV

The format of the basic unit sub-TLV is shown in Figure 2 and includes the following fields:

* Route Distinguisher (RD): 8 octets field in SFIR Route Type specific NLRI [I-D.ietf-bess-nsh-bgp-control-plane].

* SF Type: 2 octets. It is defined in [I-D.ietf-bess-nsh-bgp-control-plane] and indicates the type of SF, such as DPI, firewall, etc.

Note: [I-D.ietf-bess-nsh-bgp-control-plane] covers the BGP control plane of MPLS-SFC as well.

A node that receives an LSP ping with the Target FEC Stack TLV and the SFC Basic Unit FEC Sub-TLV included will check if it is its Route Distinguisher and whether it advertised that Service Function Type. If the validation is not passed, the SFF will generate an MPLS echo reply with an error code as defined in [RFC8029].

4.3. SFC Basic Unit Nil FEC Sub-TLV

[RFC8029] is based on the premise that one label corresponds to one FEC sub-TLV. For example, in [RFC8029] section 4.4 step 4, before the FEC validation process of an intermediate node first the node should determine FEC-stack-depth from the Downstream Detailed Mapping TLV, and then if the number of FECs in the FEC stack is greater than or equal to FEC-stack-depth, FEC validation is triggered.

In SFC-MPLS OAM, since one basic unit is related to only one FEC sub-TLV, there may be situations that the label stack in Downstream Detailed Mapping TLV contains two labels, but there is only one FEC in the FEC stack.

The SFC Basic Unit Nil Sub-TLV(TBA2) is introduced in this document to ensure that the proper validation can still be performed.
SFC Context Label and SF Label are the actual label values inserted in the label stack; the MBZ fields MUST be zero when sent and ignored on receipt.

The SFC Basic Unit Nil sub-TLV, when present, MUST be immediately followed by an SFC Basic Unit sub-TLV. During FEC validation, an SFF should skip the SFC Basic Unit Nil sub-TLV and use the following SFC Basic Unit sub-TLV to validate the FEC of the basic unit.

4.4. Theory of Operation

The MPLS echo request is sent with a label stack corresponding to the SFP being tested. To trace SFC-MPLS, the Generic Associated Channel Label (GAL), which immediately follows the SFC Context label is also included.

If FEC validation is required, the SFC Basic Unit sub-TLV SHOULD be carried in the FEC stack of the request packet, and the SFC Basic Unit Nil sub-TLV MAY also be carried. A Downstream Detailed Mapping TLV MAY be included in the MPLS echo request of the SFP.

Sending an SFC echo request to the control plane is triggered by one of the following packet processing exceptions: IP TTL expiration, MPLS TTL expiration, or the receiver is SFP’s egress SFF.

As described in Section 4.1.1, the packet with GAL is recognized by the SFF as an SFP OAM packet. The SFF then decrements the SF Label entry’s TTL value. If the resulting value equals zero, the SFF passes the SPF OAM packet to the control plane for processing. The system that supports this specification then generates a reply message.

In "traceroute" mode the TTL of the SF Label is set successively to 1, 2, and so on. After all SFFs on the SFP send back MPLS echo reply, the sender collects information about all traversed SFFs and SFs on the rendered service path (RSP).
But the TTL processing in SR-MPLS is defined in Section 6 of [RFC8595], as follows:

If an SFF decrements the TTL to zero, it MUST NOT send the packet and MUST discard the packet.

and it excludes TTL expiration as the exception mechanism. As a result, tracing a path of an SFC-MPLS-based service chain is problematic.

To support the tracing of an SFC, it must be changed to allow punting an OAM packet to the control plane though under throttling control.

Hence, this document updates Section 6 of [RFC8595] to state that:

If an SFF decrements the TTL to zero, an OAM packet MAY be sent to the control plane given it does not exceed the configured rate intended to protect the system from the possible denial-of-service attack.

5. LSP Ping in SR-SFC

In SR service programming, the packet forwarding decision is made based on every single SID/label. The SR proxy SHOULD process the OAM packet for the SF when the SF is not capable of doing so.

If only the SFP connectivity check is required, the current LSP Ping for SR-MPLS [RFC8287] is sufficient.

If operators want to check more information about the SFP(service segment related SF type, SR proxy type, etc.), new FEC sub-TLVs for the service segment should be defined.

The format of the new Service Segment Sub-TLV(TBA3) is shown in Figure 4.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            Type               |          Length               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Service Type             | Traffic Type |Func  Identifier|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 4: Service Segment Sub-TLV

The Service Type and Traffic Type are taken from the Service Chaining (SC) TLV defined [I-D.ietf-idr-bgp-ls-sr-service-segments].
Func(Function) Identifier: 1 octets. Function Identifier, as described in [I-D.ietf-idr-bgp-ls-sr-service-segments], identifies the function of this SID, such as Static Proxy, Dynamic Proxy, Shared Memory Proxy, Masquerading Proxy, SR(-MPLS) Aware Service etc.

There’s no definition for Function Identifier field of SR-MPLS-SFC in [I-D.ietf-idr-bgp-ls-sr-service-segments] yet. If the control plane defines the Function Identifier field in the future, this draft shall be consistent with its definition.

6. IANA Considerations

This document requests assigning three new sub-TLVs from the "sub-TLVs for TLV Types 1, 16, and 21" sub-registry of the "Multi-Protocol Label Switching(MPLS) Label Switched Paths (LSPs) Ping Parameters" registry according to Table 1.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA1</td>
<td>SFC Basic Unit</td>
<td>This document</td>
</tr>
<tr>
<td>TBA2</td>
<td>SFC Basic Unit Nil</td>
<td>This document</td>
</tr>
<tr>
<td>TBA3</td>
<td>Service Segment</td>
<td>This document</td>
</tr>
</tbody>
</table>

Table 1: Sub-TLV Values

7. Security Considerations

This specification defines the processing of an SFP OAM packet. Such packets could be used as an attack vector. A system that supports this specification MUST provide control to limit the rate of SFP OAM packets sent to the control plane for processing.

This document defines additional MPLS LSP Ping sub-TLVs and follows the mechanisms defined in [RFC8029]. All the security considerations defined in [RFC8029] will be applicable for this document.

8. References

8.1. Normative References

[I-D.ietf-bess-nsh-bgp-control-plane]
Farrel, A., Drake, J., Rosen, E., Uttaro, J., and L. Jalil, "BGP Control Plane for the Network Service Header in Service Function Chaining", Work in Progress, Internet-
[I-D.ietf-idr-bgp-ls-sr-service-segments]

[I-D.ietf-spring-nsh-sr]

[I-D.ietf-spring-sr-service-programming]


8.2. Informative References

[I-D.andersson-mpls-mna-fwk]

[I-D.ietf-sfc-nsh-tlv]

Liu & Mirsky  Expires 13 December 2022


Authors’ Addresses

Yao Liu
ZTE
Nanjing
China
Email: liu.yao71@zte.com.cn

Greg Mirsky
Ericsson
Email: gregimirsky@gmail.com
PMS/Head-end based MPLS Ping and Traceroute in Inter-domain SR Networks
draft-ninan-mpls-spring-inter-domain-oam-04

