
SUIT B. Moran
Internet-Draft Arm Limited
Intended status: Standards Track H. Tschofenig
Expires: 8 August 2024
 H. Birkholz
 Fraunhofer SIT
 K. Zandberg
 Inria
 Ø. Rønningstad
 Nordic Semiconductor
 5 February 2024

A Concise Binary Object Representation (CBOR)-based Serialization Format
 for the Software Updates for Internet of Things (SUIT) Manifest
 draft-ietf-suit-manifest-25

Abstract

 This specification describes the format of a manifest. A manifest is
 a bundle of metadata about code/data obtained by a recipient (chiefly
 the firmware for an IoT device), where to find the code/data, the
 devices to which it applies, and cryptographic information protecting
 the manifest. Software updates and Trusted Invocation both tend to
 use sequences of common operations, so the manifest encodes those
 sequences of operations, rather than declaring the metadata.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 8 August 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Moran, et al. Expires 8 August 2024 [Page 1]

Internet-Draft CBOR-based SUIT Manifest February 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 2. Conventions and Terminology 6
 3. How to use this Document 8
 4. Background . 9
 4.1. IoT Firmware Update Constraints 9
 4.2. SUIT Workflow Model 10
 5. Metadata Structure Overview 11
 5.1. Envelope . 12
 5.2. Authentication Block 12
 5.3. Manifest . 13
 5.3.1. Critical Metadata 13
 5.3.2. Common . 13
 5.3.3. Command Sequences 13
 5.3.4. Integrity Check Values 14
 5.3.5. Human-Readable Text 14
 5.4. Severable Elements 14
 5.5. Integrated Payloads 15
 6. Manifest Processor Behavior 15
 6.1. Manifest Processor Setup 15
 6.2. Required Checks . 17
 6.3. Interpreter Fundamental Properties 18
 6.3.1. Resilience to Disruption 18
 6.4. Abstract Machine Description 19
 6.5. Special Cases of Component Index 21
 6.6. Serialized Processing Interpreter 22
 6.7. Parallel Processing Interpreter 23
 7. Creating Manifests . 24
 7.1. Compatibility Check Template 25
 7.2. Trusted Invocation Template 25
 7.3. Component Download Template 26
 7.4. Install Template . 26
 7.5. Integrated Payload Template 27
 7.6. Load from Nonvolatile Storage Template 27
 7.7. A/B Image Template 27
 8. Metadata Structure . 29
 8.1. Encoding Considerations 29
 8.2. Envelope . 30

Moran, et al. Expires 8 August 2024 [Page 2]

Internet-Draft CBOR-based SUIT Manifest February 2024

 8.3. Authenticated Manifests 30
 8.4. Manifest . 31
 8.4.1. suit-manifest-version 32
 8.4.2. suit-manifest-sequence-number 32
 8.4.3. suit-reference-uri 32
 8.4.4. suit-text . 32
 8.4.5. suit-common . 34
 8.4.6. SUIT_Command_Sequence 35
 8.4.7. Reporting Policy 37
 8.4.8. SUIT_Parameters 38
 8.4.9. SUIT_Condition 46
 8.4.10. SUIT_Directive 49
 8.4.11. suit-command-custom 54
 8.4.12. Integrity Check Values 54
 8.5. Severable Elements 54
 9. Access Control Lists . 55
 10. SUIT Digest Container . 56
 11. IANA Considerations . 56
 11.1. SUIT Envelope Elements 56
 11.2. SUIT Manifest Elements 57
 11.3. SUIT Common Elements 58
 11.4. SUIT Commands . 58
 11.5. SUIT Parameters . 60
 11.6. SUIT Text Values . 61
 11.7. SUIT Component Text Values 62
 11.8. Expert Review Instructions 63
 11.9. Media Type Registration 64
 12. Security Considerations 66
 13. Acknowledgements . 68
 14. References . 69
 14.1. Normative References 69
 14.2. Informative References 70
 Appendix A. A. Full CDDL 71
 Appendix B. B. Examples . 77
 B.1. Example 0: Secure Boot 79
 B.2. Example 1: Simultaneous Download and Installation of
 Payload . 81
 B.3. Example 2: Simultaneous Download, Installation, Secure
 Boot, Severed Fields 83
 B.4. Example 3: A/B images 86
 B.5. Example 4: Load from External Storage 89
 B.6. Example 5: Two Images 92
 Appendix C. C. Design Rational 95
 C.1. C.1 Design Rationale: Envelope 96
 C.2. C.2 Byte String Wrappers 97
 Appendix D. D. Implementation Conformance Matrix 98
 Authors’ Addresses . 100

Moran, et al. Expires 8 August 2024 [Page 3]

Internet-Draft CBOR-based SUIT Manifest February 2024

1. Introduction

 A firmware update mechanism is an essential security feature for IoT
 devices to deal with vulnerabilities. The transport of firmware
 images to the devices themselves is important security aspect.
 Luckily, there are already various device management solutions
 available offering the distribution of firmware images to IoT
 devices. Equally important is the inclusion of metadata about the
 conveyed firmware image (in the form of a manifest) and the use of a
 security wrapper to provide end-to-end security protection to detect
 modifications and (optionally) to make reverse engineering more
 difficult. Firmware signing allows the author, who builds the
 firmware image, to be sure that no other party (including potential
 adversaries) can install firmware updates on IoT devices without
 adequate privileges. For confidentiality protected firmware images
 it is additionally required to encrypt the firmware image and to
 distribute the content encryption key securely. The support for
 firmware and payload encryption via the SUIT manifest format is
 described in a companion document
 [I-D.ietf-suit-firmware-encryption]. Starting security protection at
 the author is a risk mitigation technique so firmware images and
 manifests can be stored on untrusted repositories; it also reduces
 the scope of a compromise of any repository or intermediate system to
 be no worse than a denial of service.

 A manifest is a bundle of metadata about the firmware for an IoT
 device, where to find the firmware, and the devices to which it
 applies.

 This specification defines the SUIT manifest format and it is
 intended to meet several goals:

 * Meet the requirements defined in [RFC9124].

 * Simple to parse on a constrained node.

 * Simple to process on a constrained node.

 * Compact encoding.

 * Comprehensible by an intermediate system.

 * Expressive enough to enable advanced use cases on advanced nodes.

 * Extensible.

 The SUIT manifest can be used for a variety of purposes throughout
 its lifecycle, such as:

Moran, et al. Expires 8 August 2024 [Page 4]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * a Network Operator to reason about compatibility of a firmware,
 such as timing and acceptance of firmware updates.

 * a Device Operator to reason about the impact of a firmware.

 * a device to reason about the authority & authenticity of a
 firmware prior to installation.

 * a device to reason about the applicability of a firmware.

 * a device to reason about the installation of a firmware.

 * a device to reason about the authenticity & encoding of a firmware
 at boot.

 Each of these uses happens at a different stage of the manifest
 lifecycle, so each has different requirements.

 It is assumed that the reader is familiar with the high-level
 firmware update architecture [RFC9019] and the threats, requirements,
 and user stories in [RFC9124].

 The design of this specification is based on an observation that the
 vast majority of operations that a device can perform during an
 update or Trusted Invocation are composed of a small group of
 operations:

 * Copy some data from one place to another

 * Transform some data

 * Digest some data and compare to an expected value

 * Compare some system parameters to an expected value

 * Run some code

 In this document, these operations are called commands. Commands are
 classed as either conditions or directives. Conditions have no side-
 effects, while directives do have side-effects. Conceptually, a
 sequence of commands is like a script but the language is tailored to
 software updates and Trusted Invocation.

 The available commands support simple steps, such as copying a
 firmware image from one place to another, checking that a firmware
 image is correct, verifying that the specified firmware is the
 correct firmware for the device, or unpacking a firmware. By using
 these steps in different orders and changing the parameters they use,

Moran, et al. Expires 8 August 2024 [Page 5]

Internet-Draft CBOR-based SUIT Manifest February 2024

 a broad range of use cases can be supported. The SUIT manifest uses
 this observation to optimize metadata for consumption by constrained
 devices.

 While the SUIT manifest is informed by and optimized for firmware
 update and Trusted Invocation use cases, there is nothing in the SUIT
 Information Model [RFC9124] that restricts its use to only those use
 cases. Other use cases include the management of trusted
 applications (TAs) in a Trusted Execution Environment (TEE), as
 discussed in [RFC9397].

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Additionally, the following terminology is used throughout this
 document:

 * SUIT: Software Update for the Internet of Things, also the IETF
 working group for this standard.

 * Payload: A piece of information to be delivered. Typically
 Firmware for the purposes of SUIT.

 * Resource: A piece of information that is used to construct a
 payload.

 * Manifest: A manifest is a bundle of metadata about the firmware
 for an IoT device, where to find the firmware, and the devices to
 which it applies.

 * Envelope: A container with the manifest, an authentication wrapper
 with cryptographic information protecting the manifest,
 authorization information, and severable elements. Severable
 elements can be removed from the manifest without impacting its
 security, see Section 8.5.

 * Update: One or more manifests that describe one or more payloads.

 * Update Authority: The owner of a cryptographic key used to sign
 updates, trusted by Recipients.

 * Recipient: The system, typically an IoT device, that receives and
 processes a manifest.

Moran, et al. Expires 8 August 2024 [Page 6]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * Manifest Processor: A component of the Recipient that consumes
 Manifests and executes the commands in the Manifest.

 * Component: An updatable logical block of the Firmware, Software,
 configuration, or data of the Recipient.

 * Component Set: A group of interdependent Components that must be
 updated simultaneously.

 * Command: A Condition or a Directive.

 * Condition: A test for a property of the Recipient or its
 Components.

 * Directive: An action for the Recipient to perform.

 * Trusted Invocation: A process by which a system ensures that only
 trusted code is executed, for example secure boot or launching a
 Trusted Application.

 * A/B images: Dividing a Recipient’s storage into two or more
 bootable images, at different offsets, such that the active image
 can write to the inactive image(s).

 * Record: The result of a Command and any metadata about it.

