
HTTPBIS M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track C.A. Wood
Expires: 25 February 2022 Cloudflare
 24 August 2021

 Oblivious HTTP
 draft-thomson-http-oblivious-02

Abstract

 This document describes a system for the forwarding of encrypted HTTP
 messages. This allows a client to make multiple requests of a server
 without the server being able to link those requests to the client or
 to identify the requests as having come from the same client.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the HTTP Working Group
 mailing list (http@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/http/.

 Source for this draft and an issue tracker can be found at
 https://github.com/unicorn-wg/oblivious-http.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 25 February 2022.

Thomson & Wood Expires 25 February 2022 [Page 1]

Internet-Draft Oblivious HTTP August 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions and Definitions 4
 3. Overview . 4
 3.1. Applicability . 6
 4. Key Configuration . 7
 4.1. Key Configuration Encoding 8
 4.2. Key Configuration Media Type 8
 5. HPKE Encapsulation . 9
 5.1. Encapsulation of Requests 10
 5.2. Encapsulation of Responses 12
 6. HTTP Usage . 13
 6.1. Informational Responses 14
 6.2. Errors . 14
 7. Media Types . 15
 7.1. message/ohttp-req Media Type 15
 7.2. message/ohttp-res Media Type 16
 8. Security Considerations 17
 8.1. Client Responsibilities 18
 8.2. Proxy Responsibilities 19
 8.2.1. Denial of Service 20
 8.2.2. Linkability Through Traffic Analysis 20
 8.3. Server Responsibilities 21
 8.4. Replay Attacks . 21
 8.5. Post-Compromise Security 23
 9. Privacy Considerations 23
 10. Operational and Deployment Considerations 23
 11. IANA Considerations . 24
 12. References . 24
 12.1. Normative References 24
 12.2. Informative References 25
 Appendix A. Complete Example of a Request and Response 27
 Acknowledgments . 29

Thomson & Wood Expires 25 February 2022 [Page 2]

Internet-Draft Oblivious HTTP August 2021

 Authors’ Addresses . 29

1. Introduction

 The act of making a request using HTTP reveals information about the
 client identity to a server. Though the content of requests might
 reveal information, that is information under the control of the
 client. In comparison, the source address on the connection reveals
 information that a client has only limited control over.

 Even where an IP address is not directly attributed to an individual,
 the use of an address over time can be used to correlate requests.
 Servers are able to use this information to assemble profiles of
 client behavior, from which they can make inferences about the people
 involved. The use of persistent connections to make multiple
 requests improves performance, but provides servers with additional
 certainty about the identity of clients in a similar fashion.

 Use of an HTTP proxy can provide a degree of protection against
 servers correlating requests. Systems like virtual private networks
 or the Tor network [Dingledine2004], provide other options for
 clients.

 Though the overhead imposed by these methods varies, the cost for
 each request is significant. Preventing request linkability requires
 that each request use a completely new TLS connection to the server.
 At a minimum, this requires an additional round trip to the server in
 addition to that required by the request. In addition to having high
 latency, there are significant secondary costs, both in terms of the
 number of additional bytes exchanged and the CPU cost of
 cryptographic computations.

 This document describes a method of encapsulation for binary HTTP
 messages [BINARY] using Hybrid Public Key Encryption (HPKE; [HPKE]).
 This protects the content of both requests and responses and enables
 a deployment architecture that can separate the identity of a
 requester from the request.

 Though this scheme requires that servers and proxies explicitly
 support it, this design represents a performance improvement over
 options that perform just one request in each connection. With
 limited trust placed in the proxy (see Section 8), clients are
 assured that requests are not uniquely attributed to them or linked
 to other requests.

Thomson & Wood Expires 25 February 2022 [Page 3]

Internet-Draft Oblivious HTTP August 2021

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Encapsulated Request: An HTTP request that is encapsulated in an
 HPKE-encrypted message; see Section 5.1.

 Encapsulated Response: An HTTP response that is encapsulated in an
 HPKE-encrypted message; see Section 5.2.

 Oblivious Proxy Resource: An intermediary that forwards requests and
 responses between clients and a single oblivious request resource.

 Oblivious Request Resource: A resource that can receive an
 encapsulated request, extract the contents of that request,
 forward it to an oblivious target resource, receive a response,
 encapsulate that response, then return that response.

 Oblivious Target Resource: The resource that is the target of an
 encapsulated request. This resource logically handles only
 regular HTTP requests and responses and so might be ignorant of
 the use of oblivious HTTP to reach it.

 This draft includes pseudocode that uses the functions and
 conventions defined in [HPKE].

 Encoding an integer to a sequence of bytes in network byte order is
 described using the function "encode(n, v)", where "n" is the number
 of bytes and "v" is the integer value. The function "len()" returns
 the length of a sequence of bytes.

 Formats are described using notation from Section 1.3 of [QUIC].

3. Overview

 A client learns the following:

 * The identity of an oblivious request resource. This might include
 some information about oblivious target resources that the
 oblivious request resource supports.

 * The details of an HPKE public key that the oblivious request
 resource accepts, including an identifier for that key and the
 HPKE algorithms that are used with that key.

Thomson & Wood Expires 25 February 2022 [Page 4]

Internet-Draft Oblivious HTTP August 2021

 * The identity of an oblivious proxy resource that will forward
 encapsulated requests and responses to the oblivious request
 resource.

 This information allows the client to make a request of an oblivious
 target resource without that resource having only a limited ability
 to correlate that request with the client IP or other requests that
 the client might make to that server.