Abstract

Segment Routing (SR) architecture leverages source routing and
tunneling paradigms and can be directly applied to the use of a
Multiprotocol Label Switching (MPLS) data plane. A network may
consist of multiple IGP domains or multiple ASes under the control of
same organization. It is useful to have the LSP Ping and traceroute
procedures when an SR end-to-end path spans across multiple ASes or
domains. This document describes mechanisms to facilitate LSP ping
and traceroute in inter-AS/inter-domain SR networks in an efficient
manner with simple OAM protocol extension which uses dataplane
forwarding alone for sending echo reply.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 13, 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ................................................. 3
   1.1. Definition of Domain .............................. 4
2. Inter domain networks with multiple IGPs .................. 5
3. Return Path TLV ............................................. 5
4. Segment sub-TLV ........................................... 6
   4.1. Type 1: SID only, in the form of MPLS Label ........ 6
   4.2. Type 3: IPv4 Node Address with optional SID for SR-MPLS . 7
   4.3. Type 4: IPv6 Node Address with optional SID for SR MPLS . 9
   4.4. Segment Flags ................................... 10
5. SRv6 Dataplane ............................................ 10
6. Detailed Procedures ...................................... 10
   6.1. Sending an echo request .......................... 10
   6.2. Receiving an echo request ........................ 11
   6.3. Sending an echo reply ........................... 11
   6.4. Receiving an echo reply .......................... 12
7. Detailed Example .......................................... 12
   7.1. Procedures for Segment Routing LSP ping .......... 12
   7.2. Procedures for Segment Routing LSP Traceroute ..... 13
8. Building Return Path TLV dynamically ..................... 15
   8.1. The procedures to build the return path .......... 15
   8.2. Details with example ........................... 17
9. Security Considerations .................................. 18
10. IANA Considerations .................................... 18
11. Contributors ........................................... 19
12. Acknowledgments ........................................ 19
13. References .............................................. 19
   13.1. Normative References ............................ 19
   13.2. Informative References .......................... 20
Authors’ Addresses ...................................... 21
1. Introduction

Many network deployments have built their networks consisting of multiple Autonomous Systems either for ease of operations or as a result of network mergers and acquisitions. Segment Routing can be deployed in such scenarios to provide end to end paths, traversing multiple Autonomous systems (AS). These paths consist of Segment Identifiers (SID) of different type as per [RFC8402].

[RFC8660] specifies the forwarding plane behaviour to allow Segment Routing to operate on top of MPLS data plane. [I-D.ietf-spring-segment-routing-central-epe] describes BGP peering SIDs, which will help in steering packet from one Autonomous system to another. Using above SR capabilities, paths which span across multiple Autonomous systems can be created.

For example Figure 1 describes an inter-AS network scenario consisting of ASes AS1 and AS2. Both AS1 and AS2 are Segment Routing enabled and the EPE links have EPE labels configured and advertised via [I-D.ietf-idr-bgpls-segment-routing-epe]. Controller or head-end can build end-to-end Traffic-Engineered path consisting of Node-SIDs, Adjacency-SIDs and EPE-SIDs. It is advantageous for operations to be able to perform LSP ping and traceroute procedures on these inter-AS SR paths. LSP ping/traceroute procedures use ip connectivity for echo reply to reach the head-end. In inter-AS networks, ip connectivity may not be there from each router in the path. For example in Figure 1 P3 and P4 may not have ip connectivity for PE1.
[RFC8403] describes mechanisms to carry out the MPLS ping/traceroute from a PMS. It is possible to build GRE tunnels or static routes to each router in the network to get IP connectivity for the reverse path. This mechanism is operationally very heavy and requires PMS to be capable of building huge number of GRE tunnels, which may not be feasible.

It is not possible to carry out LSP ping and Traceroute functionality on these paths to verify basic connectivity and fault isolation using existing LSP ping and Traceroute mechanism ([RFC8287] and [RFC8029]). This is because, there exists no IP connectivity to source address of ping packet, which is in a different AS, from the destination of Ping/Traceroute.

[RFC7743] describes a Echo-relay based solution based on advertising a new Relay Node Address Stack TLV containing stack of Echo-relay ip addresses. These mechanisms can be applied to segment routing networks as well. [RFC7743] mechanism requires the return ping packet to be processed in slow path or as a bump-in-the-wire on every relay node. The motivation of the current document is to provide an alternate mechanism for ping/traceroute in inter-domain segment routing networks.

This document describes a new mechanism which is efficient and simple and can be easily deployed in SR networks. This mechanism uses MPLS path and no changes required in the forwarding path. Any MPLS capable node will be able to forward the echo-reply packet in fast path. The current draft describes a mechanism that uses Return path TLV [RFC7110] to convey the reverse path. Three new sub-TLVs for Return path TLV are defined, that facilitate encoding segment routing label stack. The TLV can either be derived by a smart application or controller which has a full topology view. This document also proposes mechanisms to derive the Return path dynamically during traceroute procedures.

1.1. Definition of Domain

The term domain used in this document implies an IGP domain where every node is visible to every other node for the purposes of shortest path computation. The domain implies an IGP area or level. This document is applicable to SR networks where all nodes in each of the domains are SR capable. It is also applicable to SR networks where SR acts an an overlay having SR incapable underlay nodes. In such networks, the traceroute procedure is executed only on the overlay SR nodes.
2. Inter domain networks with multiple IGPs

```
| Domain 1 | ------- | Domain 2 | ------- | Domain 3 |

PE1------ABR1--------P--------ABR2------PE4
\        / \                  /
--------   -----------------   -------
BGP-LU     BGP-LU             BGP-LU
```

Figure 2: Inter-domain networks with multiple IGPs

When the network consists of large number of nodes, the nodes are segregated into multiple IGP domains. The connectivity to the remote PEs can be achieved using BGP-LU [RFC3107] or by stacking the labels for each domain as described in [RFC8604]. It is useful to support mpls ping and traceroute mechanisms for these networks. The procedures described in this document for constructing Return path TLV and its use in echo reply is equally applicable to networks consisting of multiple IGP domains that use BGP-LU or label stacking.

3. Return Path TLV

Segment Routing networks statically assign the labels to nodes and PMS/Head-end may know the entire database. The reverse path can be built from PMS/Head-end by stacking segments for the reverse path. Return path TLV as defined in [RFC7110] is used to carry the return path. While using the procedures described in this document, the reply mode MUST be set to 5 and Return Path TLV MUST be included in the echo request message. The procedures described in [RFC7110] are applicable for constructing the Return Path TLV. This document define three new sub-TLVs to encode the Segment Routing path.

The type of segment that the head-end chooses to send in the Return Path TLV is governed by local policy. Implementations may provide CLI input parameters in Labels, IPv4 addresses or IPv6 addresses or a combination of these which gets encoded in the return path TLV. Implementations may also provide mechanisms to acquire the database of remote domains and compute the return path based on the acquired database. For traceroute purposes, the return path will have to consider the reply being sent from every node along the path. The return path changes when the traceroute progresses and crosses each domain. For traceroute purposes, the headend/PMS need to acquire the entire database or use dynamically computed return path as described in Section 8.
Some networks may consist of pure IPv4 domains and Pure IPv6 domains. Handling end-to-end MPLS OAM for such networks is out of scope for this document. It is recommended to use dual stack in such cases and use end-to-end IPv6 addresses for MPLS ping and trace route procedures.

4. Segment sub-TLV

[I-D.ietf-spring-segment-routing-policy] defines various types of segments. The segments applicable to this document have been re-defined here. One or more segment sub-TLV can be included in the Return Path TLV. The segment sub-TLVs included in a Return Path TLV MAY be of different types.

Below types of segment sub-TLVs are applicable for the Reverse Path Segment List TLV.