 * Report: A list of Records.

 * Procedure: The process of invoking one or more sequences of
 commands.

 * Update Procedure: A procedure that updates a Recipient by fetching
 dependencies and images, and installing them.

 * Invocation Procedure: A procedure in which a Recipient verifies
 dependencies and images, loading images, and invokes one or more
 image.

 * Software: Instructions and data that allow a Recipient to perform
 a useful function.

 * Firmware: Software that is typically changed infrequently, stored
 in nonvolatile memory, and small enough to apply to [RFC7228]
 Class 0-2 devices.

 * Image: Information that a Recipient uses to perform its function,
 typically firmware/software, configuration, or resource data such
 as text or images. Also, a Payload, once installed is an Image.

Moran, et al. Expires 8 August 2024 [Page 7]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * Slot: One of several possible storage locations for a given
 Component, typically used in A/B image systems

 * Abort: An event in which the Manifest Processor immediately halts
 execution of the current Procedure. It creates a Record of an
 error condition.

3. How to use this Document

 This specification covers five aspects of firmware update:

 * Section 4 describes the device constraints, use cases, and design
 principles that informed the structure of the manifest.

 * Section 5 gives a general overview of the metadata structure to
 inform the following sections

 * Section 6 describes what actions a Manifest processor should take.

 * Section 7 describes the process of creating a Manifest.

 * Section 8 specifies the content of the Envelope and the Manifest.

 To implement an updatable device, see Section 6 and Section 8. To
 implement a tool that generates updates, see Section 7 and Section 8.

 The IANA consideration section, see Section 11, provides instructions
 to IANA to create several registries. This section also provides the
 CBOR labels for the structures defined in this document.

 The complete CDDL description is provided in Appendix A, examples are
 given in Appendix B and a design rational is offered in Appendix C.
 Finally, Appendix D gives a summarize of the mandatory-to-implement
 features of this specification.

 Additional specifications describe functionality of advanced use
 cases, such as:

 * Firmware Encryption is covered in
 [I-D.ietf-suit-firmware-encryption]

 * Update Management is covered in [I-D.ietf-suit-update-management]

 * Features, such as dependencies, key delegation, multiple
 processors, required by the use of multiple trust domains are
 covered in [I-D.ietf-suit-trust-domains]

Moran, et al. Expires 8 August 2024 [Page 8]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * Secure reporting of the update status is covered in
 [I-D.ietf-suit-report]

 A technique to efficiently compress firmware images may be
 standardized in the future.

4. Background

 Distributing software updates to diverse devices with diverse trust
 anchors in a coordinated system presents unique challenges. Devices
 have a broad set of constraints, requiring different metadata to make
 appropriate decisions. There may be many actors in production IoT
 systems, each of whom has some authority. Distributing firmware in
 such a multi-party environment presents additional challenges. Each
 party requires a different subset of data. Some data may not be
 accessible to all parties. Multiple signatures may be required from
 parties with different authorities. This topic is covered in more
 depth in [RFC9019]. The security aspects are described in [RFC9124].

4.1. IoT Firmware Update Constraints

 The various constraints of IoT devices and the range of use cases
 that need to be supported create a broad set of requirements. For
 example, devices with:

 * limited processing power and storage may require a simple
 representation of metadata.

 * bandwidth constraints may require firmware compression or partial
 update support.

 * bootloader complexity constraints may require simple selection
 between two bootable images.

 * small internal storage may require external storage support.

 * multiple microcontrollers may require coordinated update of all
 applications.

 * large storage and complex functionality may require parallel
 update of many software components.

 * extra information may need to be conveyed in the manifest in the
 earlier stages of the device lifecycle before those data items are
 stripped when the manifest is delivered to a constrained device.

Moran, et al. Expires 8 August 2024 [Page 9]

Internet-Draft CBOR-based SUIT Manifest February 2024

 Supporting the requirements introduced by the constraints on IoT
 devices requires the flexibility to represent a diverse set of
 possible metadata, but also requires that the encoding is kept
 simple.

4.2. SUIT Workflow Model

 There are several fundamental assumptions that inform the model of
 Update Procedure workflow:

 * Compatibility must be checked before any other operation is
 performed.

 * In some applications, payloads must be fetched and validated prior
 to installation.

 There are several fundamental assumptions that inform the model of
 the Invocation Procedure workflow:

 * Compatibility must be checked before any other operation is
 performed.

 * All payloads must be validated prior to loading.

 * All loaded images must be validated prior to execution.

 Based on these assumptions, the manifest is structured to work with a
 pull parser, where each section of the manifest is used in sequence.
 The expected workflow for a Recipient installing an update can be
 broken down into five steps:

 1. Verify the signature of the manifest.

 2. Verify the applicability of the manifest.

 3. Fetch payload(s).

 4. Install payload(s).

 5. Verify image(s).

 When installation is complete, similar information can be used for
 validating and invoking images in a further three steps:

 1. Verify image(s).

 2. Load image(s).

Moran, et al. Expires 8 August 2024 [Page 10]

Internet-Draft CBOR-based SUIT Manifest February 2024

 3. Invoke image(s).

 If verification and invocation is implemented in a bootloader, then
 the bootloader MUST also verify the signature of the manifest and the
 applicability of the manifest in order to implement secure boot
 workflows. The bootloader may add its own authentication, e.g. a
 Message Authentication Code (MAC), to the manifest in order to
 prevent further verifications.

5. Metadata Structure Overview

 This section provides a high level overview of the manifest
 structure. The full description of the manifest structure is in
 Section 8.4

 The manifest is structured from several key components:

 1. The Envelope (see Section 5.1) contains the Authentication Block,
 the Manifest, any Severable Elements, and any Integrated
 Payloads.

 2. The Authentication Block (see Section 5.2) contains a list of
 signatures or MACs of the manifest.

 3. The Manifest (see Section 5.3) contains all critical, non-
 severable metadata that the Recipient requires. It is further
 broken down into:

 1. Critical metadata, such as sequence number.

 2. Common metadata, such as affected components.

 3. Command sequences, directing the Recipient how to install and
 use the payload(s).

 4. Integrity check values for severable elements.

 4. Severable elements (see Section 5.4).

 5. Integrated payloads (see Section 5.5).

 The diagram below illustrates the hierarchy of the Envelope.

Moran, et al. Expires 8 August 2024 [Page 11]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +-------------------------+
 | Envelope |
 +-------------------------+
 | Authentication Block |
 | Manifest --------------> +------------------------------+
 | Severable Elements | | Manifest |
 | Integrated Payloads | +------------------------------+
 +-------------------------+ | Structure Version |
 | Sequence Number |
 | Reference to Full Manifest |
 +------ Common Structure |
 | +---- Command Sequences |
 +-------------------------+ | | | Digests of Envelope Elements |
 | Common Structure | <--+ | +------------------------------+
 +-------------------------+ |
 | Components IDs | +-> +-----------------------+
 | Common Command Sequence ---------> | Command Sequence |
 +-------------------------+ +-----------------------+
 | List of (pairs of (|
 | * command code |
 | * argument / |
 | reporting policy |
 |)) |
 +-----------------------+

5.1. Envelope

 The SUIT Envelope is a container that encloses the Authentication
 Block, the Manifest, any Severable Elements, and any integrated
 payloads. The Envelope is used instead of conventional cryptographic
 envelopes, such as COSE_Envelope because it allows modular
 processing, severing of elements, and integrated payloads in a way
 that avoids substantial complexity that would be needed with existing
 solutions. See Appendix C.1 for a description of the reasoning for
 this.

 See Section 8.2 for more detail.

5.2. Authentication Block

 The Authentication Block contains a bstr-wrapped SUIT Digest
 Container, see Section 10, and one or more [RFC9052] CBOR Object
 Signing and Encryption (COSE) authentication blocks. These blocks
 are one of:

 * COSE_Sign_Tagged

 * COSE_Sign1_Tagged

Moran, et al. Expires 8 August 2024 [Page 12]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * COSE_Mac_Tagged

 * COSE_Mac0_Tagged

 Each of these objects is used in detached payload mode. The payload
 is the bstr-wrapped SUIT_Digest.

 See Section 8.3 for more detail.

5.3. Manifest

 The Manifest contains most metadata about one or more images. The
 Manifest is divided into Critical Metadata, Common Metadata, Command
 Sequences, and Integrity Check Values.

 See Section 8.4 for more detail.

5.3.1. Critical Metadata

 Some metadata needs to be accessed before the manifest is processed.
 This metadata can be used to determine which manifest is newest and
 whether the structure version is supported. It also MAY provide a
 URI for obtaining a canonical copy of the manifest and Envelope.

 See Section 8.4.1, Section 8.4.2, and Section 8.4.3 for more detail.

5.3.2. Common

 Some metadata is used repeatedly and in more than one command
 sequence. In order to reduce the size of the manifest, this metadata
 is collected into the Common section. Common is composed of two
 parts: a list of components referenced by the manifest, and a command
 sequence to execute prior to each other command sequence. The common
 command sequence is typically used to set commonly used values and
 perform compatibility checks. The common command sequence MUST NOT
 have any side-effects outside of setting parameter values.

 See Section 8.4.5 for more detail.

5.3.3. Command Sequences

 Command sequences provide the instructions that a Recipient requires
 in order to install or use an image. These sequences tell a device
 to set parameter values, test system parameters, copy data from one
 place to another, transform data, digest data, and run code.

Moran, et al. Expires 8 August 2024 [Page 13]

Internet-Draft CBOR-based SUIT Manifest February 2024

 Command sequences are broken up into three groups: Common Command
 Sequence (see Section 5.3.2), update commands, and secure boot
 commands.

 Update Command Sequences are: Payload Fetch, Payload Installation
 and, System Validation. An Update Procedure is the complete set of
 each Update Command Sequence, each preceded by the Common Command
 Sequence.

 Invocation Command Sequences are: System Validation, Image Loading,
 and Image Invocation. An Invocation Procedure is the complete set of
 each Invocation Command Sequence, each preceded by the Common Command
 Sequence.