 +---------+ +----------+ +----------+ +----------+
 | Client | | Proxy | | Request | | Target |
 | | | Resource | | Resource | | Resource |
 +---------+ +----------+ +----------+ +----------+
 | | | |
 | Encapsulated | | |
 | Request | | |
 |---------------->| Encapsulated | |
 | | Request | |
 | |----------------->| Request |
 | | |-------------->|
 | | | |
 | | | Response |
 | | Encapsulated |<--------------|
 | | Response | |
 | Encapsulated |<-----------------| |
 | Response | | |
 |<----------------| | |
 | | | |

 Figure 1: Overview of Oblivious HTTP

 In order to make a request to an oblivious target resource, the
 following steps occur, as shown in Figure 1:

 1. The client constructs an HTTP request for an oblivious target
 resource.

 2. The client encodes the HTTP request in a binary HTTP message and
 then encapsulates that message using HPKE and the process from
 Section 5.1.

 3. The client sends a POST request to the oblivious proxy resource
 with the encapsulated request as the content of that message.

 4. The oblivious proxy resource forwards this request to the
 oblivious request resource.

Thomson & Wood Expires 25 February 2022 [Page 5]

Internet-Draft Oblivious HTTP August 2021

 5. The oblivious request resource receives this request and removes
 the HPKE protection to obtain an HTTP request.

 6. The oblivious request resource makes an HTTP request that
 includes the target URI, method, fields, and content of the
 request it acquires.

 7. The oblivious target resource answers this HTTP request with an
 HTTP response.

 8. The oblivious request resource encapsulates the HTTP response
 following the process in Section 5.2 and sends this in response
 to the request from the oblivious proxy resource.

 9. The oblivious proxy resource forwards this response to the
 client.

 10. The client removes the encapsulation to obtain the response to
 the original request.

3.1. Applicability

 Oblivious HTTP has limited applicability. Many uses of HTTP benefit
 from being able to carry state between requests, such as with cookies
 ([RFC6265]), authentication (Section 11 of [HTTP]), or even
 alternative services ([RFC7838]). Oblivious HTTP seeks to prevent
 this sort of linkage, which requires that applications not carry
 state between requests.

 Oblivious HTTP is primarily useful where privacy risks associated
 with possible stateful treatment of requests are sufficiently
 negative that the cost of deploying this protocol can be justified.
 Oblivious HTTP is simpler and less costly than more robust systems,
 like Prio ([PRIO]) or Tor ([Dingledine2004]), which can provide
 stronger guarantees at higher operational costs.

 Oblivious HTTP is more costly than a direct connection to a server.
 Some costs, like those involved with connection setup, can be
 amortized, but there are several ways in which oblivious HTTP is more
 expensive than a direct request:

 * Each oblivious request requires at least two regular HTTP
 requests, which adds latency.

 * Each request is expanded in size with additional HTTP fields,
 encryption-related metadata, and AEAD expansion.

Thomson & Wood Expires 25 February 2022 [Page 6]

Internet-Draft Oblivious HTTP August 2021

 * Deriving cryptographic keys and applying them for request and
 response protection takes non-negligible computational resources.

 Examples of where preventing the linking of requests might justify
 these costs include:

 * DNS queries. DNS queries made to a recursive resolver reveal
 information about the requester, particularly if linked to other
 queries.

 * Telemetry submission. Applications that submit reports about
 their usage to their developers might use oblivious HTTP for some
 types of moderately sensitive data.

4. Key Configuration

 A client needs to acquire information about the key configuration of
 the oblivious request resource in order to send encapsulated
 requests.

 In order to ensure that clients do not encapsulate messages that
 other entities can intercept, the key configuration MUST be
 authenticated and have integrity protection.

 This document describes the "application/ohttp-keys" media type; see
 Section 4.2. This media type might be used, for example with HTTPS,
 as part of a system for configuring or discovering key
 configurations. Note however that such a system needs to consider
 the potential for key configuration to be used to compromise client
 privacy; see Section 9.

 Specifying a format for expressing the information a client needs to
 construct an encapsulated request ensures that different client
 implementations can be configured in the same way. This also enables
 advertising key configurations in a consistent format.

 A client might have multiple key configurations to select from when
 encapsulating a request. Clients are responsible for selecting a
 preferred key configuration from those it supports. Clients need to
 consider both the key encapsulation method (KEM) and the combinations
 of key derivation function (KDF) and authenticated encryption with
 associated data (AEAD) in this decision.

 Evolution of the key configuration format is supported through the
 definition of new formats that are identified by new media types.

Thomson & Wood Expires 25 February 2022 [Page 7]

Internet-Draft Oblivious HTTP August 2021

4.1. Key Configuration Encoding

 A single key configuration consists of a key identifier, a public
 key, an identifier for the KEM that the public key uses, and a set
 HPKE symmetric algorithms. Each symmetric algorithm consists of an
 identifier for a KDF and an identifier for an AEAD.

 Figure 2 shows a single key configuration, KeyConfig, that is
 expressed using the TLS syntax; see Section 3 of [TLS].

 opaque HpkePublicKey[Npk];
 uint16 HpkeKemId;
 uint16 HpkeKdfId;
 uint16 HpkeAeadId;

 struct {
 HpkeKdfId kdf_id;
 HpkeAeadId aead_id;
 } HpkeSymmetricAlgorithms;

 struct {
 uint8 key_id;
 HpkeKemId kem_id;
 HpkePublicKey public_key;
 HpkeSymmetricAlgorithms cipher_suites<4..2^16-4>;
 } KeyConfig;

 Figure 2: A Single Key Configuration

 The types HpkeKemId, HpkeKdfId, and HpkeAeadId identify a KEM, KDF,
 and AEAD respectively. The definitions for these identifiers and the
 semantics of the algorithms they identify can be found in [HPKE].
 The Npk parameter corresponding to the HpkeKdfId can be found in
 [HPKE].

4.2. Key Configuration Media Type

 The "application/ohttp-keys" format is a media type that identifies a
 serialized collection of key configurations. The content of this
 media type comprises one or more key configuration encodings (see
 Section 4.1) that are concatenated.