Type 1: SID only, in the form of MPLS Label

Type 3: IPv4 Node Address with optional SID

Type 4: IPv6 Node Address with optional SID for SR MPLS

4.1. Type 1: SID only, in the form of MPLS Label

The Type-1 Segment Sub-TLV encodes a single SID in the form of an MPLS label. The format is as follows:

```
  0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type                      |   Length                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Flags       |   RESERVED                                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Label                        | TC  |S|       TTL     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 3: Type 1 Segment sub-TLV

where:

Type: TBD1(to be assigned by IANA from the registry "Sub-TLV Target FEC stack TLV").
Length is 8.

Flags: 1 octet of flags as defined in Section Section 4.4.

RESERVED: 3 octets of reserved bits. SHOULD be unset on transmission and MUST be ignored on receipt.

Label: 20 bits of label value.

TC: 3 bits of traffic class

S: 1 bit of bottom-of-stack.

TTL: 1 octet of TTL.

The following applies to the Type-1 Segment sub-TLV:

The S bit SHOULD be zero upon transmission, and MUST be ignored upon reception.

If the originator wants the receiver to choose the TC value, it sets the TC field to zero.

If the originator wants the receiver to choose the TTL value, it sets the TTL field to 255.

If the originator wants to recommend a value for these fields, it puts those values in the TC and/or TTL fields.

The receiver MAY override the originator’s values for these fields. This would be determined by local policy at the receiver. One possible policy would be to override the fields only if the fields have the default values specified above.

4.2. Type 3: IPv4 Node Address with optional SID for SR-MPLS

The Type-3 Segment Sub-TLV encodes an IPv4 node address, SR Algorithm and an optional SID in the form of an MPLS label. The format is as follows:
Figure 4: Type 3 Segment sub-TLV

where:

Type: TBD3(to be assigned by IANA from the registry "Sub-TLV Target FEC stack TLV").

Length is 8 or 12.

Flags: 1 octet of flags as defined in Section Section 4.4.

SR Algorithm: 1 octet specifying SR Algorithm as described in section 3.1.1 in [RFC8402], when A-Flag as defined in Section Section 4.4 is present. SR Algorithm is used by the receiver to derive the Label. When A-Flag is not encoded, this field SHOULD be unset on transmission and MUST be ignored on receipt.

RESERVED: 2 octets of reserved bits. SHOULD be unset on transmission and MUST be ignored on receipt.

IPv4 Node Address: a 4 octet IPv4 address representing a node.

SID: 4 octet MPLS label.

The following applies to the Type-3 Segment sub-TLV:

The IPv4 Node Address MUST be present.

The SID is optional and specifies a 4 octet MPLS SID containing label, TC, S and TTL as defined in Section Section 4.1.

If length is 8, then only the IPv4 Node Address is present.

If length is 12, then the IPv4 Node Address and the MPLS SID are present.
4.3. Type 4: IPv6 Node Address with optional SID for SR MPLS

The Type-4 Segment Sub-TLV encodes an IPv6 node address, SR Algorithm and an optional SID in the form of an MPLS label. The format is as follows:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type                      |   Length                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Flags       |       RESERVED                |  SR Algorithm    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//                IPv6 Node Address (16 octets)                //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                SID (optional, 4 octets)                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 5: Type 4 Segment sub-TLV

where:

Type: TBD4(to be assigned by IANA from the registry "Sub-TLV Target FEC stack TLV").

Length is 20 or 24.

Flags: 1 octet of flags as defined in Section 4.4.

SR Algorithm: 1 octet specifying SR Algorithm as described in section 3.1.1 in [RFC8402], when A-Flag as defined in Section 4.4 is present. SR Algorithm is used by the receiver to derive the label. When A-Flag is not encoded, this field SHOULD be unset on transmission and MUST be ignored on receipt.

RESERVED: 2 octets of reserved bits. SHOULD be unset on transmission and MUST be ignored on receipt.

IPv6 Node Address: a 16 octet IPv6 address representing a node.

SID: 4 octet MPLS label.

The following applies to the Type-4 Segment sub-TLV:

The IPv6 Node Address MUST be present.

The SID is optional and specifies a 4 octet MPLS SID containing label, TC, S and TTL as defined in Section 4.1.
If length is 20, then only the IPv6 Node Address is present.

If length is 24, then the IPv6 Node Address and the MPLS SID are present.

4.4. Segment Flags

The Segment Types described above MAY contain following flags in the "Flags" field (codes to be assigned by IANA from the registry "Return path sub-TLV Flags" )