 Command Sequences are grouped into these sets to ensure that there is
 common coordination between dependencies and dependents on when to
 execute each command (dependencies are not defined in this
 specification).

 See Section 8.4.6 for more detail.

5.3.4. Integrity Check Values

 To enable severable elements Section 5.4, there needs to be a
 mechanism to verify the integrity of the severed data. While the
 severed data stays outside the manifest, for efficiency reasons,
 Integrity Check Values are used to include the digest of the data in
 the manifest. Note that Integrated Payloads, see {#ovr-integrated},
 are integrity-checked using Command Sequences.

 See Section 8.4.12 for more detail.

5.3.5. Human-Readable Text

 Text is typically a Severable Element (Section 5.4). It contains all
 the text that describes the update. Because text is explicitly for
 human consumption, it is all grouped together so that it can be
 Severed easily. The text section has space both for describing the
 manifest as a whole and for describing each individual component.

 See Section 8.4.4 for more detail.

5.4. Severable Elements

 Severable Elements are elements of the Envelope (Section 5.1) that
 have Integrity Check Values (Section 5.3.4) in the Manifest
 (Section 5.3).

Moran, et al. Expires 8 August 2024 [Page 14]

Internet-Draft CBOR-based SUIT Manifest February 2024

 Because of this organisation, these elements can be discarded or
 "Severed" from the Envelope without changing the signature of the
 Manifest. This allows savings based on the size of the Envelope in
 several scenarios, for example:

 * A management system severs the Text sections before sending an
 Envelope to a constrained Recipient, which saves Recipient
 bandwidth.

 * A Recipient severs the Installation section after installing the
 Update, which saves storage space.

 See Section 8.5 for more detail.

5.5. Integrated Payloads

 In some cases, it is beneficial to include a payload in the Envelope
 of a manifest. For example:

 * When an update is delivered via a comparatively unconstrained
 medium, such as a removable mass storage device, it may be
 beneficial to bundle updates into single files.

 * When a manifest transports a small payload, such as an encrypted
 key, that payload may be placed in the manifest’s envelope.

 See Section 7.5 for more detail.

6. Manifest Processor Behavior

 This section describes the behavior of the manifest processor and
 focuses primarily on interpreting commands in the manifest. However,
 there are several other important behaviors of the manifest
 processor: encoding version detection, rollback protection, and
 authenticity verification are chief among these.

6.1. Manifest Processor Setup

 Prior to executing any command sequence, the manifest processor or
 its host application MUST inspect the manifest version field and fail
 when it encounters an unsupported encoding version. Next, the
 manifest processor or its host application MUST extract the manifest
 sequence number and perform a rollback check using this sequence
 number. The exact logic of rollback protection may vary by
 application, but it has the following properties:

 * Whenever the manifest processor can choose between several
 manifests, it MUST select the latest valid, authentic manifest.

Moran, et al. Expires 8 August 2024 [Page 15]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * If the latest valid, authentic manifest fails, it MAY select the
 next latest valid, authentic manifest, according to application-
 specific policy.

 Here, valid means that a manifest has a supported encoding version
 and it has not been excluded for other reasons. Reasons for
 excluding typically involve first executing the manifest and may
 include:

 * Test failed (e.g. Vendor ID/Class ID).

 * Unsupported command encountered.

 * Unsupported parameter encountered.

 * Unsupported Component Identifier encountered.

 * Payload not available.

 * Application crashed when executed.

 * Watchdog timeout occurred.

 * Payload verification failed.

 * Missing required component from a Component Set.

 * Required parameter not supplied.

 These failure reasons MAY be combined with retry mechanisms prior to
 marking a manifest as invalid.

 Selecting an older manifest in the event of failure of the latest
 valid manifest is one possible strategy to provide robustness of the
 firmware update process. It may not be appropriate for all
 applications. In particular Trusted Execution Environments MAY
 require a failure to invoke a new installation, rather than a
 rollback approach. See [RFC9124], Section 4.2.1 for more discussion
 on the security considerations that apply to rollback.

 Following these initial tests, the manifest processor clears all
 parameter storage. This ensures that the manifest processor begins
 without any leaked data.

Moran, et al. Expires 8 August 2024 [Page 16]

Internet-Draft CBOR-based SUIT Manifest February 2024

6.2. Required Checks

 The RECOMMENDED process is to verify the signature of the manifest
 prior to parsing/executing any section of the manifest. This guards
 the parser against arbitrary input by unauthenticated third parties,
 but it costs extra energy when a Recipient receives an incompatible
 manifest.

 When validating authenticity of manifests, the manifest processor MAY
 use an ACL (see Section 9) to determine the extent of the rights
 conferred by that authenticity.

 Once a valid, authentic manifest has been selected, the manifest
 processor MUST examine the component list and check that the number
 of components listed in the manifest is not larger than the number in
 the target system.

 For each listed component, the manifest processor MUST provide
 storage for the supported parameters. If the manifest processor does
 not have sufficient temporary storage to process the parameters for
 all components, it MAY process components serially for each command
 sequence. See Section 6.6 for more details.

 The manifest processor SHOULD check that the shared sequence contains
 at least Check Vendor Identifier command and at least one Check Class
 Identifier command.

 Because the shared sequence contains Check Vendor Identifier and
 Check Class Identifier command(s), no custom commands are permitted
 in the shared sequence. This ensures that any custom commands are
 only executed by devices that understand them.

 If the manifest contains more than one component, each command
 sequence MUST begin with a Set Component Index Section 8.4.10.1.

 If a Recipient supports groups of interdependent components (a
 Component Set), then it SHOULD verify that all Components in the
 Component Set are specified by one update, that is:

 1. the manifest Author has sufficient permissions for the requested
 operations (see Section 9) and

 2. the manifest specifies a digest and a payload for every Component
 in the Component Set.

Moran, et al. Expires 8 August 2024 [Page 17]

Internet-Draft CBOR-based SUIT Manifest February 2024

6.3. Interpreter Fundamental Properties

 The interpreter has a small set of design goals:

 1. Executing an update MUST either result in an error, or a correct
 system state that can be checked against known digests.

 2. Executing a Trusted Invocation MUST either result in an error, or
 an invoked image.

 3. Executing the same manifest on multiple Recipients MUST result in
 the same system state.

 NOTE: when using A/B images, the manifest functions as two (or more)
 logical manifests, each of which applies to a system in a particular
 starting state. With that provision, design goal 3 holds.

6.3.1. Resilience to Disruption

 As required in Section 3 of [RFC9019] and as an extension of design
 goal 1, devices must remain operable after a disruption, such as a
 power failure or network interruption, interrupts the update process.

 The manifest processor must be resilient to these faults. In order
 to enable this resilience, systems implementing the manifest
 processor MUST make the following guarantees:

 One of: 1. A fallback/recovery image is provided so that a disrupted
 system can apply the SUIT Manifest again. 2. Manifest Authors MUST
 construct Manifests in such a way that repeated partial invocations
 of any Manifest always results in a correct system state. Typically
 this is done by using Try-Each and Conditions to bypass operations
 that have already been completed. 3. A journal of manifest
 operations is stored in nonvolatile memory. The journal enables the
 parser to re-create the state just prior to the disruption. This
 journal can, for example, be a SUIT Report or a journaling file
 system.

 AND

 1. Where a command is not repeatable because of the way in which it
 alters system state (e.g. swapping images or in-place delta) it
 MUST be resumable or revertible. This applies to commands that
 modify at least one source component as well as the destination
 component.

Moran, et al. Expires 8 August 2024 [Page 18]

Internet-Draft CBOR-based SUIT Manifest February 2024

6.4. Abstract Machine Description

 The heart of the manifest is the list of commands, which are
 processed by a Manifest Processor -- a form of interpreter. This
 Manifest Processor can be modeled as a simple abstract machine. This
 machine consists of several data storage locations that are modified
 by commands.

 There are two types of commands, namely those that modify state
 (directives) and those that perform tests (conditions). Parameters
 are used as the inputs to commands. Some directives offer control
 flow operations. Directives target a specific component. A
 component is a unit of code or data that can be targeted by an
 update. Components are identified by Component Identifiers, but
 referenced in commands by Component Index; Component Identifiers are
 arrays of binary strings and a Component Index is an index into the
 array of Component Identifiers.

 Conditions MUST NOT have any side-effects other than informing the
 interpreter of success or failure. The Interpreter does not Abort if
 the Soft Failure flag (Section 8.4.8.15) is set when a Condition
 reports failure.

 Directives MAY have side-effects in the parameter table, the
 interpreter state, or the current component. The Interpreter MUST
 Abort if a Directive reports failure regardless of the Soft Failure
 flag.

 To simplify the logic describing the command semantics, the object
 "current" is used. It represents the component identified by the
 Component Index:

 current := components[component-index]

 As a result, Set Component Index is described as current :=
 components[arg].

 The following table describes the semantics of each operation. The
 pseudo-code semantics are inspired by the Python programming
 language.

Moran, et al. Expires 8 August 2024 [Page 19]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +=======================+=======================================+
 | pseudo-code operation | Semantics |
 +=======================+=======================================+
 | assert(test) | When test is false, causes an error |
 | | return |
 +-----------------------+---------------------------------------+
 | store(dest, source) | Writes source into dest |
 +-----------------------+---------------------------------------+
 | statement0 for-each e | Performs statement0 once for each |
 | in l else statement1 | element in iterable l; performs |
 | | statement1 if no break is encountered |
 +-----------------------+---------------------------------------+
 | break | halt a for-each loop |
 +-----------------------+---------------------------------------+
 | now() | return the current UTC time |
 +-----------------------+---------------------------------------+
 | statement if test | performs statement if test is true |
 +-----------------------+---------------------------------------+

 Table 1

 The following table describes the behavior of each command. "params"
 represents the parameters for the current component. Most commands
 operate on a component.