 Type name: application

 Subtype name: ohttp-keys

 Required parameters: N/A

Thomson & Wood Expires 25 February 2022 [Page 8]

Internet-Draft Oblivious HTTP August 2021

 Optional parameters: None

 Encoding considerations: only "8bit" or "binary" is permitted

 Security considerations: see Section 8

 Interoperability considerations: N/A

 Published specification: this specification

 Applications that use this media type: N/A

 Fragment identifier considerations: N/A

 Additional information: Magic number(s): N/A

 Deprecated alias names for this type: N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person and email address to contact for further information: see Aut
 hors’ Addresses section

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: see Authors’ Addresses section

 Change controller: IESG

5. HPKE Encapsulation

 HTTP message encapsulation uses HPKE for request and response
 encryption. An encapsulated HTTP message includes the following
 values:

 1. A binary-encoded HTTP message; see [BINARY].

 2. Padding of arbitrary length which MUST contain all zeroes.

 The encoding of an HTTP message is as follows:

Thomson & Wood Expires 25 February 2022 [Page 9]

Internet-Draft Oblivious HTTP August 2021

 Plaintext Message {
 Message Length (i),
 Message (..),
 Padding Length (i),
 Padding (..),
 }

 An Encapsulated Request is comprised of a length-prefixed key
 identifier and a HPKE-protected request message. HPKE protection
 includes an encapsulated KEM shared secret (or "enc"), plus the AEAD-
 protected request message. An Encapsulated Request is shown in
 Figure 3. Section 5.1 describes the process for constructing and
 processing an Encapsulated Request.

 Encapsulated Request {
 Key Identifier (8),
 KEM Identifier (16),
 KDF Identifier (16),
 AEAD Identifier (16),
 Encapsulated KEM Shared Secret (8*Nenc),
 AEAD-Protected Request (..),
 }

 Figure 3: Encapsulated Request

 The Nenc parameter corresponding to the HpkeKdfId can be found in
 [HPKE].

 Responses are bound to responses and so consist only of AEAD-
 protected content. Section 5.2 describes the process for
 constructing and processing an Encapsulated Response.

 Encapsulated Response {
 Nonce (Nk),
 AEAD-Protected Response (..),
 }

 Figure 4: Encapsulated Response

 The size of the Nonce field in an Encapsulated Response corresponds
 to the size of an AEAD key for the corresponding HPKE ciphersuite.

5.1. Encapsulation of Requests

 Clients encapsulate a request "request" using values from a key
 configuration:

Thomson & Wood Expires 25 February 2022 [Page 10]

Internet-Draft Oblivious HTTP August 2021

 * the key identifier from the configuration, "keyID", with the
 corresponding KEM identified by "kemID",

 * the public key from the configuration, "pkR", and

 * a selected combination of KDF, identified by "kdfID", and AEAD,
 identified by "aeadID".

 The client then constructs an encapsulated request, "enc_request", as
 follows:

 1. Compute an HPKE context using "pkR", yielding "context" and
 encapsulation key "enc".

 2. Construct associated data, "aad", by concatenating the values of
 "keyID", "kemID", "kdfID", and "aeadID", as one 8-bit integer and
 three 16-bit integers, respectively, each in network byte order.

 3. Encrypt (seal) "request" with "aad" as associated data using
 "context", yielding ciphertext "ct".

 4. Concatenate the values of "aad", "enc", and "ct", yielding an
 Encapsulated Request "enc_request".

 Note that "enc" is of fixed-length, so there is no ambiguity in
 parsing this structure.

 In pseudocode, this procedure is as follows:

 enc, context = SetupBaseS(pkR, "request")
 aad = concat(encode(1, keyID),
 encode(2, kemID),
 encode(2, kdfID),
 encode(2, aeadID))
 ct = context.Seal(aad, request)
 enc_request = concat(aad, enc, ct)

 Servers decrypt an Encapsulated Request by reversing this process.
 Given an Encapsulated Request "enc_request", a server:

 1. Parses "enc_request" into "keyID", "kemID", "kdfID", "aeadID",
 "enc", and "ct" (indicated using the function "parse()" in
 pseudocode). The server is then able to find the HPKE private
 key, "skR", corresponding to "keyID".

 a. If "keyID" does not identify a key matching the type of
 "kemID", the server returns an error.

Thomson & Wood Expires 25 February 2022 [Page 11]

Internet-Draft Oblivious HTTP August 2021

 b. If "kdfID" and "aeadID" identify a combination of KDF and
 AEAD that the server is unwilling to use with "skR", the server
 returns an error.

 2. Compute an HPKE context using "skR" and the encapsulated key
 "enc", yielding "context".

 3. Construct additional associated data, "aad", from "keyID",
 "kdfID", and "aeadID" or as the first five bytes of
 "enc_request".

 4. Decrypt "ct" using "aad" as associated data, yielding "request"
 or an error on failure. If decryption fails, the server returns
 an error.

 In pseudocode, this procedure is as follows:

 keyID, kemID, kdfID, aeadID, enc, ct = parse(enc_request)
 aad = concat(encode(1, keyID),
 encode(2, kemID),
 encode(2, kdfID),
 encode(2, aeadID))
 context = SetupBaseR(enc, skR, "request")
 request, error = context.Open(aad, ct)

5.2. Encapsulation of Responses

 Given an HPKE context "context", a request message "request", and a
 response "response", servers generate an Encapsulated Response
 "enc_response" as follows:

 1. Export a secret "secret" from "context", using the string
 "response" as context. The length of this secret is "max(Nn,
 Nk)", where "Nn" and "Nk" are the length of AEAD key and nonce
 associated with "context".