```
 0 1 2 3 4 5 6 7
+---------------+
|A|               |
+---------------+
```

Figure 6: Flags

where:

A-Flag: This flag indicates the presence of SR Algorithm id in the "SR Algorithm" field applicable to various Segment Types.

Unused bits in the Flag octet SHOULD be set to zero upon transmission and MUST be ignored upon receipt.

The following applies to the Segment Flags:

A-Flag is applicable to Segment Types 3, 4. If A-Flag appears with any other Segment Type, it MUST be ignored.

5. SRv6 Dataplane

SRv6 dataplane is not in the scope of this document and will be addressed in a separate document.

6. Detailed Procedures

6.1. Sending an echo request

In the inter-AS scenario when there is no reverse path connectivity, the procedures described in this document should be used. LSP ping initiator MUST set the Reply Mode of the echo request to "Reply via Specified Path", and a Reply Path TLV MUST be carried in the echo request message correspondingly. The Return Path TLV must contain the Segment Routing Path in the reverse direction encoded as an ordered list of segments. The first Segment MUST correspond to the
6.2. Receiving an echo request

As described in [RFC7110], when Reply mode is set to 5 (Reply via Specified Path), the echo request MUST contain the Return path TLV. Absence of Return path TLV is treated as malformed echo request. When an echo request is received, if the egress LSR does not know the Reply Mode 5 defined in [RFC7110], an echo reply with the return code set to "Malformed echo request received" and the Subcode set to zero will be sent back to the ingress LSR according to the rules of [RFC4379]. When a Return Path TLV is received, and the responder that supports processing it, it MUST use the segments in Return Path TLV to build the echo reply. The responder MUST follow the normal FEC validation procedures as described in [RFC8029] and [RFC8287] and this document does not suggest any change to those procedures. When the echo reply has to be sent out the Return Path TLV is used to construct the MPLS packet to send out.

6.3. Sending an echo reply

The echo reply message is sent as MPLS packet with a MPLS label stack. The echo reply message MUST be constructed as described in the [RFC8029]. An MPLS packet is constructed with echo reply in the payload. The top label MUST be constructed from the first Segment from the Return Path TLV. The remaining labels MUST follow the order from the Return Path TLV. The responder MAY check the reachability of the top label in its own LFIB before sending the echo reply. In certain scenarios the head-end may choose to send Type 3/Type 4 segments consisting of IPv4 address or IPv6 address. Optionally a SID may also be associated with Type 3/Type4 segment. In such cases the node sending the echo reply MUST derive the MPLS labels based on Node-SIDs associated with the IPv4 /IPv6 addresses or from the optional MPLS SIDs in the type 3/ type 4 segments and encode the echo reply with MPLS labels.

The reply path return code MUST be set as described in section 7.4 of [RFC7110]. The Return Path TLV MUST be included in echo reply indicating the specified return path that the echo reply message is required to follow as described in section 5.3 of [RFC7110].

When the node is configured to dynamically create return path for next echo request, the procedures described in Section 8 MUST be used. The reply path return code MUST be set to 6 and same Return Path TLV or a new Return Path TLV MUST be included in the echo reply.
6.4. Receiving an echo reply

The rules and process defined in Section 4.6 of [RFC4379] and section 5.4 of [RFC7110] apply here. In addition, if the Return Path Reply code is "Use Return Path TLV in echo reply for next echo request", the Return Path TLV from the echo Reply MUST be sent in the next echo request with TTL incremented by 1.

7. Detailed Example

Example topologies given in Figure 1 and Figure 2 will be used in below sections to explain LSP Ping and Traceroute procedures. The PMS/Head-end has complete view of topology. PE1, P1, P2, ASBR1 and ASBR2 are in AS1. Similarly ASBR3, ASBR4, P3, P4 and PE4 are in AS2.

AS1 and AS2 have Segment Routing enabled. IGPs like OSPF/ISIS are used to flood SIDs in each Autonomous System. The ASBR1, ASBR2, ASBR3, ASBR4 advertise BGP EPE SIDs for the inter-AS links. Topology of AS1 and AS2 are advertised via BGP-LS to the controller/PMS or Head-end node. The EPE-SIDs are also advertised via BGP-LS as described in [I-D.ietf-idr-bgpls-segment-routing-epe]

The description in the document uses below notations for Segment Identifiers(SIDs).

Node SIDs : N-PE1, N-P1, N-ASBR1 N-ABR1, N-ABR2 etc.

Adjacency SIDs : Adj-PE1-P1, Adj-P1-P2 etc.

EPE SIDS : EPE-ASBR2-ASBR3, EPE-ASBR1-ASBR4, EPE-ASBR3-ASBR2 etc.

Let us consider a traffic engineered path built from PE1 to PE4 with Segment List stack as below. N-P1, N-ASBR1, EPE-ASBR1-ASBR4, N-PE4 for following procedures. This stack may be programmed by controller/PMS or Head-end router PE1 may have imported the whole topology information from BGP-LS and computed the inter-AS path.

7.1. Procedures for Segment Routing LSP ping

To perform LSP ping procedure on an SR-Path from PE1 to PE4 consisting of label stacks [N-P1,N-ASBR1,EPE-ASBR1-ASBR4, N-PE4], The remote end(PE4) needs IP connectivity to head end(PE1) for the Segment Routing ping to succeed, because echo reply needs to travel back to PE1 from PE4. But in typical deployment scenario there will be no ip route from PE4 to PE1 as they belong to different ASes.

PE1 adds Return Path from PE4 to PE1 in the MPLS echo request using multiple Segments in "Return Path TLV" as defined above. An example
return path TLV for PE1 to PE4 for LSP ping is [N-ASBR4, EPE-ASBR4-ASBR1, N-PE1]. An implementation may also build a Return Path consisting of labels to reach its own AS. Once the label stack is popped-off the echo reply message will be exposed. The further packet forwarding will be based on ip lookup. An example Return Path for this case could be [N-ASBR4, EPE-ASBR4-ASBR1].

On receiving MPLS echo request PE4 first validates FEC in the echo request. PE4 then builds label stack to send the response from PE4 to PE1 by copying the labels from "Return Path TLV". PE4 builds the echo reply packet with the MPLS label stack constructed and imposes MPLS headers on top of echo reply packet and sends out the packet towards PE1. This Segment List stack can successfully steer reply back to Head-end node(PE1).

7.2. Procedures for Segment Routing LSP Traceroute

Traceroute procedure involves visiting every node on the path and echo reply sent from every node. In this section, we describe the traceroute mechanisms when the headend/PMS has complete visibility of the database. Headend/PMS computes the return path from each node in the entire SR-MPLS path that is being tracerouted. The return path computation is implementation dependant. As the headend/PMS completely controls the return path, it can use proprietary computations to build the return path.

One of the ways the return path can be built, is to use the principle of building label stacks by adding each domain border node’s Node SID on the return path label stack as the traceroute progresses. For inter-AS networks, in addition to border node’s Node-SID, EPE-SID in the reverse direction also need to be added to the label stack.

The Inter-domain/inter-as traceroute procedure uses the TTL expiry mechanism as specified in [RFC8029] and [RFC8287]. Every echo request packet Headend/PMS MUST include the appropriate return path in the Return Path TLV. The node that receives the echo request MUST follow procedures described in section Section 6.1 and section Section 6.2 to send out echo reply.

For Example:

Let us consider a topology from Figure 1. Let us consider a SR path [N-P1,N-ASBR1,EPE-ASBR1-ASBR4, N-PE4]. The traceroute is being executed for this inter-AS path for destination PE4. PE1 sends first echo request with TTL set to 1 and includes return path TLV consisting of Type 1 Segment containing label derived from its own SRGB. Note that the type of segment used in constructing the return Path is local policy. If the entire network has same SRGB.
configured, Type 1 segments can be used. The TTL expires on P1 and the P1 sends echo reply using the return path. Note that implementations may choose to exclude return path TLV until traceroute reaches the first domain border as the return IP path to PE1 is expected to be available inside the first domain.

TTL is set to 2 and the next echo request is sent out. Until the traceroute procedure reaches the domain border node ASBR1, same return path TLV consisting of single Label (PE1’s node Label) is used. When echo request reaches ASBR1, and echo reply is received, the next echo request needs to include additional label as ASBR1 is a border node. The return path TLV is built based on the forward path. As the forward path consists of EPE-ASBR1-ASBR4, an EPE-SID in the reverse direction is included in the return path TLV. The return path now consists of two labels [N-PE1, EPE-ASBR4-ASBR1]. The echo reply from ASBR4 will use this return path to send the reply.

The next echo request after visiting the border node ASBR4 will update the return path with Node-SID label of ASBR4. The return path beyond ASBR4 will be [N-PE1, EPE-ASBR4-ASBR1, N-ASBR4]. This same return path is used until the traceroute procedure reaches next set of border nodes. When there are multiple ASes the traceroute procedure will continue by adding a set of Node labels and EPE labels as the border nodes are visited.

Note that the above return path building procedure requires the database of all the domains to be available at the headend/PMS.

The above description assumed the same SRGB is configured on all nodes along the path. The SRGB may differ from one node to another node and the SR architecture [RFC8402] allows the nodes to use different SRGB. In such scenarios PE1 sends Type 3 (or Type 4 in case of IPv6 networks) segment with Node address of PE1 and with optional MPLS SID associated with the Node address. The receiving node derives the label for the return path based on its own SRGB. When the traceroute procedure crosses the border ASBR1, headend PE1 should send type 1 segment for N-PE1 based on the label derived from ASBR1’s SRGB. This is required because in AS2, ASBR4, P3, P4 etc may not have the topology information to derive SRGB for PE1. After the traceroute procedure reaches ASBR4 the return path will be [N-PE1(type1 with label based on ASBR1’s SRGB), EPE-ASBR4-ASBR1, N-ASBR4 (Type 3)].

In order to extend the example to multiple ASes consisting of 3 or more ASes, let us consider a traceroute from PE1 to PE5 in Figure 1. In this example, the PE1 to PE5 path has to cross 3 domains AS1, AS2 and AS3. Let us consider a path from PE1 to PE5 that goes through [PE1, ASBR1, ASBR4, ASBR6, ASBR8, PE5]. When the traceroute procedure
is visiting the nodes in AS1, the Return path TLV sent from headend consists of [N-PE1]. When the traceroute procedure reaches the ASBR4, the Return Path consists of [N-PE1, EPE-ASBR4-ASBR1]. While visiting nodes in AS2, the traceroute procedure consists of Return Path TLV [N-PE1, EPE-ASBR4-ASBR1, N-ASBR4]. Similarly, while visiting the ASBR8 Return Path TLV adds the EPE SID from ASBR8 to ASBR6. While visiting nodes in AS3 the Node-SID of ASBR8 would also be added which makes the Return Path [N-PE1, EPE-ASBR4-ASBR1, N-ASBR4, EPE-ASBR8-ASBR6, N-ASBR8].