 +=========================+======================================+
 | Command Name | Semantic of the Operation |
 +=========================+======================================+
 | Check Vendor Identifier | assert(binary-match(current, |
 | | current.params[vendor-id])) |
 +-------------------------+--------------------------------------+
 | Check Class Identifier | assert(binary-match(current, |
 | | current.params[class-id])) |
 +-------------------------+--------------------------------------+
 | Verify Image | assert(binary-match(digest(current), |
 | | current.params[digest])) |
 +-------------------------+--------------------------------------+
 | Check Content | assert(binary-match(current, |
 | | current.params[content])) |
 +-------------------------+--------------------------------------+
 | Set Component Index | current := components[arg] |
 +-------------------------+--------------------------------------+
 | Override Parameters | current.params[k] := v for-each k,v |
 | | in arg |
 +-------------------------+--------------------------------------+
 | Invoke | invoke(current) |
 +-------------------------+--------------------------------------+
 | Fetch | store(current, |

Moran, et al. Expires 8 August 2024 [Page 20]

Internet-Draft CBOR-based SUIT Manifest February 2024

 | | fetch(current.params[uri])) |
 +-------------------------+--------------------------------------+
 | Write | store(current, |
 | | current.params[content]) |
 +-------------------------+--------------------------------------+
 | Use Before | assert(now() < arg) |
 +-------------------------+--------------------------------------+
 | Check Component Slot | assert(current.slot-index == arg) |
 +-------------------------+--------------------------------------+
 | Check Device Identifier | assert(binary-match(current, |
 | | current.params[device-id])) |
 +-------------------------+--------------------------------------+
 | Abort | assert(0) |
 +-------------------------+--------------------------------------+
 | Try Each | (break if (exec(seq) is not error)) |
 | | for-each seq in arg else assert(0) |
 +-------------------------+--------------------------------------+
 | Copy | store(current, current.params[src- |
 | | component]) |
 +-------------------------+--------------------------------------+
 | Swap | swap(current, current.params[src- |
 | | component]) |
 +-------------------------+--------------------------------------+
 | Run Sequence | exec(arg) |
 +-------------------------+--------------------------------------+
 | Invoke with Arguments | invoke(current, arg) |
 +-------------------------+--------------------------------------+

 Table 2

6.5. Special Cases of Component Index

 Component Index can take on one of three types:

 1. Integer

 2. Array of integers

 3. True

 Integers MUST always be supported by Set Component Index. Arrays of
 integers MUST be supported by Set Component Index if the Recipient
 supports 3 or more components. True MUST be supported by Set
 Component Index if the Recipient supports 2 or more components. Each
 of these operates on the list of components declared in the manifest.

Moran, et al. Expires 8 August 2024 [Page 21]

Internet-Draft CBOR-based SUIT Manifest February 2024

 Integer indices are the default case as described in the previous
 section. An array of integers represents a list of the components
 (Set Component Index) to which each subsequent command applies. The
 value True replaces the list of component indices with the full list
 of components, as defined in the manifest.

 When a command is executed, it

 1. operates on the component identified by the component index if
 that index is an integer, or

 2. it operates on each component identified by an array of indicies,
 or

 3. it operates on every component if the index is the boolean True.

 This is described by the following pseudocode:

 if component-index is True:
 current-list = components
 else if component-index is array:
 current-list = [components[idx] for idx in component-index]
 else:
 current-list = [components[component-index]]
 for current in current-list:
 cmd(current)

 Try Each and Run Sequence are affected in the same way as other
 commands: they are invoked once for each possible Component. This
 means that the sequences that are arguments to Try Each and Run
 Sequence are not invoked with Component Index = True, nor are they
 invoked with array indices. They are only invoked with integer
 indices. The interpreter loops over the whole sequence, setting the
 Component Index to each index in turn.

6.6. Serialized Processing Interpreter

 In highly constrained devices, where storage for parameters is
 limited, the manifest processor MAY handle one component at a time,
 traversing the manifest tree once for each listed component. In this
 mode, the interpreter ignores any commands executed while the
 component index is not the current component. This reduces the
 overall volatile storage required to process the update so that the
 only limit on number of components is the size of the manifest.
 However, this approach requires additional processing power.

Moran, et al. Expires 8 August 2024 [Page 22]

Internet-Draft CBOR-based SUIT Manifest February 2024

 In order to operate in this mode, the manifest processor loops on
 each section for every supported component, simply ignoring commands
 when the current component is not selected.

 When a serialized Manifest Processor encounters a component index of
 True, it does not ignore any commands. It applies them to the
 current component on each iteration.

6.7. Parallel Processing Interpreter

 To enable parallel or out-of-order processing of Command Sequences,
 Recipients MAY make use of the Strict Order parameter. The Strict
 Order parameter indicates to the Manifest Processor that Commands
 MUST be executed strictly in order. When the Strict Order parameter
 is False, this indicates to the Manifest Processor that Commands MAY
 be executed in parallel or out of order. To perform parallel
 processing, once the Strict Order parameter is set to False, the
 Recipient may issue each or every command concurrently until the
 Strict Order parameter is returned to True or the Command Sequence
 ends. Then, it waits for all issued commands to complete before
 continuing processing of commands. To perform out-of-order
 processing, a similar approach is used, except the Recipient consumes
 all commands after the Strict Order parameter is set to False, then
 it sorts these commands into its preferred order, invokes them all,
 then continues processing.

 When the manifest processor encounters any of the following scenarios
 the parallel processing MUST pause until all issued commands have
 completed, after which it may resume parallel processing if Strict
 Order is still False.

 * Override Parameters.

 * Set Strict Order = True.

 * Set Component Index.

 Extensions MAY alter this list. A Component MUST NOT be both a
 target of an operation and a source of data (for example, in Copy or
 Swap) in a Command Sequence where Strict Order is False.

 To perform more useful parallel operations, a manifest author may
 collect sequences of commands in a Run Sequence command. Then, each
 of these sequences MAY be run in parallel. There are several
 invocation options for Run Sequence:

Moran, et al. Expires 8 August 2024 [Page 23]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * Component Index is a positive integer, Strict Order is False:
 Strict Order is set to True before the sequence argument is run.
 The sequence argument MUST begin with set-component-index.

 * Component Index is true or an array of positive integers, Strict
 Order is False: The sequence argument is run once for each
 component (or each component in the array); the manifest processor
 presets the component index and Strict Order = True before each
 iteration of the sequence argument.

 * Component Index is a positive integer, Strict Order is True: No
 special considerations

 * Component Index is True or an array of positive integers, Strict
 Order is True: The sequence argument is run once for each
 component (or each component in the array); the manifest processor
 presets the component index before each iteration of the sequence
 argument.

 These rules isolate each sequence from each other sequence, ensuring
 that they operate as expected. When Strict Order = False, any
 further Set Component Index directives in the Run Sequence command
 sequence argument MUST cause an Abort. This allows the interpreter
 that issues Run Sequence commands to check that the first element is
 correct, then issue the sequence to a parallel execution context to
 handle the remainder of the sequence.

7. Creating Manifests

 Manifests are created using tools for constructing COSE structures,
 calculating cryptographic values and compiling desired system state
 into a sequence of operations required to achieve that state. The
 process of constructing COSE structures and the calculation of
 cryptographic values is covered in [RFC9052].

 Compiling desired system state into a sequence of operations can be
 accomplished in many ways. Several templates are provided below to
 cover common use-cases. These templates can be combined to produce
 more complex behavior.

 The author MUST ensure that all parameters consumed by a command are
 set prior to invoking that command. Where Component Index = True,
 this means that the parameters consumed by each command MUST have
 been set for each Component.

 This section details a set of templates for creating manifests.
 These templates explain which parameters, commands, and orders of
 commands are necessary to achieve a stated goal.

Moran, et al. Expires 8 August 2024 [Page 24]

Internet-Draft CBOR-based SUIT Manifest February 2024

 NOTE: On systems that support only a single component, Set Component
 Index has no effect and can be omitted.

 NOTE: *A digest MUST always be set using Override Parameters.*

7.1. Compatibility Check Template

 The goal of the compatibility check template ensure that Recipients
 only install compatible images.

 In this template all information is contained in the shared sequence
 and the following sequence of commands is used:

 * Set Component Index directive (see Section 8.4.10.1)

 * Override Parameters directive (see Section 8.4.10.3) for Vendor ID
 and Class ID (see Section 8.4.8)

 * Check Vendor Identifier condition (see Section 8.4.8.2)

 * Check Class Identifier condition (see Section 8.4.8.2)

7.2. Trusted Invocation Template

 The goal of the Trusted Invocation template is to ensure that only
 authorized code is invoked; such as in Secure Boot or when a Trusted
 Application is loaded into a TEE.

 The following commands are placed into the shared sequence:

 * Set Component Index directive (see Section 8.4.10.1)

 * Override Parameters directive (see Section 8.4.10.3) for Image
 Digest and Image Size (see Section 8.4.8)

 The system validation sequence contains the following commands:

 * Set Component Index directive (see Section 8.4.10.1)

 * Check Image Match condition (see Section 8.4.9.2)

 Then, the run sequence contains the following commands:

 * Set Component Index directive (see Section 8.4.10.1)

 * Invoke directive (see Section 8.4.10.7)

Moran, et al. Expires 8 August 2024 [Page 25]

Internet-Draft CBOR-based SUIT Manifest February 2024

7.3. Component Download Template

 The goal of the Component Download template is to acquire and store
 an image.

 The following commands are placed into the shared sequence:

 * Set Component Index directive (see Section 8.4.10.1)

 * Override Parameters directive (see Section 8.4.10.3) for Image
 Digest and Image Size (see Section 8.4.8)

 Then, the install sequence contains the following commands:

 * Set Component Index directive (see Section 8.4.10.1)

 * Override Parameters directive (see Section 8.4.10.3) for URI (see
 Section 8.4.8.10)

 * Fetch directive (see Section 8.4.10.4)

 * Check Image Match condition (see Section 8.4.9.2)

 The Fetch directive needs the URI parameter to be set to determine
 where the image is retrieved from. Additionally, the destination of
 where the component shall be stored has to be configured. The URI is
 configured via the Set Parameters directive while the destination is
 configured via the Set Component Index directive.