 2. Generate a random value of length "max(Nn, Nk)" bytes, called
 "response_nonce".

 3. Extract a pseudorandom key "prk" using the "Extract" function
 provided by the KDF algorithm associated with "context". The
 "ikm" input to this function is "secret"; the "salt" input is the
 concatenation of "enc" (from "enc_request") and "response_nonce"

 4. Use the "Expand" function provided by the same KDF to extract an
 AEAD key "key", of length "Nk" - the length of the keys used by
 the AEAD associated with "context". Generating "key" uses a
 label of "key".

Thomson & Wood Expires 25 February 2022 [Page 12]

Internet-Draft Oblivious HTTP August 2021

 5. Use the same "Expand" function to extract a nonce "nonce" of
 length "Nn" - the length of the nonce used by the AEAD.
 Generating "nonce" uses a label of "nonce".

 6. Encrypt "response", passing the AEAD function Seal the values of
 "key", "nonce", empty "aad", and a "pt" input of "request", which
 yields "ct".

 7. Concatenate "response_nonce" and "ct", yielding an Encapsulated
 Response "enc_response". Note that "response_nonce" is of fixed-
 length, so there is no ambiguity in parsing either
 "response_nonce" or "ct".

 In pseudocode, this procedure is as follows:

 secret = context.Export("response", Nk)
 response_nonce = random(max(Nn, Nk))
 salt = concat(enc, response_nonce)
 prk = Extract(salt, secret)
 aead_key = Expand(prk, "key", Nk)
 aead_nonce = Expand(prk, "nonce", Nn)
 ct = Seal(aead_key, aead_nonce, "", response)
 enc_response = concat(response_nonce, ct)

 Clients decrypt an Encapsulated Request by reversing this process.
 That is, they first parse "enc_response" into "response_nonce" and
 "ct". They then follow the same process to derive values for
 "aead_key" and "aead_nonce".

 The client uses these values to decrypt "ct" using the Open function
 provided by the AEAD. Decrypting might produce an error, as follows:

 reponse, error = Open(aead_key, aead_nonce, "", ct)

6. HTTP Usage

 A client interacts with the oblivious proxy resource by constructing
 an encapsulated request. This encapsulated request is included as
 the content of a POST request to the oblivious proxy resource. This
 request MUST only contain those fields necessary to carry the
 encapsulated request: a method of POST, a target URI of the oblivious
 proxy resource, a header field containing the content type (see
 (Section 7), and the encapsulated request as the request content.
 Clients MAY include fields that do not reveal information about the
 content of the request, such as Alt-Used [ALT-SVC], or information
 that it trusts the oblivious proxy resource to remove, such as fields
 that are listed in the Connection header field.

Thomson & Wood Expires 25 February 2022 [Page 13]

Internet-Draft Oblivious HTTP August 2021

 The oblivious proxy resource interacts with the oblivious request
 resource by constructing a request using the same restrictions as the
 client request, except that the target URI is the oblivious request
 resource. The content of this request is copied from the client.
 The oblivious proxy resource MUST NOT add information about the
 client to this request.

 When a response is received from the oblivious request resource, the
 oblivious proxy resource forwards the response according to the rules
 of an HTTP proxy; see Section 7.6 of [HTTP].

 An oblivious request resource, if it receives any response from the
 oblivious target resource, sends a single 200 response containing the
 encapsulated response. Like the request from the client, this
 response MUST only contain those fields necessary to carry the
 encapsulated response: a 200 status code, a header field indicating
 the content type, and the encapsulated response as the response
 content. As with requests, additional fields MAY be used to convey
 information that does not reveal information about the encapsulated
 response.

 An oblivious request resource acts as a gateway for requests to the
 oblivious target resource (see Section 7.6 of [HTTP]). The one
 exception is that any information it might forward in a response MUST
 be encapsulated, unless it is responding to errors it detects before
 removing encapsulation of the request; see Section 6.2.

6.1. Informational Responses

 This encapsulation does not permit progressive processing of
 responses. Though the binary HTTP response format does support the
 inclusion of informational (1xx) status codes, the AEAD encapsulation
 cannot be removed until the entire message is received.

 In particular, the Expect header field with 100-continue (see
 Section 10.1.1 of [HTTP]) cannot be used. Clients MUST NOT construct
 a request that includes a 100-continue expectation; the oblivious
 request resource MUST generate an error if a 100-continue expectation
 is received.

6.2. Errors

 A server that receives an invalid message for any reason MUST
 generate an HTTP response with a 4xx status code.

Thomson & Wood Expires 25 February 2022 [Page 14]

Internet-Draft Oblivious HTTP August 2021

 Errors detected by the oblivious proxy resource and errors detected
 by the oblivious request resource before removing protection
 (including being unable to remove encapsulation for any reason)
 result in the status code being sent without protection in response
 to the POST request made to that resource.

 Errors detected by the oblivious request resource after successfully
 removing encapsulation and errors detected by the oblivious target
 resource MUST be sent in an encapsulated response.

7. Media Types

 Media types are used to identify encapsulated requests and responses.

 Evolution of the format of encapsulated requests and responses is
 supported through the definition of new formats that are identified
 by new media types.

7.1. message/ohttp-req Media Type

 The "message/ohttp-req" identifies an encapsulated binary HTTP
 request. This is a binary format that is defined in Section 5.1.

 Type name: message

 Subtype name: ohttp-req

 Required parameters: N/A

 Optional parameters: None

 Encoding considerations: only "8bit" or "binary" is permitted

 Security considerations: see Section 8

 Interoperability considerations: N/A

 Published specification: this specification

 Applications that use this media type: N/A

 Fragment identifier considerations: N/A

 Additional information: Magic number(s): N/A

 Deprecated alias names for this type: N/A

 File extension(s): N/A

Thomson & Wood Expires 25 February 2022 [Page 15]

Internet-Draft Oblivious HTTP August 2021

 Macintosh file type code(s): N/A

 Person and email address to contact for further information: see Aut
 hors’ Addresses section

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: see Authors’ Addresses section

 Change controller: IESG

7.2. message/ohttp-res Media Type

 The "message/ohttp-res" identifies an encapsulated binary HTTP
 response. This is a binary format that is defined in Section 5.2.