Let us consider another example from topology Figure 2. This topology consists of multi-domain IGP with common border node between the domains. This could be achieved with multi-area or multi-level IGP or multiple instances of IGP deployed on same node. The return path computation for this topology is similar to the multi-AS computation except that the return path consists of single border node label. When traceroute procedure is visiting node P, the return path consists of [N-PE1, N-ABR1].

8. Building Return Path TLV dynamically

In some cases, the head-end may not have complete visibility of Inter-AS/Inter-domain topology. In such cases, it can rely on downstream routers to build the reverse path for mpls traceroute procedures. For this purpose, new reply path return code is defined, which implies the Return Path TLV in the echo reply corresponds to the return path to be used in next echo request.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0006</td>
<td>Use Return Path TLV in echo reply for next echo request.</td>
</tr>
</tbody>
</table>

(TBA by IANA)

Figure 7: Return Code

8.1. The procedures to build the return path

In order to dynamically build the return Path for traceroute procedures, the domain border nodes along the path being tracerouted MUST support the procedures described in this section. Local policy on the domain border nodes SHOULD determine whether the domain border node participates in building return path dynamically during traceroute.

Headend/PMS node MAY include its own node label while initiating traceroute procedure. When an ABR receives the echo request, if the local policy implies building dynamic return path, ABR MUST include its own Node label. If there is a Return Path TLV included in the
received echo request message, the ABR’s node label is added before
the existing segments. The type of segment added is based on local
policy. In cases when SRGB is not uniform across the network, it is
RECOMMENDED to add type 3 or type 4 segment. If the existing segment
in the Return Path TLV is a type 3/type 4 segment, that segment MUST
be converted to Type 1 segment based on ABR’s own SRGB. This is
because downstream nodes will not know what SRGB to use to translate
the IP address to a label. As the ABR added its own Node label, it
is guaranteed that this ABR will be in the return path and will be
forwarding the traffic based on next label after its own label.

When an ASBR receives an echo request from another AS, and ASBR is
configured to build the return path dynamically, ASBR MUST build a
Return Path TLV and include it in the echo reply. The Return Path
TLV MUST consist of its own node label and an EPE-SID to the AS from
where the traceroute message was received. A Reply path return code
of 6 MUST be set in the echo reply to indicate that next echo request
should use the Return Path from the Return Path TLV in the echo
reply. ASBR MUST locally decide the outgoing interface for the echo
reply packet. Generally, remote ASBR will choose interface on which
the incoming OAM packet was received to send the echo reply out.

Return Path TLV is built by adding two segment sub TLVs. The top
segment sub TLV consists of the ASBR’s Node SID and second segment
consists of the EPE SID in the reverse direction to reach the AS from
which the OAM packet was received. The type of segment chosen to build
Return Path TLV is a local policy. It is RECOMMENDED to use type 3/
type 4 segment for the top segment when the SRGB is not guaranteed to be
uniform in the domain.

Irrespective of which type of segment is included in the Return Path
TLV, the responder of echo request MUST always translate the Return
Path TLV to a label stack and build MPLS header for the the echo
reply packet. This procedure can be applied to an end-to-end path
consisting of multiple ASes. Each ASBR that receives echo request
from another AS adds its Node-SID and EPE-SID on top of existing
segments in the Return Path TLV.

An ASBR that receives the echo request from a neighbor belonging to
same AS, MUST look at the Return Path TLV received in the echo
request. If the Return Path TLV consists of a Type 3/Type 4 segment,
it MUST convert the Type 3/4 segment to Type 1 segment by deriving
label from its own SRGB. The ASBR MUST set the reply path return
code to 6 and send the newly constructed Return Path TLV in the echo
reply.

Internal nodes or non domain border nodes MAY not set the Return Path
TLV return code to 6 (TBA by IANA) in the echo reply message as there
is no change in the Return Path. In these cases, the headend node/

PMS that initiates the traceroute procedure MUST continue to send previously sent Return Path TLV in the echo request message in every next echo request.

Note that an ASBR’s local policy may prohibit it from participating in the dynamic traceroute procedures. If such an ASBR is encountered in the forward path, dynamic return path building procedures will fail. In such cases, ASBR that supports this document MUST set the return code to indicate local policies do not allow the dynamic return path building.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0007</td>
<td>Local policy does not allow dynamic Return Path building.</td>
</tr>
<tr>
<td></td>
<td>(TBA by IANA)</td>
</tr>
</tbody>
</table>

Figure 8: Local policy Return Code

8.2. Details with example

Let us consider a topology from Figure 1. Let us consider a SR policy path built from PE1 to PE4 with a label stack as below. N-P1, N-ASBR1, EPE-ASBR1-ASBR4, N-PE4. PE1 begins traceroute with TTL set to 1 and includes [N-PE1] in the Return Path TLV. The traceroute packet TTL expires on P1 and P1 processes the traceroute as per the procedures described in [RFC8029] and [RFC8287]. P1 sends echo reply with the same return Path TLV with reply path return code set to 6. The return code of the echo reply itself is set to the return code as per [RFC8029] and [RFC8287]. This traceroute doesn’t need any changes to the Return Path TLV till it leaves AS1. The same Return Path TLV that is received may be included in the echo reply by P1 and P2 or no Return Path TLV included so that headend continues to use same return path in echo request that it used to send previous echo request.

When ASBR1 receives the echo request, in case it received type 3/4 segment in the Return Path TLV in the echo request, it converts that type 3/4 segment to Type 1 based on its own SRGB. When ASBR4 receives the echo request, it should form this Return Path TLV using its own Node SID (N-ASBR4) and EPE SID (EPE-ASBR4-ASBR1) labels and set the reply path return code to 6. Then PE1 should use this Return Path TLV in subsequent echo requests. In this example, when the subsequent echo request reaches P3, it should use this Return Path TLV for sending the echo reply. The same Return Path TLV is sufficient for any router in AS2 to send the reply. Because the first label (N-ASBR4) can direct echo reply to ASBR4 and second one (EPE-ASBR4-ASBR1) to direct echo reply to AS1. Once echo reply reaches AS1, normal IP forwarding or the N-PE1 helps it to reach PE1.
The example described in above paragraphs can be extended to multiple ASes by following the same procedure of each ASBR adding Node-SID and EPE-SID on receiving echo request from neighboring AS.

Let us consider a topology from Figure 2. It consists of multiple IGP domains with multiple area/levels or separate IGP instances. There is a single border node that separates the two domains. In this case, PE1 sends traceroute packet with TTL set to 1 and includes N-PE1 in the return path TLV. ABR1 receives the echo request and while sending echo reply adds its own node label to the Return Path TLV and sets the Reply path return code to 6. The Return path TLV in the echo reply from ABR1 consists of [N-PE1, N-ABR1]. Next echo request with TTL 2 reaches P node. It is an internal node so it does not change the Return Path. echo request with TTL 3 reaches ABR2 and it adds its own Node label so the return path TLV sent in echo reply will be [N-PE1, N-ABR1, N-ABR2]. echo request with TTL 4 reaches PE4 and it sends echo reply return code as Egress. PE4 does not include any Return Path TLV in echo reply. The above example assumes uniform SRGB throughout the domain. In case of different SRGBs, the top segment will be a type 3/4 segment and all other segments will be type 1. Each border node converts the type 3/type 4 segment to type 1 before adding its own segment to the Return Path TLV.

9. Security Considerations

The procedures described in this document enable LSP ping and traceroute to be executed across multiple domains or multiple ASes that belong to same administration or closely cooperating administration. It is assumed that sharing domain internal information across such domains does not pose security risk. However procedures described in this document may be used by an attacker to extract the domain internal information. An operator MUST deploy appropriate filter policies as described in RFC 4379 to restrict the LSP ping/traceroute packets based on origin. It is also suggested that an operator SHOULD deploy security mechanisms such as MACSEC on inter-domain links or security vulnerable links to prevent spoofing attacks.

10. IANA Considerations

Sub-TLVs for TLV Types 1, 16, and 21

SID only in the form of mpls label : TBD (Range 32768-65535)

IPv4 Node Address with optional SID for SR-MPLS : TBD (Range 32768-65535)
IPv6 Node Address with optional SID for SR-MPLS : TBD (Range 32768-65535)

11. Contributors

1. Carlos Pignataro
   Cisco Systems, Inc.
   cpignata@cisco.com

2. Zafar Ali
   Cisco Systems, Inc.
   zali@cisco.com

12. Acknowledgments

Thanks to Bruno Decreane for suggesting use of generic Segment sub-TLV. Thanks to Adrian Farrel, Huub van Helvoort for careful review and comments. Thanks to Mach Chen for suggesting to use Return Path TLV. Thanks to Gregory Mirsky for detailed review which helped improve the readability of the document to a great extent.

13. References

13.1. Normative References

[I-D.ietf-idr-segment-routing-te-policy]
Previdi, S., Filsfils, C., Talaulikar, K., Mattes, P.,

[I-D.ietf-spring-segment-routing-central-epe]
Filsfils, C., Previdi, S., Dawra, G., Aries, E., and D.
Afanasiev, "Segment Routing Centralized BGP Egress Peer Engineering",
draft-ietf-spring-segment-routing-central-epe-10 (work in progress), December 2017.

RFC 4379, DOI 10.17487/RFC4379, February 2006,


13.2. Informative References


Authors’ Addresses

Shraddha Hegde
Juniper Networks Inc.
Exora Business Park
Bangalore, KA 560103
India

Email: shraddha@juniper.net

Kapil Arora
Juniper Networks Inc.

Email: kapilaro@juniper.net

Mukul Srivastava
Juniper Networks Inc.

Email: msri@juniper.net
Samson Ninan
Individual Contributor
Email: samson.cse@gmail.com

Nagendra Kumar
Cisco Systems, Inc.
Email: naikumar@cisco.com
A YANG Model for MPLS MSD
draft-qu-mpls-mpls-msd-yang-03

Abstract

This document defines a YANG data module augmenting the IETF MPLS YANG model to provide support for MPLS Maximum SID Depths (MSDs) as defined in RFC 8476 and RFC 8491.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
1. Overview

YANG [RFC7950] is a data definition language used to define the contents of a conceptual data store that allows networked devices to be managed using NETCONF [RFC6241] or RESTCONF [RFC8040].

This document defines a YANG data model augmenting the IETF MPLS YANG model [RFC8960], which itself augments [RFC8349], to provide operational state for various MSDs [RFC8662].

The augmentation defined in this document requires support for the MPLS base model [RFC8960] which defines basic MPLS configuration and state.

The YANG module in this document conforms to the Network Management Datastore Architecture (NMDA) [RFC8342].

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
2. YANG Module for MPLS MSD

This document defines a YANG module for MSD extensions [RFC8476][RFC8491] to MPLS base model as defined in [RFC8960].