7.4. Install Template

 The goal of the Install template is to use an image already stored in
 an identified component to copy into a second component.

 This template is typically used with the Component Download template,
 however a modification to that template is required: the Component
 Download operations are moved from the Payload Install sequence to
 the Payload Fetch sequence.

 Then, the install sequence contains the following commands:

 * Set Component Index directive (see Section 8.4.10.1)

 * Override Parameters directive (see Section 8.4.10.3) for Source
 Component (see Section 8.4.8.11)

 * Copy directive (see Section 8.4.10.5)

Moran, et al. Expires 8 August 2024 [Page 26]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * Check Image Match condition (see Section 8.4.9.2)

7.5. Integrated Payload Template

 The goal of the Integrated Payload template is to install a payload
 that is included in the manifest envelope. It is identical to the
 Component Download template (Section 7.3).

 An Author MAY choose to place a payload in the envelope of a
 manifest. The payload envelope key MUST be a string. The payload
 MUST be serialized in a bstr element.

 The URI for a payload enclosed in this way MAY be expressed as a
 fragment-only reference, as defined in [RFC3986], Section 4.4, for
 example: "#device-model-v1.2.3.bin".

 An intermediary, such as a Network Operator, MAY choose to pre-fetch
 a payload and add it to the manifest envelope, using the URI as the
 key.

7.6. Load from Nonvolatile Storage Template

 The goal of the Load from Nonvolatile Storage template is to load an
 image from a non-volatile component into a volatile component, for
 example loading a firmware image from external Flash into RAM.

 The following commands are placed into the load sequence:

 * Set Component Index directive (see Section 8.4.10.1)

 * Override Parameters directive (see Section 8.4.10.3) for Source
 Component (see Section 8.4.8)

 * Copy directive (see Section 8.4.10.5)

 As outlined in Section 6.4, the Copy directive needs a source and a
 destination to be configured. The source is configured via Component
 Index (with the Set Parameters directive) and the destination is
 configured via the Set Component Index directive.

7.7. A/B Image Template

 The goal of the A/B Image Template is to acquire, validate, and
 invoke one of two images, based on a test.

 The following commands are placed in the common block:

 * Set Component Index directive (see Section 8.4.10.1)

Moran, et al. Expires 8 August 2024 [Page 27]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * Try Each

 - First Sequence:

 o Override Parameters directive (see Section 8.4.10.3,
 Section 8.4.8) for Slot A

 o Check Slot Condition (see Section 8.4.9.4)

 o Override Parameters directive (see Section 8.4.10.3) for
 Image Digest A and Image Size A (see Section 8.4.8)

 - Second Sequence:

 o Override Parameters directive (see Section 8.4.10.3,
 Section 8.4.8) for Slot B

 o Check Slot Condition (see Section 8.4.9.4)

 o Override Parameters directive (see Section 8.4.10.3) for
 Image Digest B and Image Size B (see Section 8.4.8)

 The following commands are placed in the fetch block or install block

 * Set Component Index directive (see Section 8.4.10.1)

 * Try Each

 - First Sequence:

 o Override Parameters directive (see Section 8.4.10.3,
 Section 8.4.8) for Slot A

 o Check Slot Condition (see Section 8.4.9.4)

 o Set Parameters directive (see Section 8.4.10.3) for URI A
 (see Section 8.4.8)

 - Second Sequence:

 o Override Parameters directive (see Section 8.4.10.3,
 Section 8.4.8) for Slot B

 o Check Slot Condition (see Section 8.4.9.4)

 o Set Parameters directive (see Section 8.4.10.3) for URI B
 (see Section 8.4.8)

Moran, et al. Expires 8 August 2024 [Page 28]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * Fetch

 If Trusted Invocation (Section 7.2) is used, only the run sequence is
 added to this template, since the shared sequence is populated by
 this template:

 * Set Component Index directive (see Section 8.4.10.1)

 * Try Each

 - First Sequence:

 o Override Parameters directive (see Section 8.4.10.3,
 Section 8.4.8) for Slot A

 o Check Slot Condition (see Section 8.4.9.4)

 - Second Sequence:

 o Override Parameters directive (see Section 8.4.10.3,
 Section 8.4.8) for Slot B

 o Check Slot Condition (see Section 8.4.9.4)

 * Invoke

 NOTE: Any test can be used to select between images, Check Slot
 Condition is used in this template because it is a typical test for
 execute-in-place devices.

8. Metadata Structure

 The metadata for SUIT updates is composed of several primary
 constituent parts: Authentication Information, Manifest, Severable
 Elements and Integrated Payloads.

 For a diagram of the metadata structure, see Section 5.

8.1. Encoding Considerations

 The map indices in the envelope encoding are reset to 1 for each map
 within the structure. This is to keep the indices as small as
 possible. The goal is to keep the index objects to single bytes
 (CBOR positive integers 1-23).

Moran, et al. Expires 8 August 2024 [Page 29]

Internet-Draft CBOR-based SUIT Manifest February 2024

 Wherever enumerations are used, they are started at 1. This allows
 detection of several common software errors that are caused by
 uninitialized variables. Positive numbers in enumerations are
 reserved for IANA registration. Negative numbers are used to
 identify application-specific values, as described in Section 11.

 All elements of the envelope must be wrapped in a bstr to minimize
 the complexity of the code that evaluates the cryptographic integrity
 of the element and to ensure correct serialization for integrity and
 authenticity checks.

 All CBOR maps in the Manifest and manifest envelope MUST be encoded
 with the canonical CBOR ordering as defined in [RFC8949].

8.2. Envelope

 The Envelope contains each of the other primary constituent parts of
 the SUIT metadata. It allows for modular processing of the manifest
 by ordering components in the expected order of processing.

 The Envelope is encoded as a CBOR Map. Each element of the Envelope
 is enclosed in a bstr, which allows computation of a message digest
 against known bounds.

8.3. Authenticated Manifests

 SUIT_Authentication contains a list of elements, which consist of a
 SUIT_Digest calculated over the manifest, and zero or more
 SUIT_Authentication_Block’s calculated over the SUIT_Digest.

 SUIT_Authentication = [
 bstr .cbor SUIT_Digest,
 * bstr .cbor SUIT_Authentication_Block
]
 SUIT_Authentication_Block /= COSE_Mac_Tagged
 SUIT_Authentication_Block /= COSE_Sign_Tagged
 SUIT_Authentication_Block /= COSE_Mac0_Tagged
 SUIT_Authentication_Block /= COSE_Sign1_Tagged

 The SUIT_Digest is computed over the bstr-wrapped SUIT_Manifest that
 is present in the SUIT_Envelope at the suit-manifest key. The
 SUIT_Digest MUST always be present. The Manifest Processor requires
 a SUIT_Authentication_Block to be present. The manifest MUST be
 protected from tampering between the time of creation and the time of
 signing/MACing.

Moran, et al. Expires 8 August 2024 [Page 30]

Internet-Draft CBOR-based SUIT Manifest February 2024

 The SUIT_Authentication_Block is computed using detached payloads, as
 described in RFC 9052 [RFC9052]. The detached payload in each case
 is the bstr-wrapped SUIT_Digest at the beginning of the list.
 Signers (or MAC calculators) MUST verify the SUIT_Digest prior to
 performing the cryptographic computation to avoid "Time-of-check to
 time-of-use" type of attack. When multiple
 SUIT_Authentication_Blocks are present, then each
 SUIT_Authentication_Block MUST be computed over the same SUIT_Digest
 but using a different algorithm or signing/MAC authority. This
 feature also allows to transition to new algorithms, such as post-
 quantum cryptography (PQC) algorithms.

 The SUIT_Authentication structure MUST come before the suit-manifest
 element, regardless of canonical encoding of CBOR. The algorithms
 used in SUIT_Authentication are defined by the profiles declared in
 [I-D.ietf-suit-mti].

8.4. Manifest

 The manifest contains:

 * a version number (see Section 8.4.1)

 * a sequence number (see Section 8.4.2)

 * a reference URI (see Section 8.4.3)

 * a common structure with information that is shared between command
 sequences (see Section 8.4.5)

 * one or more lists of commands that the Recipient should perform
 (see Section 8.4.6)

 * a reference to the full manifest (see Section 8.4.3)

 * human-readable text describing the manifest found in the
 SUIT_Envelope (see Section 8.4.4)

 The Text section, or any Command Sequence of the Update Procedure
 (Image Fetch, Image Installation and, System Validation) can be
 either a CBOR structure or a SUIT_Digest. In each of these cases,
 the SUIT_Digest provides for a severable element. Severable elements
 are RECOMMENDED to implement. In particular, the human-readable text
 SHOULD be severable, since most useful text elements occupy more
 space than a SUIT_Digest, but are not needed by the Recipient.
 Because SUIT_Digest is a CBOR Array and each severable element is a
 CBOR bstr, it is straight-forward for a Recipient to determine
 whether an element has been severed. The key used for a severable

Moran, et al. Expires 8 August 2024 [Page 31]

Internet-Draft CBOR-based SUIT Manifest February 2024

 element is the same in the SUIT_Manifest and in the SUIT_Envelope so
 that a Recipient can easily identify the correct data in the
 envelope. See Section 8.4.12 for more detail.

8.4.1. suit-manifest-version

 The suit-manifest-version indicates the version of serialization used
 to encode the manifest. Version 1 is the version described in this
 document. suit-manifest-version is REQUIRED to implement.

8.4.2. suit-manifest-sequence-number

 The suit-manifest-sequence-number is a monotonically increasing anti-
 rollback counter. Each Recipient MUST reject any manifest that has a
 sequence number lower than its current sequence number. For
 convenience, an implementer MAY use a UTC timestamp in seconds as the
 sequence number. suit-manifest-sequence-number is REQUIRED to
 implement.

8.4.3. suit-reference-uri

 suit-reference-uri is a text string that encodes a URI where a full
 version of this manifest can be found. This is convenient for
 allowing management systems to show the severed elements of a
 manifest when this URI is reported by a Recipient after installation.