 Type name: message

 Subtype name: ohttp-res

 Required parameters: N/A

 Optional parameters: None

 Encoding considerations: only "8bit" or "binary" is permitted

 Security considerations: see Section 8

 Interoperability considerations: N/A

 Published specification: this specification

 Applications that use this media type: N/A

 Fragment identifier considerations: N/A

 Additional information: Magic number(s): N/A

 Deprecated alias names for this type: N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person and email address to contact for further information: see Aut
 hors’ Addresses section

Thomson & Wood Expires 25 February 2022 [Page 16]

Internet-Draft Oblivious HTTP August 2021

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: see Authors’ Addresses section

 Change controller: IESG

8. Security Considerations

 In this design, a client wishes to make a request of a server that is
 authoritative for the oblivious target resource. The client wishes
 to make this request without linking that request with either:

 1. The identity at the network and transport layer of the client
 (that is, the client IP address and TCP or UDP port number the
 client uses to create a connection).

 2. Any other request the client might have made in the past or might
 make in the future.

 In order to ensure this, the client selects a proxy (that serves the
 oblivious proxy resource) that it trusts will protect this
 information by forwarding the encapsulated request and response
 without passing the server (that serves the oblivious request
 resource).

 In this section, a deployment where there are three entities is
 considered:

 * A client makes requests and receives responses

 * A proxy operates the oblivious proxy resource

 * A server operates both the oblivious request resource and the
 oblivious target resource

 To achieve the stated privacy goals, the oblivious proxy resource
 cannot be operated by the same entity as the oblivious request
 resource. However, colocation of the oblivious request resource and
 oblivious target resource simplifies the interactions between those
 resources without affecting client privacy.

 As a consequence of this configuration, Oblivious HTTP prevents
 linkability described above. Informally, this means:

Thomson & Wood Expires 25 February 2022 [Page 17]

Internet-Draft Oblivious HTTP August 2021

 1. Requests and responses are known only to clients and targets in
 possession of the corresponding response encapsulation key and
 HPKE keying material. In particular, the oblivious proxy knows
 the origin and destination of an encapsulated request and
 response, yet does not know the decapsulated contents. Likewise,
 targets know only the oblivious request origin, i.e., the proxy,
 and the decapsulated request. Only the client knows both the
 plaintext request and response.

 2. Targets cannot link requests from the same client in the absence
 of unique per-client keys.

 Traffic analysis that might affect these properties are outside the
 scope of this document; see Section 8.2.2.

 A formal analysis of Oblivious HTTP is in [OHTTP-ANALYSIS].

8.1. Client Responsibilities

 Clients MUST ensure that the key configuration they select for
 generating encapsulated requests is integrity protected and
 authenticated so that it can be attributed to the oblivious request
 resource; see Section 4.

 Since clients connect directly to the proxy instead of the target,
 application configurations wherein clients make policy decisions
 about target connections, e.g., to apply certificate pinning, are
 incompatible with Oblivious HTTP. In such cases, alternative
 technologies such as HTTP CONNECT (Section 9.3.6 of [HTTP]) can be
 used. Applications could implement related policies on key
 configurations and proxy connections, though these might not provide
 the same properties as policies enforced directly on target
 connections. When this difference is relevant, applications can
 instead connect directly to the target at the cost of either privacy
 or performance.

 Clients MUST NOT include identifying information in the request that
 is encapsulated. Identifying information includes cookies [COOKIES],
 authentication credentials or tokens, and any information that might
 reveal client-specific information such as account credentials.

Thomson & Wood Expires 25 February 2022 [Page 18]

Internet-Draft Oblivious HTTP August 2021

 Clients cannot carry connection-level state between requests as they
 only establish direct connections to the proxy responsible for the
 oblivious proxy resource. However, clients need to ensure that they
 construct requests without any information gained from previous
 requests. Otherwise, the server might be able to use that
 information to link requests. Cookies [COOKIES] are the most obvious
 feature that MUST NOT be used by clients. However, clients need to
 include all information learned from requests, which could include
 the identity of resources.

 Clients MUST generate a new HPKE context for every request, using a
 good source of entropy ([RANDOM]) for generating keys. Key reuse not
 only risks requests being linked, reuse could expose request and
 response contents to the proxy.

 The request the client sends to the oblivious proxy resource only
 requires minimal information; see Section 6. The request that
 carries the encapsulated request and is sent to the oblivious proxy
 resource MUST NOT include identifying information unless the client
 ensures that this information is removed by the proxy. A client MAY
 include information only for the oblivious proxy resource in header
 fields identified by the Connection header field if it trusts the
 proxy to remove these as required by Section 7.6.1 of [HTTP]. The
 client needs to trust that the proxy does not replicate the source
 addressing information in the request it forwards.

 Clients rely on the oblivious proxy resource to forward encapsulated
 requests and responses. However, the proxy can only refuse to
 forward messages, it cannot inspect or modify the contents of
 encapsulated requests or responses.

8.2. Proxy Responsibilities

 The proxy that serves the oblivious proxy resource has a very simple
 function to perform. For each request it receives, it makes a
 request of the oblivious request resource that includes the same
 content. When it receives a response, it sends a response to the
 client that includes the content of the response from the oblivious
 request resource. When generating a request, the proxy MUST follow
 the forwarding rules in Section 7.6 of [HTTP].

 A proxy can also generate responses, though it assumed to not be able
 to examine the content of a request (other than to observe the choice
 of key identifier, KDF, and AEAD), so it is also assumed that it
 cannot generate an encapsulated response.