```yang
module: ietf-mpls-msd
    augment /rt:routing/mpls: MPLS MSD YANG module
    ---ro node-msd
        ---ro node-msds* []
            ---ro msd-type? identityref
            ---ro msd-value? uint8
    augment /rt:routing/mpls: MPLS MSD YANG module
        ---ro link-msd
        ---ro link-msds* []
            ---ro msd-type? identityref
            ---ro msd-value? uint8
```

<CODE BEGINS> file "ietf-mpls-msd@2021-08-02.yang"
module ietf-mpls-msd {
    yang-version 1.1;
    prefix mpls-msd;

    import ietf-routing {
        prefix rt;
        reference
            "RFC 8349: A YANG Data Model for Routing
             Management (NMDA Version)";
    }

    import ietf-mpls {
        prefix mpls;
        reference "RFC 8960: A YANG Data Model for MPLS Base";
    }

    organization
        "IETF MPLS - MPLS Working Group";
    contact
        "WG Web: <https://tools.ietf.org/wg/mpls/>
        WG List: <mailto:mpls@ietf.org>
        Author: Yingzhen Qu
            <mailto:yingzhen.qu@futurewei.com>
        Author: Acee Lindem
            <mailto:acee@cisco.com>
        Author: Stephane Litkowski

```
The YANG module augments the base MPLS model, and it is to manage different types of Maximum SID Depth (MSD).

This YANG model conforms to the Network Management Datastore Architecture (NMDA) as described in RFC 8342.

Copyright (c) 2021 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices.


reference "RFC XXXX: YANG Data Model for Segment Routing.";

revision 2021-08-02 {
  description
   "Initial Version";
  reference "RFC XXXX: YANG Data Model for Segment Routing.";
}

identity msd-base-type {
  description
   "Base identity for Maximum SID Depth (MSD) Type";
}

identity msd-mpls {
  base msd-base-type;
  description
identity msd-erld {
    base msd-base-type;
    description
        "msd-erld is defined to advertise the Entropy Readable Label Depth (ERLD).";
    reference
        "RFC 8662: Entropy Label for Source Packet Routing in Networking (SPRING) Tunnels";
}

augment "/rt:routing/mpls:mpls" {
    description
        "This module augments MPLS data model (RFC 8960) with node MSD.";
    container node-msd {
        config false;
        description
            "Maximum SID Depth (MSD) operational state.";
        list node-msds {
            leaf msd-type {
                type identityref {
                    base msd-base-type;
                }
                description
                    "MSD types";
            }
            leaf msd-value {
                type uint8;
                description
                    "MSD value, in the range of 0-255.";
            }
            description
                "Node MSD is the smallest link MSD supported by the node.";
        }
    }
}

augment "/rt:routing/mpls:mpls/mpls:interfaces/mpls:interface" {
    description
        "This module augments MPLS data model (RFC 8960) with link MSD.";
    container link-msd {
3. Security Considerations

The YANG modules specified in this document define a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

The NETCONF Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a pre-configured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in the modules that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations.
Some of the readable data nodes in the modules may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:

```
/rt:routing/mpls:mpls/msd/node-msds
/rt:routing/mpls:mpls/msd/link-msds
```

Exposure of the node’s maximum SID depth may be useful in mounting a Denial-of-Service (DoS) attach by sending packets to the node that the router can’t process.

4. IANA Considerations

This document registers URIs in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registrations is requested to be made:

```
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
```

This document registers the YANG modules in the YANG Module Names registry [RFC6020].

```
name: ietf-mpls-msd
prefix: mpls-msd
reference: RFC XXXX
```

5. Acknowledgements

This document was produced using Marshall Rose’s xml2rfc tool.

The YANG model was developed using the suite of YANG tools written and maintained by numerous authors.

6. References

6.1. Normative References


6.2. Informative References


Authors’ Addresses

Yingzhen Qu
Futurewei
2330 Central Expressway
Santa Clara, CA 95050
United States of America

Email: yingzhen.qu@futurewei.com

Acee Lindem
Cisco Systems
301 Midenhall Way
Cary, NC 27513
Email: ace@cisco.com

Stephane Litkowski
Cisco Systems
Email: slitkows.ietf@gmail.com

Jeff Tantsura
Juniper
Email: jefftant.ietf@gmail.com
Egress TLV for Nil FEC in Label Switched Path Ping and Traceroute Mechanisms
draft-rathi-mpls-egress-tlv-for-nil-fec-06

Abstract

MPLS ping and traceroute mechanism as described in RFC 8029 and related extensions for SR as defined in RFC 8287 is very useful to precisely validate the control plane and data plane synchronization. There is a possibility that all intermediate or transit nodes may not have been upgraded to support these validation procedures. A simple mpls ping and traceroute mechanism comprises of ability to traverse any path without having to validate the control plane state. RFC 8029 supports this mechanism with Nil FEC. The procedures described in RFC 8029 are mostly applicable when the Nil FEC is used as intermediate FEC in the label stack. When all labels in label stack are represented using single Nil FEC, it poses some challenges.

This document introduces new TLV as additional extension to existing Nil FEC and describes mpls ping and traceroute procedures using Nil FEC with this additional extensions to overcome these challenges.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 20, 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction .................................................. 3
2. Problem with Nil FEC ........................................ 4
3. Egress TLV .................................................... 4
4. Procedure ...................................................... 5
   4.1. Sending Egress TLV in MPLS Echo Request ............... 5
   4.2. Receiving Egress TLV in MPLS Echo Request ............ 6
5. Backward Compatibility ........................................ 7
6. Security Considerations ...................................... 7
7. IANA Considerations .......................................... 7
   7.1. New TLV .................................................... 7
   7.2. New Return code .......................................... 8
8. Acknowledgements ............................................. 8
9. References ..................................................... 8
   9.1. Normative References .................................... 8
   9.2. Informative References .................................. 9
Authors’ Addresses ............................................. 9
1. Introduction

Segment routing supports the creation of explicit paths using adjacency-sids, node-sids, and anycast-sids. In certain usecases, the TE paths are built using mechanisms described in [I.D-ietf-spring-segment-routing-policy] by stacking the labels that represent the nodes and links in the explicit path. When the SR-TE paths are built by the controller, the head-end routers may not have the complete database of the network and may not be aware of the FEC associated with labels that are used in the label stack. A very useful Operations And Maintenance (OAM) requirement is to be able to ping and trace these paths. A simple mpls ping and traceroute mechanism comprises of ability to traverse the SR-TE path without having to validate the control plane state.