8.4.4. suit-text

 suit-text SHOULD be a severable element. suit-text is a map of
 language identifiers (identical to Tag38 of RFC9290, Appendix A) to
 language-specific text maps. Each language-specific text map is a
 map containing two different types of pair:

 * integer => text

 * SUIT_Component_Identifier => map

 The SUIT_Text_Map is defined in the following CDDL.

Moran, et al. Expires 8 August 2024 [Page 32]

Internet-Draft CBOR-based SUIT Manifest February 2024

 tag38-ltag = text .regexp "[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*"

 SUIT_Text_Map = {
 + tag38-ltag => SUIT_Text_LMap
 }
 SUIT_Text_LMap = {
 SUIT_Text_Keys,
 * SUIT_Component_Identifier => {
 SUIT_Text_Component_Keys
 }
 }

 Each SUIT_Component_Identifier => map entry contains a map of integer
 => text values. All SUIT_Component_Identifiers present in suit-text
 MUST also be present in suit-common (Section 8.4.5).

 suit-text contains all the human-readable information that describes
 any and all parts of the manifest, its payload(s) and its
 resource(s). The text section is typically severable, allowing
 manifests to be distributed without the text, since end-nodes do not
 require text. The meaning of each field is described below.

 Each section MAY be present. If present, each section MUST be as
 described. Negative integer IDs are reserved for application-
 specific text values.

 The following table describes the text fields available in suit-text:

 +================================+==================================+
 | CDDL Structure | Description |
 +================================+==================================+
 | suit-text-manifest-description | Free text description of |
 | | the manifest |
 +--------------------------------+----------------------------------+
 | suit-text-update-description | Free text description of |
 | | the update |
 +--------------------------------+----------------------------------+
suit-text-manifest-json-source	The JSON-formatted
	document that was used to
	create the manifest
+--------------------------------+----------------------------------+	
suit-text-manifest-yaml-source	The YAML [YAML]-formatted
	document that was used to
	create the manifest
 +--------------------------------+----------------------------------+

 Table 3

Moran, et al. Expires 8 August 2024 [Page 33]

Internet-Draft CBOR-based SUIT Manifest February 2024

 The following table describes the text fields available in each map
 identified by a SUIT_Component_Identifier.

 +=================================+===============================+
 | CDDL Structure | Description |
 +=================================+===============================+
 | suit-text-vendor-name | Free text vendor name |
 +---------------------------------+-------------------------------+
 | suit-text-model-name | Free text model name |
 +---------------------------------+-------------------------------+
 | suit-text-vendor-domain | The domain used to create the |
 | | vendor-id condition (see |
 | | Section 8.4.8.2) |
 +---------------------------------+-------------------------------+
 | suit-text-model-info | The information used to |
 | | create the class-id condition |
 | | (see {{uuid-identifiers) |
 +---------------------------------+-------------------------------+
 | suit-text-component-description | Free text description of each |
 | | component in the manifest |
 +---------------------------------+-------------------------------+
 | suit-text-component-version | A free text representation of |
 | | the component version |
 +---------------------------------+-------------------------------+

 Table 4

 suit-text is OPTIONAL to implement.

8.4.5. suit-common

 suit-common encodes all the information that is shared between each
 of the command sequences, including: suit-components, and suit-
 shared-sequence. suit-common is REQUIRED to implement.

 suit-components is a list of SUIT_Component_Identifier
 (Section 8.4.5.1) blocks that specify the component identifiers that
 will be affected by the content of the current manifest. suit-
 components is REQUIRED to implement.

Moran, et al. Expires 8 August 2024 [Page 34]

Internet-Draft CBOR-based SUIT Manifest February 2024

 suit-shared-sequence is a SUIT_Command_Sequence to execute prior to
 executing any other command sequence. Typical actions in suit-
 shared-sequence include setting expected Recipient identity and image
 digests when they are conditional (see Section 8.4.10.2 and
 Section 7.7 for more information on conditional sequences). suit-
 shared-sequence is RECOMMENDED to implement. Whenever a parameter or
 Try Each command is required by more than one Command Sequence,
 placing that parameter or command in suit-shared-sequence results in
 a smaller encoding.

8.4.5.1. SUIT_Component_Identifier

 A component is a unit of code or data that can be targeted by an
 update. To facilitate composite devices, components are identified
 by a list of CBOR byte strings, which allows construction of
 hierarchical component structures. Components are identified by
 Component Identifiers, but referenced in commands by Component Index;
 Component Identifiers are arrays of binary strings and a Component
 Index is an index into the array of Component Identifiers.

 A Component Identifier can be trivial, such as the simple array
 [h’00’]. It can also represent a filesystem path by encoding each
 segment of the path as an element in the list. For example, the path
 "/usr/bin/env" would encode to [’usr’,’bin’,’env’].

 This hierarchical construction allows a component identifier to
 identify any part of a complex, multi-component system.

8.4.6. SUIT_Command_Sequence

 A SUIT_Command_Sequence defines a series of actions that the
 Recipient MUST take to accomplish a particular goal. These goals are
 defined in the manifest and include:

 1. Payload Fetch: suit-payload-fetch is a SUIT_Command_Sequence to
 execute in order to obtain a payload. Some manifests may include
 these actions in the suit-install section instead if they operate
 in a streaming installation mode. This is particularly relevant
 for constrained devices without any temporary storage for staging
 the update. suit-payload-fetch is OPTIONAL to implement because
 it is not relevant in all bootloaders.

 2. Payload Installation: suit-install is a SUIT_Command_Sequence to
 execute in order to install a payload. Typical actions include
 verifying a payload stored in temporary storage, copying a staged
 payload from temporary storage, and unpacking a payload. suit-
 install is OPTIONAL to implement.

Moran, et al. Expires 8 August 2024 [Page 35]

Internet-Draft CBOR-based SUIT Manifest February 2024

 3. Image Validation: suit-validate is a SUIT_Command_Sequence to
 execute in order to validate that the result of applying the
 update is correct. Typical actions involve image validation.
 suit-validate is REQUIRED to implement.

 4. Image Loading: suit-load is a SUIT_Command_Sequence to execute in
 order to prepare a payload for execution. Typical actions
 include copying an image from permanent storage into RAM,
 optionally including actions such as decryption or decompression.
 suit-load is OPTIONAL to implement.

 5. Invoke or Boot: suit-invoke is a SUIT_Command_Sequence to execute
 in order to invoke an image. suit-invoke typically contains a
 single instruction: the "invoke" directive, but may also contain
 an image condition. suit-invoke is OPTIONAL to implement because
 it not needed for restart-based invocation.

 Goals 1,2,3 form the Update Procedure. Goals 3,4,5 form the
 Invocation Procedure.

 Each Command Sequence follows exactly the same structure to ensure
 that the parser is as simple as possible.

 Lists of commands are constructed from two kinds of element:

 1. Conditions that MUST be true and any failure is treated as a
 failure of the update/load/invocation

 2. Directives that MUST be executed.

 Each condition is composed of:

 1. A command code identifier

 2. A SUIT_Reporting_Policy (Section 8.4.7)

 Each directive is composed of:

 1. A command code identifier

 2. An argument block or a SUIT_Reporting_Policy (Section 8.4.7)

 Argument blocks are consumed only by flow-control directives:

 * Set Component Index

 * Set/Override Parameters

Moran, et al. Expires 8 August 2024 [Page 36]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * Try Each

 * Run Sequence

 Reporting policies provide a hint to the manifest processor of
 whether to add the success or failure of a command to any report that
 it generates.

 Many conditions and directives apply to a given component, and these
 generally grouped together. Therefore, a special command to set the
 current component index is provided. This index is a numeric index
 into the Component Identifier table defined at the beginning of the
 manifest.

 To facilitate optional conditions, a special directive, suit-
 directive-try-each (Section 8.4.10.2), is provided. It runs several
 new lists of conditions/directives, one after another, that are
 contained as an argument to the directive. By default, it assumes
 that a failure of a condition should not indicate a failure of the
 update/invocation, but a parameter is provided to override this
 behavior. See suit-parameter-soft-failure (Section 8.4.8.15).

8.4.7. Reporting Policy

 To facilitate construction of Reports that describe the success or
 failure of a given Procedure, each command is given a Reporting
 Policy. This is an integer bitfield that follows the command and
 indicates what the Recipient should do with the Record of executing
 the command. The options are summarized in the table below.

 +=============================+==================================+
 | Policy | Description |
 +=============================+==================================+
 | suit-send-record-on-success | Record when the command succeeds |
 +-----------------------------+----------------------------------+
 | suit-send-record-on-failure | Record when the command fails |
 +-----------------------------+----------------------------------+
 | suit-send-sysinfo-success | Add system information when the |
 | | command succeeds |
 +-----------------------------+----------------------------------+
 | suit-send-sysinfo-failure | Add system information when the |
 | | command fails |
 +-----------------------------+----------------------------------+

 Table 5

 Any or all of these policies may be enabled at once.

Moran, et al. Expires 8 August 2024 [Page 37]

Internet-Draft CBOR-based SUIT Manifest February 2024

 At the completion of each command, a Manifest Processor MAY forward
 information about the command to a Reporting Engine, which is
 responsible for reporting boot or update status to a third party.
 The Reporting Engine is entirely implementation-defined, the
 reporting policy simply facilitates the Reporting Engine’s interface
 to the SUIT Manifest Processor.

 The information elements provided to the Reporting Engine are:

 * The reporting policy

 * The result of the command

 * The values of parameters consumed by the command

 * The system information consumed by the command

 The Reporting Engine consumes these information elements and decides
 whether to generate an entry in its report output and which
 information elements to include based on its internal policy
 decisions. The Reporting Engine uses the reporting policy provided
 to it by the SUIT Manifest Processor as a set of hints but MAY choose
 to ignore these hints and apply its own policy instead.