Thomson & Wood Expires 25 February 2022 [Page 19]

Internet-Draft Oblivious HTTP August 2021

 A proxy MUST NOT add information about the client identity when
 forwarding requests. This includes the Via field, the Forwarded
 field [FORWARDED], and any similar information. A client does not
 depend on the proxy using an authenticated and encrypted connection
 to the oblivious request resource, only that information about the
 client not be attached to forwarded requests.

8.2.1. Denial of Service

 As there are privacy benefits from having a large rate of requests
 forwarded by the same proxy (see Section 8.2.2), servers that operate
 the oblivious request resource might need an arrangement with
 proxies. This arrangement might be necessary to prevent having the
 large volume of requests being classified as an attack by the server.

 If a server accepts a larger volume of requests from a proxy, it
 needs to trust that the proxy does not allow abusive levels of
 request volumes from clients. That is, if a server allows requests
 from the proxy to be exempt from rate limits, the server might want
 to ensure that the proxy applies a rate limiting policy that is
 acceptable to the server.

 Servers that enter into an agreement with a proxy that enables a
 higher request rate might choose to authenticate the proxy to enable
 the higher rate.

8.2.2. Linkability Through Traffic Analysis

 As the time at which encapsulated request or response messages are
 sent can reveal information to a network observer. Though messages
 exchanged between the oblivious proxy resource and the oblivious
 request resource might be sent in a single connection, traffic
 analysis could be used to match messages that are forwarded by the
 proxy.

 A proxy could, as part of its function, add delays in order to
 increase the anonymity set into which each message is attributed.
 This could latency to the overall time clients take to receive a
 response, which might not be what some clients want.

 A proxy can use padding to reduce the effectiveness of traffic
 analysis.

 A proxy that forwards large volumes of exchanges can provide better
 privacy by providing larger sets of messages that need to be matched.

Thomson & Wood Expires 25 February 2022 [Page 20]

Internet-Draft Oblivious HTTP August 2021

8.3. Server Responsibilities

 A server that operates both oblivious request and oblivious target
 resources is responsible for removing request encapsulation,
 generating a response the encapsulated request, and encapsulating the
 response.

 Servers should account for traffic analysis based on response size or
 generation time. Techniques such as padding or timing delays can
 help protect against such attacks; see Section 8.2.2.

 If separate entities provide the oblivious request resource and
 oblivious target resource, these entities might need an arrangement
 similar to that between server and proxy for managing denial of
 service; see Section 8.2.1. It is also necessary to provide
 confidentiality protection for the unprotected requests and
 responses, plus protections for traffic analysis; see Section 8.2.2.

 An oblivious request resource needs to have a plan for replacing
 keys. This might include regular replacement of keys, which can be
 assigned new key identifiers. If an oblivious request resource
 receives a request that contains a key identifier that it does not
 understand or that corresponds to a key that has been replaced, the
 server can respond with an HTTP 422 (Unprocessable Content) status
 code.

 A server can also use a 422 status code if the server has a key that
 corresponds to the key identifier, but the encapsulated request
 cannot be successfully decrypted using the key.

8.4. Replay Attacks

 Encapsulated requests can be copied and replayed by the oblivious
 proxy resource. The design of oblivious HTTP does not assume that
 the oblivious proxy resource will not replay requests. In addition,
 if a client sends an encapsulated request in TLS early data (see
 Section 8 of [TLS] and [RFC8470]), a network-based adversary might be
 able to cause the request to be replayed. In both cases, the effect
 of a replay attack and the mitigations that might be employed are
 similar to TLS early data.

Thomson & Wood Expires 25 February 2022 [Page 21]

Internet-Draft Oblivious HTTP August 2021

 A client or oblivious proxy resource MUST NOT automatically attempt
 to retry a failed request unless it receives a positive signal
 indicating that the request was not processed or forwarded. The
 HTTP/2 REFUSED_STREAM error code (Section 8.1.4 of [RFC7540]), the
 HTTP/3 H3_REQUEST_REJECTED error code (Section 8.1 of [QUIC-HTTP]),
 or a GOAWAY frame with a low enough identifier (in either protocol
 version) are all sufficient signals that no processing occurred.
 Connection failures or interruptions are not sufficient signals that
 no processing occurred.

 The anti-replay mechanisms described in Section 8 of [TLS] are
 generally applicable to oblivious HTTP requests. Servers can use the
 encapsulated keying material as a unique key for identifying
 potential replays. This depends on clients generating a new HPKE
 context for every request.

 The mechanism used in TLS for managing differences in client and
 server clocks cannot be used as it depends on being able to observe
 previous interactions. Oblivious HTTP explicitly prevents such
 linkability. Applications can still include an explicit indication
 of time to limit the span of time over which a server might need to
 track accepted requests. Clock information could be used for client
 identification, so reduction in precision or obfuscation might be
 necessary.

 The considerations in [RFC8470] as they relate to managing the risk
 of replay also apply, though there is no option to delay the
 processing of a request.

 Limiting requests to those with safe methods might not be
 satisfactory for some applications, particularly those that involve
 the submission of data to a server. The use of idempotent methods
 might be of some use in managing replay risk, though it is important
 to recognize that different idempotent requests can be combined to be
 not idempotent.

 Idempotent actions with a narrow scope based on the value of a
 protected nonce could enable data submission with limited replay
 exposure. A nonce might be added as an explicit part of a request,
 or, if the oblivious request and target resources are co-located, the
 encapsulated keying material can be used to produce a nonce.

 The server-chosen "response_nonce" field ensures that responses have
 unique AEAD keys and nonces even when requests are replayed.

Thomson & Wood Expires 25 February 2022 [Page 22]

Internet-Draft Oblivious HTTP August 2021

8.5. Post-Compromise Security

 This design does not provide post-compromise security for responses.
 A client only needs to retain keying material that might be used
 compromise the confidentiality and integrity of a response until that
 response is consumed, so there is negligible risk associated with a
 client compromise.