MPLS ping and traceroute mechanism as described in [RFC8029] and related extensions for SR as defined in [RFC8287] is very useful to precisely validate the control plane and data plane synchronization. It also provides ability to traverse multiple ECMP paths and validate each of the ECMP paths. Use of Target FEC requires all nodes in the network to have implemented the validation procedures. All intermediate nodes may not have been upgraded to support validation procedures. In such cases, it is useful to have ability to traverse the paths using ping and traceroute without having to obtain the Forwarding Equivalence Class (FEC) for each label. [RFC8029] supports this mechanism with FECs like Nil FEC and Generic FEC.

Generic IPv4 and IPv6 FEC are used when the protocol that is advertising the label is unknown. The information that is carried in Generic FEC is the IPv4 or IPv6 prefix and prefix length. Thus Generic FEC types perform an additional control plane validation. But the details of generic FEC and validation procedures are not very detailed in the [RFC8029]. The use-case mostly specifies inter-AS VPNs as the motivation. Certain aspects of Segment Routing such as anycast SIDs requires clear guidelines on how the validation procedure should work. Also Generic FEC may not be widely supported and if transit routers are not upgraded to support validation of generic FEC, traceroute may fail. On other hand, Nil FEC consists of the label and there is no other associated FEC information. NIL FEC is used to traverse the path without validation for cases where the FEC is not defined or routers are not upgraded to support the FECs. Thus it can be used to check any combination of segments on any data path. The procedures described in [RFC8029] are mostly applicable when the Nil FEC is used where the Nil FEC is an intermediate FEC in the label stack. When all labels in label-stack are represented using single Nil FEC, it poses some challenges.
Section 2 discusses the problems associated with using single Nil FEC in an MPLS ping/traceroute procedure and Section 3 and Section 4 discusses simple extensions needed to solve the problem.

2. Problem with Nil FEC

The purpose of Nil FEC as described in [RFC8029] is to ensure hiding of transit tunnel information and in some cases to avoid false negatives when the FEC information is unknown.

This draft uses single NIL FEC to represent complete label stack in MPLS ping/traceroute packet irrespective of number of segments in the label-stack. When router in the label-stack path receives MPLS ping/traceroute packets, there is no definite way to decide on whether it is the intended egress router since Nil FEC does not carry any information. So there is high possibility that the packet may be mis-forwarded to incorrect destination but the ping/traceroute might still return success.

To avoid this problem, there is a need to add additional information in the MPLS ping and traceroute packet along with Nil FEC to do minimal validation on egress/destination router and sends proper information to ingress router on success and failure. This additional information should help to report transit router information to ingress/initiator router that can be used by offline application to validate the traceroute path.

Thus addition of egress information in ping/traceroute packet will help in validating Nil-FEC on each receiving router on label-stack path to ensure the correct destination. It can be used to check any combination of segments on any path without upgrading transit nodes.

3. Egress TLV

The Egress object is a TLV that MAY be included in an MPLS Echo Request message. It's an optional TLV and should appear before FEC-stack TLV in the MPLS Echo Request packet. In case multiple Nil FEC is present in Target FEC Stack TLV, Egress TLV should be added corresponding to the ultimate egress of the label-stack. It can be used for any kind of path with Egress TLV added corresponding to the end-point of the path. Explicit Path can be created using node-sid, adj-sid, binding-sid etc, EGRESS TLV prefix will be derived from path egress/destination and not based on labels used in the path to reach the destination. The format is as specified below:
Type : TBD1 (Section 7.1)

Length : variable based on IPV4/IPV6 prefix. Length excludes the length of Type and length field. Length will be 4 octets for IPv4 and 16 octets for IPv6.

Prefix : This field carries the valid IPv4 prefix of length 4 octets or valid IPv6 Prefix of length 16 octets. It can be obtained from egress of Nil FEC corresponding to last label in the label-stack or SR-TE policy endpoint field [I.D-ietf-idr-segment-routing-te-policy].

4. Procedure

This section describes aspects of LSP Ping and Traceroute operations that require further considerations beyond [RFC8029].

4.1. Sending Egress TLV in MPLS Echo Request

As stated earlier, when the sender node builds a Echo Request with target FEC Stack TLV, Egress TLV SHOULD appear before Target FEC-stack TLV in MPLS Echo Request packet.

Ping

When the sender node builds a Echo Request with target FEC Stack TLV that contains a single Nil FEC corresponding to the last segment of the SR-TE path, sender node MUST add a Egress TLV with prefix obtained from SR-TE policy endpoint field [I.D-ietf-idr-segment-routing-te-policy] to indicate the egress for this Nil FEC in the Echo Request packet. In case endpoint is not specified or is equal to 0, sender MUST use the prefix corresponding to last segment of the SR-TE path as prefix for Egress TLV.

Traceroute

When the sender node builds a Echo Request with target FEC Stack TLV that contains a single Nil FEC corresponding to complete segment-list of the SR-TE path, sender node MUST add a Egress TLV with prefix obtained from SR-TE policy endpoint field.
[I.D-ietf-idr-segment-routing-te-policy] to indicate the egress for this Nil FEC in the Echo Request packet. Some implementations may send multiple Nil FECs but it is not really required. In case headend sends multiple Nil FECs the last one should have the egress TLV. When the label stack becomes zero, all Nil FEC TLVs are removed and egress TLV MUST be validated from last Nil FEC. In case endpoint is not specified or is equal to 0 (as in case of color-only SR-TE policy), sender MUST use the prefix corresponding to the last segment endpoint of the SR-TE path i.e. ultimate egress as prefix for Egress TLV.

```
-----R3-----
 \  (1003)  \
   (1001)  \(1005)   (1007)
R1----R2(1002)  R5----R6----R7(prefix X)
 \ \(1004) / 
-----R4-----
```

Consider the SR-TE policy configured with label-stack as 1002, 1004, 1007 and end point/destination as prefix X on ingress router R1 to reach egress router R7. Segment 1007 belongs to R7 that has prefix X locally configured on it.

In Ping Echo Request, with target FEC Stack TLV that contains a single Nil FEC corresponding to 1007, should add Egress TLV for endpoint/destination prefix X with type as EGRESS-TLV, length depends on if X is IPv4 or IPv6 address and prefix as X.

In Traceroute Echo Request, with target FEC Stack TLV that contains a single Nil FEC corresponding to complete label-stack (1002, 1004, 1007) or multiple Nil-FEC corresponding to each label in label-stack, should add single Egress TLV for endpoint/destination prefix X with type as EGRESS-TLV, length depends on if X is IPv4 or IPv6 address and prefix as X. In case X is not present or is set to 0 (as in case of color-only SR-TE policy), sender should use endpoint of segment 1007 as prefix for Egress TLV.

4.2. Receiving Egress TLV in MPLS Echo Request

No change in the processing for Nil FEC as defined in [RFC8029] in Target FEC stack TLV Node that receives an MPLS echo request.

Additional processing done for Egress TLV on receiver node as follows:

1. If the Label-stack-depth is greater than 0 and the Target FEC Stack sub-TLV at FEC-stack-depth is Nil FEC, set Best-return-code to
8 ("Label switched at stack-depth") and Best-return-subcode to Label-stack-depth to report transit switching in MPLS Echo Reply message.

2. If the Label-stack-depth is 0 and the Target FEC Stack sub-TLV at FEC-stack-depth is Nil FEC then do the look up for an exact match of the EGRESS TLV prefix to any of locally configured interfaces or loopback addresses.

2a. If EGRESS TLV prefix look up succeeds, set Best-return-code to TBD2 ("Replying router is an egress for EGRESS TLV") (Section 7.2) and Best-return-subcode to 1 to report egress ok in MPLS Echo Reply message.

2b. If EGRESS TLV prefix look up fails, set the Best-return-code to 10, "Mapping for this FEC is not the given label at stack-depth" and Best-return-subcode to 1.

5. Backward Compatibility

The extension proposed in this document is backward compatible with procedures described in [RFC8029]. Router that does not support EGRESS-TLV, will ignore it and use current NIL-FEC procedures described in [RFC8029].

When the egress node in the path does not support the extensions proposed in this draft egress validation will not be done and Best-return-code as 3 ("Replying router is an egress for the FEC at stack-depth") and Best-return-subcode as 1 to report egress ok will be set in MPLS Echo Reply message.