 If the component index is set to True or an array when a command is
 executed with a non-zero reporting policy, then the Reporting Engine
 MUST receive one set of information elements for each Component, in
 the order expressed in the Components list or the Component Index
 array.

 This specification does not define a particular format of Records or
 Reports. This specification only defines hints to the Reporting
 Engine for which information elements it should aggregate into the
 Report.

 When used in a Invocation Procedure, the output of the Reporting
 Engine MAY form the basis of an attestation report. When used in an
 Update Process, the report MAY form the basis for one or more log
 entries.

8.4.8. SUIT_Parameters

 Many conditions and directives require additional information. That
 information is contained within parameters that can be set in a
 consistent way. This allows reuse of parameters between commands,
 thus reducing manifest size.

Moran, et al. Expires 8 August 2024 [Page 38]

Internet-Draft CBOR-based SUIT Manifest February 2024

 Most parameters are scoped to a specific component. This means that
 setting a parameter for one component has no effect on the parameters
 of any other component. The only exceptions to this are two Manifest
 Processor parameters: Strict Order and Soft Failure.

 The defined manifest parameters are described below.

Moran, et al. Expires 8 August 2024 [Page 39]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +==============+==================================+=================+
 | Name | CDDL Structure | Reference |
 +==============+==================================+=================+
 | Vendor ID | suit-parameter-vendor-identifier | Section 8.4.8.3 |
 +--------------+----------------------------------+-----------------+
 | Class ID | suit-parameter-class-identifier | Section 8.4.8.4 |
 +--------------+----------------------------------+-----------------+
 | Device ID | suit-parameter-device-identifier | Section 8.4.8.5 |
 +--------------+----------------------------------+-----------------+
 | Image | suit-parameter-image-digest | Section 8.4.8.6 |
 | Digest | | |
 +--------------+----------------------------------+-----------------+
 | Image | suit-parameter-image-size | Section 8.4.8.7 |
 | Size | | |
 +--------------+----------------------------------+-----------------+
 | Content | suit-parameter-content | Section 8.4.8.9 |
 +--------------+----------------------------------+-----------------+
 | Component | suit-parameter-component-slot | Section 8.4.8.8 |
 | Slot | | |
 +--------------+----------------------------------+-----------------+
 | URI | suit-parameter-uri | Section |
 | | | 8.4.8.10 |
 +--------------+----------------------------------+-----------------+
 | Source | suit-parameter-source-component | Section |
 | Component | | 8.4.8.11 |
 +--------------+----------------------------------+-----------------+
 | Invoke | suit-parameter-invoke-args | Section |
 | Args | | 8.4.8.12 |
 +--------------+----------------------------------+-----------------+
 | Fetch | suit-parameter-fetch-arguments | Section |
 | Arguments | | 8.4.8.13 |
 +--------------+----------------------------------+-----------------+
 | Strict | suit-parameter-strict-order | Section |
 | Order | | 8.4.8.14 |
 +--------------+----------------------------------+-----------------+
 | Soft | suit-parameter-soft-failure | Section |
 | Failure | | 8.4.8.15 |
 +--------------+----------------------------------+-----------------+
 | Custom | suit-parameter-custom | Section |
 | | | 8.4.8.16 |
 +--------------+----------------------------------+-----------------+

 Table 6

 CBOR-encoded object parameters are still wrapped in a bstr. This is
 because it allows a parser that is aggregating parameters to
 reference the object with a single pointer and traverse it without
 understanding the contents. This is important for modularization and

Moran, et al. Expires 8 August 2024 [Page 40]

Internet-Draft CBOR-based SUIT Manifest February 2024

 division of responsibility within a pull parser. The same
 consideration does not apply to Directives because those elements are
 invoked with their arguments immediately.

8.4.8.1. CBOR PEN UUID Namespace Identifier

 The CBOR PEN UUID Namespace Identifier is constructed as follows:

 It uses the OID Namespace as a starting point, then uses the CBOR
 absolute OID encoding for the IANA PEN OID (1.3.6.1.4.1):

 D8 6F # tag(111)
 45 # bytes(5)
 # Absolute OID encoding of IANA Private Enterprise Number:
 # 1.3. 6. 1. 4. 1
 2B 06 01 04 01 # X.690 Clause 8.19

 Computing a version 5 UUID from these produces:

 NAMESPACE_CBOR_PEN = UUID5(NAMESPACE_OID, h’D86F452B06010401’)
 NAMESPACE_CBOR_PEN = 47fbdabb-f2e4-55f0-bb39-3620c2f6df4e

8.4.8.2. Constructing UUIDs

 Several conditions use identifiers to determine whether a manifest
 matches a given Recipient or not. These identifiers are defined to
 be RFC 4122 [RFC4122] UUIDs. These UUIDs are not human-readable and
 are therefore used for machine-based processing only.

 A Recipient MAY match any number of UUIDs for vendor or class
 identifier. This may be relevant to physical or software modules.
 For example, a Recipient that has an OS and one or more applications
 might list one Vendor ID for the OS and one or more additional Vendor
 IDs for the applications. This Recipient might also have a Class ID
 that must be matched for the OS and one or more Class IDs for the
 applications.

 Identifiers are used for compatibility checks. They MUST NOT be used
 as assertions of identity. They are evaluated by identifier
 conditions (Section 8.4.9.1).

 A more complete example: Imagine a device has the following physical
 components: 1. A host MCU 2. A WiFi module

 This same device has three software modules: 1. An operating system
 2. A WiFi module interface driver 3. An application

Moran, et al. Expires 8 August 2024 [Page 41]

Internet-Draft CBOR-based SUIT Manifest February 2024

 Suppose that the WiFi module’s firmware has a proprietary update
 mechanism and doesn’t support manifest processing. This device can
 report four class IDs:

 1. Hardware model/revision

 2. OS

 3. WiFi module model/revision

 4. Application

 This allows the OS, WiFi module, and application to be updated
 independently. To combat possible incompatibilities, the OS class ID
 can be changed each time the OS has a change to its API.

 This approach allows a vendor to target, for example, all devices
 with a particular WiFi module with an update, which is a very
 powerful mechanism, particularly when used for security updates.

 UUIDs MUST be created according to versions 3, 4, or 5 of RFC 4122
 [RFC4122]. Versions 1 and 2 do not provide a tangible benefit over
 version 4 for this application.

 The RECOMMENDED method to create a vendor ID is:

 Vendor ID = UUID5(DNS_PREFIX, vendor domain name)

 If the Vendor ID is a UUID, the RECOMMENDED method to create a Class
 ID is:

 Class ID = UUID5(Vendor ID, Class-Specific-Information)

 If the Vendor ID is a CBOR PEN (see Section 8.4.8.3), the RECOMMENDED
 method to create a Class ID is:

 Class ID = UUID5(
 UUID5(NAMESPACE_CBOR_PEN, CBOR_PEN),
 Class-Specific-Information)

 Class-specific-information is composed of a variety of data, for
 example:

 * Model number.

 * Hardware revision.

 * Bootloader version (for immutable bootloaders).

Moran, et al. Expires 8 August 2024 [Page 42]

Internet-Draft CBOR-based SUIT Manifest February 2024

8.4.8.3. suit-parameter-vendor-identifier

 suit-parameter-vendor-identifier may be presented in one of two ways:

 * A Private Enterprise Number

 * A byte string containing a UUID [RFC4122]

 Private Enterprise Numbers are encoded as a relative OID, according
 to the definition in [RFC9090]. All PENs are relative to the IANA
 PEN: 1.3.6.1.4.1.

8.4.8.4. suit-parameter-class-identifier

 A RFC 4122 UUID representing the class of the device or component.
 The UUID is encoded as a 16 byte bstr, containing the raw bytes of
 the UUID. It MUST be constructed as described in Section 8.4.8.2

8.4.8.5. suit-parameter-device-identifier

 A RFC 4122 UUID representing the specific device or component. The
 UUID is encoded as a 16 byte bstr, containing the raw bytes of the
 UUID. It MUST be constructed as described in Section 8.4.8.2

8.4.8.6. suit-parameter-image-digest

 A fingerprint computed over the component itself, encoded in the
 SUIT_Digest Section 10 structure. The SUIT_Digest is wrapped in a
 bstr, as required in Section 8.4.8.

8.4.8.7. suit-parameter-image-size

 The size of the firmware image in bytes. This size is encoded as a
 positive integer.

8.4.8.8. suit-parameter-component-slot

 This parameter sets the slot index of a component. Some components
 support multiple possible Slots (offsets into a storage area). This
 parameter describes the intended Slot to use, identified by its index
 into the component’s storage area. This slot MUST be encoded as a
 positive integer.

8.4.8.9. suit-parameter-content

 A block of raw data for use with Section 8.4.10.6. It contains a
 byte string of data to be written to a specified component ID in the
 same way as a fetch or a copy.

Moran, et al. Expires 8 August 2024 [Page 43]

Internet-Draft CBOR-based SUIT Manifest February 2024

 If data is encoded this way, it should be small, e.g. 10’s of bytes.
 Large payloads, e.g. 1000’s of bytes, written via this method might
 prevent the manifest from being held in memory during validation.
 Typical applications include small configuration parameters.

 The size of payload embedded in suit-parameter-content impacts the
 security requirement defined in [RFC9124], Section 4.3.21
 REQ.SEC.MFST.CONST: Manifest Kept Immutable between Check and Use.
 Actual limitations on payload size for suit-parameter-content depend
 on the application, in particular the available memory that satisfies
 REQ.SEC.MFST.CONST. If the availability of tamper resistant memory
 is less than the manifest size, then REQ.SEC.MFST.CONST cannot be
 satisfied.

 If suit-parameter-content is instantiated in a severable command
 sequence, then this becomes functionally very similar to an
 integrated payload, which may be a better choice.

8.4.8.10. suit-parameter-uri

 A URI Reference [RFC3986] from which to fetch a resource, encoded as
 a text string. CBOR Tag 32 is not used because the meaning of the
 text string is unambiguous in this context.