 A server retains a secret key that might be used to remove protection
 from messages over much longer periods. A server compromise that
 provided access to the oblivious request resource secret key could
 allow an attacker to recover the plaintext of all requests sent
 toward affected keys and all of the responses that were generated.
 Accessing requests and responses also requires access to requests and
 responses, which implies either compromise of TLS connections or
 collusion with the oblivious proxy resource.

 The total number of affected messages affected by server key
 compromise can be limited by regular rotation of server keys.

9. Privacy Considerations

 One goal of this design is that independent client requests are only
 linkable by the chosen key configuration. The oblivious proxy and
 request resources can link requests using the same key configuration
 by matching KeyConfig.key_id, or, if the oblivious target resource is
 willing to use trial decryption, a limited set of key configurations
 that share an identifier. An oblivious proxy can link requests using
 the public key corresponding to KeyConfig.key_id.

 Request resources are capable of linking requests depending on how
 KeyConfigs are produced by servers and discovered by clients.
 Specifically, servers can maliciously construct key configurations to
 track individual clients. A specific method for a client to acquire
 key configurations is not included in this specification. Clients
 need to consider these tracking vectors when choosing a discovery
 method. Applications using this design should provide accommodations
 to mitigate tracking use key configurations.

10. Operational and Deployment Considerations

 Using Oblivious HTTP adds both cryptographic and latency to requests
 relative to a simple HTTP request-response exchange. Deploying proxy
 services that are on path between clients and servers avoids adding
 significant additional delay due to network topology. A study of a
 similar system [ODoH] found that deploying proxies close to servers
 was most effective in minimizing additional latency.

Thomson & Wood Expires 25 February 2022 [Page 23]

Internet-Draft Oblivious HTTP August 2021

 Oblivious HTTP might be incompatible with network interception
 regimes, such as those that rely on configuring clients with trust
 anchors and intercepting TLS connections. While TLS might be
 intercepted successfully, interception middleboxes devices might not
 receive updates that would allow Oblivious HTTP to be correctly
 identified using the media types defined in Section 7.

 Oblivious HTTP has a simple key management design that is not
 trivially altered to enable interception by intermediaries. Clients
 that are configured to enable interception might choose to disable
 Oblivious HTTP in order to ensure that content is accessible to
 middleboxes.

11. IANA Considerations

 Please update the "Media Types" registry at
 https://www.iana.org/assignments/media-types
 (https://www.iana.org/assignments/media-types) with the registration
 information in Section 7 for the media types "message/ohttp-req",
 "message/ohttp-res", and "application/ohttp-keys".

12. References

12.1. Normative References

 [BINARY] Thomson, M., "Binary Representation of HTTP Messages",
 Work in Progress, Internet-Draft, draft-thomson-http-
 binary-message-00, 24 August 2021,
 <https://datatracker.ietf.org/doc/html/draft-thomson-http-
 binary-message-00>.

 [HPKE] Barnes, R. L., Bhargavan, K., Lipp, B., and C. A. Wood,
 "Hybrid Public Key Encryption", Work in Progress,
 Internet-Draft, draft-irtf-cfrg-hpke-11, 2 August 2021,
 <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-
 hpke-11>.

 [HTTP] Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP
 Semantics", Work in Progress, Internet-Draft, draft-ietf-
 httpbis-semantics-18, 18 August 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-
 semantics-18>.

 [QUIC] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9000>.

Thomson & Wood Expires 25 February 2022 [Page 24]

Internet-Draft Oblivious HTTP August 2021

 [QUIC-HTTP]
 Bishop, M., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-
 quic-http-34, 2 February 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 http-34>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/rfc/rfc7540>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8470] Thomson, M., Nottingham, M., and W. Tarreau, "Using Early
 Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, September
 2018, <https://www.rfc-editor.org/rfc/rfc8470>.

 [TLS] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

12.2. Informative References

 [ALT-SVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/rfc/rfc7838>.

 [COOKIES] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/rfc/rfc6265>.

 [Dingledine2004]
 Dingledine, R., Mathewson, N., and P. Syverson, "Tor: The
 Second-Generation Onion Router", August 2004,
 <https://svn.torproject.org/svn/projects/design-paper/tor-
 design.html>.

Thomson & Wood Expires 25 February 2022 [Page 25]

Internet-Draft Oblivious HTTP August 2021

 [FORWARDED]
 Petersson, A. and M. Nilsson, "Forwarded HTTP Extension",
 RFC 7239, DOI 10.17487/RFC7239, June 2014,
 <https://www.rfc-editor.org/rfc/rfc7239>.

 [ODoH] Singanamalla, S., Chunhapanya, S., Vavrusa, M., Verma, T.,
 Wu, P., Fayed, M., Heimerl, K., Sullivan, N., and C. A.
 Wood, "Oblivious DNS over HTTPS (ODoH): A Practical
 Privacy Enhancement to DNS", 7 January 2021,
 <https://www.petsymposium.org/2021/files/papers/issue4/
 popets-2021-0085.pdf>.

 [ODOH] Kinnear, E., McManus, P., Pauly, T., Verma, T., and C. A.
 Wood, "Oblivious DNS Over HTTPS", Work in Progress,
 Internet-Draft, draft-pauly-dprive-oblivious-doh-06, 8
 March 2021, <https://datatracker.ietf.org/doc/html/draft-
 pauly-dprive-oblivious-doh-06>.

 [OHTTP-ANALYSIS]
 Hoyland, J., "Tamarin Model of Oblivious HTTP", 23 August
 2021, <https://github.com/cloudflare/ohttp-analysis>.

 [PRIO] Corrigan-Gibbs, H. and D. Boneh, "Prio: Private, Robust,
 and Scalable Computation of Aggregate Statistics", 14
 March 2017, <https://crypto.stanford.edu/prio/paper.pdf>.