When the transit node in the path does not support the extensions proposed in this draft Best-return-code as 8 ("Label switched at stack-depth") and Best-return-subcode as Label-stack-depth to report transit switching will be set in MPLS Echo Reply message.

6. Security Considerations

TBD

7. IANA Considerations

7.1. New TLV

IANA need to assign new value for EGRESS TLV in the "Multi-Protocol Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters" in "TLVs" sub-registry [IANA].
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD1 (suggested 28)</td>
<td>EGRESS TLV</td>
<td>Section 3</td>
</tr>
</tbody>
</table>

Table 1: TLVs Sub-Registry

7.2. New Return code

IANA need to assign new value for EGRESS TLV in the "Multi-Protocol Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters" in "Return Codes" sub-registry. [IANA].

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD2 (suggested 36)</td>
<td>Replying router is an egress for the EGRESS-TLV</td>
<td>Section 4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This document</td>
</tr>
</tbody>
</table>

Table 2: Return code Sub-Registry

8. Acknowledgements

TBD.

9. References

9.1. Normative References

[I.D-ietf-idr-segment-routing-te-policy]

[I.D-ietf-spring-segment-routing-policy]

9.2. Informative References


Authors’ Addresses

Deepti N. Rathi (editor)
Juniper Networks Inc.
Exora Business Park
Bangalore, KA 560103
India

Email: deeptir@juniper.net

Kapil Arora
Juniper Networks Inc.
Exora Business Park
Bangalore, KA 560103
India

Email: kapilaro@juniper.net
Generic Delivery Functions
draft-zzhang-intarea-generic-delivery-functions-03

Abstract

Some functionalities (e.g., fragmentation/reassembly and Encapsulating Security Payload) provided by IPv6 can be viewed as delivery functions independent of IPv6 or even IP entirely. This document proposes to provide those functionalities at different layers (e.g., MPLS, BIER or even Ethernet) independent of IP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 12, 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must

1. Introduction

Consider an operator providing Ethernet services such as EVPN. The Ethernet frames that a Provider Edge (PE) device receives from a Customer Edge (CE) device may have a larger size than the PE-PE path MTU (PMTU) in the provider network. This could be because

1. the provider network is built upon virtual connections (e.g., pseudowires) provided by another infrastructure provider, or

2. the customer network uses jumbo frames while the provider network does not, or

3. the provider-side overhead for transporting customer packets across the network pushes past the PMTU.

In any case, the provider cannot simply require its customers to change their MTU.

To get those large frames across the provider network, currently, the only workaround is to encapsulate the frames in IP (with or without GRE) and then fragment the IP packets. Even if MPLS is used for service delimiting, IP is used for transportation (MPLS over IP/GRE). This may not be desirable in certain deployment scenarios, where MPLS is the preferred transport or IP encapsulation overhead is deemed excessive.

IPv6 fragmentation and reassembly are based on the IPv6 Fragmentation header below [RFC8200]:

This document proposes adapting this header for use in non-IP contexts since the fragmentation/reassembly function is actually independent of IPv6 except for the following aspects:

- The fragment header is identified as such by the "previous" header.
- The "Next Header" value is from the "Internet Protocol Numbers" registry.
- The "Identification" value is unique in the (source, destination) context provided by the IPv6 header.

The "Identification" field, in conjunction with the IPv6 source and destination addresses identifies fragments of the original packet for the purpose of reassembly.

Therefore, the fragmentation/reassembly function can be applied at other layers as long as a) the fragment header is identified as such; and b) the context for packet identification is provided. Examples of such layers include MPLS, BIER, and Ethernet (if IEEE determines it is so desired).

For the same consideration, the IP Encapsulating Security Payload (ESP) [RFC4303] could also be applied at other layers if ESP is desired there. For example, if for whatever reason the Ethernet service provider wants to provide ESP between its PEs, it could do so without requiring IP encapsulation if ESP is applied at non-IP layers.

Similarly, In-Situ OAM (IOAM) functions [RFC9197] can also be applied to many layers.

We refer to these as Generic Delivery Functions (GDFs), which could be achieved at a shim layer between a source and destination delivery points, for example:

- Source and destination IP/Ethernet nodes
- Ingress and egress nodes of MPLS Label Switch Paths (LSPs)
2. Specifications

A Generic Delivery Function, being generic, is likely applicable to IP as well. Therefore, IPv6 Extension Headers (for some GDFs) are directly used at other layers.

2.1. MPLS layer

[I-D.song-mpls-extension-header] specifies MPLS Extension Headers encoding. A label entry in the stack indicates the presence of extension headers after the label stack. It starts with a Header of Extension Headers, as depicted in the following excerpt from that specification:

```
0                                    31
+---------------------------------+  \  
|                                  |   |  +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| -                                |   |  | -                                |   |  | +---------------------------------+
| 0                                  31  |
```

One or more of the EHs in the above can be an IPv6 Extension Header for a GDF.
2.2. BIER layer

For BIER layer, a TBD value for the "proto" field in the outer BIER header indicates that some BIER Extension Headers follow the BIER header, including some IPv6 Extension Headers for GDFs.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BIFT-id | TC | S | TTL |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nibble | Ver | BSL | Entropy |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OAM | R | H | DSCP | Proto | BFIR-id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Header of Extension Headers (HEH) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

```
~ Extension Header (EH) 1
~ ...
~ Extension Header (EH) N
~ Upper Layer Headers/Payload
~
```

**R**: The "R" flag bit is reserved. It MUST be set to 0 on transmit and ignored on receive.

**H**: If the "H" flag bit, it indicates the presence of at least one extension header that needs to be processed hop by hop even before a BFER is reached. In this case, the Proto field must be set to the TBD value indicating the presence of extension headers.

2.3. Other layers

Similarly, any layer can have an indication in its packet header that some GDF extension headers follow, including some IPv6 Extension Headers for GDF purpose.

For example, if the outer header is Ethernet (if IEEE would decide to provide the generic delivery functions on top of Ethernet directly), then a new Ethertype would be assigned by IEEE to indicate the presence of GDF extension headers.
2.4. Generic Fragmentation Header (GFH)

For generic fragmentation/reassembly functionality, the existing IPv6 Fragment Header needs to be enhanced for MPLS as following:

```
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|   Next Header   | Hdr Ext Len   |   Fragment Offset   |  R |  S |  M |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|                   Fragment/Source Identification (variable)       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```

Figure 2: Generic Fragmentation Header

- **R**: The "R" flag bit is reserved. It MUST be set to 0 on transmit and ignored on receive.

- **S**: If the "S" flag bit is clear, the context for the Identification field is provided by the outer header, and only the source-identifying information in the outer header is used.

  If the "S" flag bit is set, the variable Identification field encodes both source-identifying information (e.g., the IP address of the node adding the GFH) and an identification number unique within that source. The length of the Fragment header is encoded in the 8-bit "Hdr Ext Len" field (which is a Reserved field in the original IPv6 Fragment Header).

When a GFH is used together with other GDF Headers (GDFH), the GFH SHOULD be the first GDFH.

The above enhancement is not necessary but MAY be used for BIER as well. If the outer header is BIER and the "S" flag bit is clear, the "BFIR-id" field in the BIER header provides the context for the "Identification" field. If the bit is set, then the source information embedded in the source/fragment identification field is used.

3. Security Considerations

To be provided.

4. Acknowledgements

The authors thank Stewart Bryant and Tony Przygienda for their valuable comments and suggestions.
5. References

5.1. Normative References

[I-D.song-mpls-extension-header]


5.2. Informative References


Authors’ Addresses

Zhaohui Zhang
Juniper Networks
Email: zzhang@juniper.net

Ron Bonica
Juniper Networks
Email: rbonica@juniper.net

Kireeti Kompella
Juniper Networks
Email: kireeti@juniper.net

Gregory Mirsky
ZTE
Email: gregory.mirsky@ztetx.com