 [RANDOM] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/rfc/rfc4086>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/rfc/rfc6265>.

 [RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/rfc/rfc7838>.

 [X25519] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/rfc/rfc7748>.

Thomson & Wood Expires 25 February 2022 [Page 26]

Internet-Draft Oblivious HTTP August 2021

Appendix A. Complete Example of a Request and Response

 A single request and response exchange is shown here. Binary values
 (key configuration, secret keys, the content of messages, and
 intermediate values) are shown in hexadecimal. The request and
 response here are absolutely minimal; the purpose of this example is
 to show the cryptographic operations.

 The oblivious request resource generates a key pair. In this example
 the server chooses DHKEM(X25519, HKDF-SHA256) and generates an X25519
 key pair [X25519]. The X25519 secret key is:

 cb14d538a70d8a74d47fb7e3ac5052a086da127c678d3585dcad72f98e3bff83

 The oblivious request resource constructs a key configuration that
 includes the corresponding public key as follows:

 01002012a45279412ea6ef11e9f839bb5a422fc1262b5c023d787e4e636e70ae
 d3d56e00080001000100010003

 This key configuration is somehow obtained by the client. Then when
 a client wishes to send an HTTP request of a GET request to
 "https://example.com", it constructs the following binary HTTP
 message:

 00034745540568747470730b6578616d706c652e636f6d012f

 The client then reads the oblivious request resource key
 configuration and selects a mutually supported KDF and AEAD. In this
 example, the client selects HKDF-SHA256 and AES-128-GCM. The client
 then generates an HPKE context that uses the server public key. This
 results in the following encapsulated key:

 cd7786fd75143f12e03398dbe2bcfa8e01a8132e7b66050674db72730623ca3b

 The corresponding private key is:

 c20afd33a2f2663faf023acf5d56fc08fddd38aada29b21b3b96e16f4326ccf7

 Applying the Seal operation from the HPKE context produces an
 encrypted message, allowing the client to construct the following
 encapsulated request:

 01002000010001cd7786fd75143f12e03398dbe2bcfa8e01a8132e7b66050674
 db72730623ca3b68b9e75a0576745da12c4fa5053b7ec06d7f625197564a6087
 ec299f8d6fffa2a8addfc1c0f64b4b05

Thomson & Wood Expires 25 February 2022 [Page 27]

Internet-Draft Oblivious HTTP August 2021

 The client then sends this to the oblivious proxy resource in a POST
 request, which might look like the following HTTP/1.1 request:

 POST /request.example.net/proxy HTTP/1.1
 Host: proxy.example.org
 Content-Type: message/ohttp-req
 Content-Length: 78

 <content is the encapsulated request above>

 The oblivious proxy resource receives this request and forwards it to
 the oblivious request resource, which might look like:

 POST /oblivious/request HTTP/1.1
 Host: example.com
 Content-Type: message/ohttp-req
 Content-Length: 78

 <content is the encapsulated request above>

 The oblivous request resource receives this request, selects the key
 it generated previously using the key identifier from the message,
 and decrypts the message. As this request is directed to the same
 server, the oblivious request resource does not need to initiate an
 HTTP request to the oblivious target resource. The request can be
 served directly by the oblivious target resource, which generates a
 minimal response (consisting of just a 200 status code) as follows:

 0140c8

 The response is constructed by extracting a secret from the HPKE
 context:

 9c0b96b577b9fc7a5beef536e0ff3a64

 The key derivation for the encapsulated response uses both the
 encapsulated KEM key from the request and a randomly selected nonce.
 This produces a salt of:

 cd7786fd75143f12e03398dbe2bcfa8e01a8132e7b66050674db72730623ca3b
 061d62d5df5832c6c9fa4617ceb848a7

 The salt and secret are both passed to the Extract function of the
 selected KDF (HKDF-SHA256) to produce a pseudorandom key of:

 a0ab55d3b1811694943bb72c386f59bd030e1278692a3db2f30d8aac2f89a5fc

Thomson & Wood Expires 25 February 2022 [Page 28]

Internet-Draft Oblivious HTTP August 2021

 The pseudorandom key is used with the Expand function of the KDF and
 an info field of "key" to produce a 16-byte key for the selected AEAD
 (AES-128-GCM):

 1dae9d7fe263d23e51a768bcaf310aa5

 With the same KDF and pseudorandom key, an info field of "nonce" is
 used to generate a 12-byte nonce:

 e520beec147740e4f8a3b553

 The AEAD Seal function is then used to encrypt the response, which is
 added to the randomized nonce value to produce the encapsulated
 response:

 061d62d5df5832c6c9fa4617ceb848a7a6f694da45accc3c32ad576cb204f7cd
 3bf23e

 The oblivious request resource then constructs a response:

 HTTP/1.1 200 OK
 Date: Wed, 27 Jan 2021 04:45:07 GMT
 Cache-Control: private, no-store
 Content-Type: message/ohttp-res
 Content-Length: 38

 <content is the encapsulated response>

 The same response might then be generated by the oblivious proxy
 resource which might change as little as the Date header. The client
 is then able to use the HPKE context it created and the nonce from
 the encapsulated response to construct the AEAD key and nonce and
 decrypt the response.

Acknowledgments

 This design is based on a design for oblivious DoH, described in
 [ODOH]. David Benjamin and Eric Rescorla made technical
 contributions.

Authors’ Addresses

 Martin Thomson
 Mozilla

 Email: mt@lowentropy.net

Thomson & Wood Expires 25 February 2022 [Page 29]

Internet-Draft Oblivious HTTP August 2021

 Christopher A. Wood
 Cloudflare

 Email: caw@heapingbits.net

Thomson & Wood Expires 25 February 2022 [Page 30]