8.4.8.11. suit-parameter-source-component

 This parameter sets the source component to be used with either suit-
 directive-copy (Section 8.4.10.5) or with suit-directive-swap
 (Section 8.4.10.9). The current Component, as set by suit-directive-
 set-component-index defines the destination, and suit-parameter-
 source-component defines the source.

8.4.8.12. suit-parameter-invoke-args

 This parameter contains an encoded set of arguments for suit-
 directive-invoke (Section 8.4.10.7). The arguments MUST be provided
 as an implementation-defined bstr.

8.4.8.13. suit-parameter-fetch-arguments

 An implementation-defined set of arguments to suit-directive-fetch
 (Section 8.4.10.4). Arguments are encoded in a bstr.

Moran, et al. Expires 8 August 2024 [Page 44]

Internet-Draft CBOR-based SUIT Manifest February 2024

8.4.8.14. suit-parameter-strict-order

 The Strict Order Parameter allows a manifest to govern when
 directives can be executed out-of-order. This allows for systems
 that have a sensitivity to order of updates to choose the order in
 which they are executed. It also allows for more advanced systems to
 parallelize their handling of updates. Strict Order defaults to
 True. It MAY be set to False when the order of operations does not
 matter. When arriving at the end of a command sequence, ALL commands
 MUST have completed, regardless of the state of
 SUIT_Parameter_Strict_Order. If SUIT_Parameter_Strict_Order is
 returned to True, ALL preceding commands MUST complete before the
 next command is executed.

 See Section 6.7 for behavioral description of Strict Order.

8.4.8.15. suit-parameter-soft-failure

 When executing a command sequence inside suit-directive-try-each
 (Section 8.4.10.2) or suit-directive-run-sequence (Section 8.4.10.8)
 and a condition failure occurs, the manifest processor aborts the
 sequence. For suit-directive-try-each, if Soft Failure is True, the
 next sequence in Try Each is invoked, otherwise suit-directive-try-
 each fails with the condition failure code. In suit-directive-run-
 sequence, if Soft Failure is True the suit-directive-run-sequence
 simply halts with no side-effects and the Manifest Processor
 continues with the following command, otherwise, the suit-directive-
 run-sequence fails with the condition failure code.

 suit-parameter-soft-failure is scoped to the enclosing
 SUIT_Command_Sequence. Its value is discarded when the enclosing
 SUIT_Command_Sequence terminates and suit-parameter-soft-failure
 reverts to the value it had prior to the invocation of the
 SUIT_Command_Sequence. Nested SUIT_Command_Sequences do not inherit
 the enclosing sequence’s suit-parameter-soft-failure. It MUST NOT be
 set outside of suit-directive-try-each or suit-directive-run-
 sequence, modifying suit-parameter-soft-failure outside of these
 circumstances causes an Abort.

 When suit-directive-try-each is invoked, Soft Failure defaults to
 True in every SUIT_Command_Sequence in the suit-directive-try-each
 argument. An Update Author may choose to set Soft Failure to False
 if they require a failed condition in a sequence to force an Abort.
 When the enclosing SUIT_Command_Sequence terminates, suit-parameter-
 soft-failure reverts to the value it held before the
 SUIT_Command_Sequence was invoked.

Moran, et al. Expires 8 August 2024 [Page 45]

Internet-Draft CBOR-based SUIT Manifest February 2024

 When suit-directive-run-sequence is invoked, Soft Failure defaults to
 False. An Update Author may choose to make failures soft within a
 suit-directive-run-sequence.

8.4.8.16. suit-parameter-custom

 This parameter is an extension point for any proprietary, application
 specific conditions and directives. It MUST NOT be used in the
 shared sequence. This effectively scopes each custom command to a
 particular Vendor Identifier/Class Identifier pair.

 suit-parameter-custom MAY be consumed by any command, in an
 application-specific way, however if a suit-parameter-custom is
 absent, then all standardised suit-commands MUST execute correctly.
 In this respect, suit-parameter-custom MUST be treated as a hint by
 any standardised suit-command that consumes it.

8.4.9. SUIT_Condition

 Conditions are used to define mandatory properties of a system in
 order for an update to be applied. They can be pre-conditions or
 post-conditions of any directive or series of directives, depending
 on where they are placed in the list. All Conditions specify a
 Reporting Policy as described Section 8.4.7. Conditions include:

Moran, et al. Expires 8 August 2024 [Page 46]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +===================+==================================+===========+
 | Name | CDDL Structure | Reference |
 +===================+==================================+===========+
 | Vendor Identifier | suit-condition-vendor-identifier | Section |
 | | | 8.4.9.1 |
 +-------------------+----------------------------------+-----------+
 | Class Identifier | suit-condition-class-identifier | Section |
 | | | 8.4.9.1 |
 +-------------------+----------------------------------+-----------+
 | Device Identifier | suit-condition-device-identifier | Section |
 | | | 8.4.9.1 |
 +-------------------+----------------------------------+-----------+
 | Image Match | suit-condition-image-match | Section |
 | | | 8.4.9.2 |
 +-------------------+----------------------------------+-----------+
 | Check Content | suit-condition-check-content | Section |
 | | | 8.4.9.3 |
 +-------------------+----------------------------------+-----------+
 | Component Slot | suit-condition-component-slot | Section |
 | | | 8.4.9.4 |
 +-------------------+----------------------------------+-----------+
 | Abort | suit-condition-abort | Section |
 | | | 8.4.9.5 |
 +-------------------+----------------------------------+-----------+
 | Custom Condition | suit-command-custom | Section |
 | | | 8.4.11 |
 +-------------------+----------------------------------+-----------+

 Table 7

 The abstract description of these conditions is defined in
 Section 6.4.

 Conditions compare parameters against properties of the system.
 These properties may be asserted in many different ways, including:
 calculation on-demand, volatile definition in memory, static
 definition within the manifest processor, storage in known location
 within an image, storage within a key storage system, storage in One-
 Time-Programmable memory, inclusion in mask ROM, or inclusion as a
 register in hardware. Some of these assertion methods are global in
 scope, such as a hardware register, some are scoped to an individual
 component, such as storage at a known location in an image, and some
 assertion methods can be either global or component-scope, based on
 implementation.

 Each condition MUST report a result code on completion. If a
 condition reports failure, then the current sequence of commands MUST
 terminate. A subsequent command or command sequence MAY continue

Moran, et al. Expires 8 August 2024 [Page 47]

Internet-Draft CBOR-based SUIT Manifest February 2024

 executing if suit-parameter-soft-failure (Section 8.4.8.15) is set.
 If a condition requires additional information, this MUST be
 specified in one or more parameters before the condition is executed.
 If a Recipient attempts to process a condition that expects
 additional information and that information has not been set, it MUST
 report a failure. If a Recipient encounters an unknown condition, it
 MUST report a failure.

 Condition labels in the positive number range are reserved for IANA
 registration while those in the negative range are custom conditions
 reserved for proprietary definition by the author of a manifest
 processor. See Section 11 for more details.

8.4.9.1. suit-condition-vendor-identifier, suit-condition-class-
 identifier, and suit-condition-device-identifier

 There are three identifier-based conditions: suit-condition-vendor-
 identifier, suit-condition-class-identifier, and suit-condition-
 device-identifier. Each of these conditions match a RFC 4122
 [RFC4122] UUID that MUST have already been set as a parameter. The
 installing Recipient MUST match the specified UUID in order to
 consider the manifest valid. These identifiers are scoped by
 component in the manifest. Each component MAY match more than one
 identifier. Care is needed to ensure that manifests correctly
 identify their targets using these conditions. Using only a generic
 class ID for a device-specific firmware could result in matching
 devices that are not compatible.

 The Recipient uses the ID parameter that has already been set using
 the Set Parameters directive. If no ID has been set, this condition
 fails. suit-condition-class-identifier and suit-condition-vendor-
 identifier are REQUIRED to implement. suit-condition-device-
 identifier is OPTIONAL to implement.

 Each identifier condition compares the corresponding identifier
 parameter to a parameter asserted to the Manifest Processor by the
 Recipient. Identifiers MUST be known to the Manifest Processor in
 order to evaluate compatibility.

8.4.9.2. suit-condition-image-match

 Verify that the current component matches the suit-parameter-image-
 digest (Section 8.4.8.6) for the current component. The digest is
 verified against the digest specified in the Component’s parameters
 list. If no digest is specified, the condition fails. suit-
 condition-image-match is REQUIRED to implement.

Moran, et al. Expires 8 August 2024 [Page 48]

Internet-Draft CBOR-based SUIT Manifest February 2024

8.4.9.3. suit-condition-check-content

 This directive compares the specified component identifier to the
 data indicated by suit-parameter-content. This functions similarly
 to suit-condition-image-match, however it does a direct, byte-by-byte
 comparison rather than a digest-based comparison. Because it is
 possible that an early stop to check-content could reveal information
 through timing, suit-condition-check-content MUST be constant time:
 no early exits.

 The following pseudo-code described an example content checking
 algorithm:

 // content & component must be same length
 // returns 0 for match
 int check_content(content, component, length) {
 int residual = 0;
 for (i = 0; i < length; i++) {
 residual |= content[i] ^ component[i];
 }
 return residual;
 }

8.4.9.4. suit-condition-component-slot

 Verify that the slot index of the current component matches the slot
 index set in suit-parameter-component-slot (Section 8.4.8.8). This
 condition allows a manifest to select between several images to match
 a target slot.

8.4.9.5. suit-condition-abort

 Unconditionally fail. This operation is typically used in
 conjunction with suit-directive-try-each (Section 8.4.10.2).

8.4.10. SUIT_Directive

 Directives are used to define the behavior of the recipient.
 Directives include:

Moran, et al. Expires 8 August 2024 [Page 49]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +===============+====================================+===========+
 | Name | CDDL Structure | Reference |
 +===============+====================================+===========+
 | Set Component | suit-directive-set-component-index | Section |
 | Index | | 8.4.10.1 |
 +---------------+------------------------------------+-----------+
 | Try Each | suit-directive-try-each | Section |
 | | | 8.4.10.2 |
 +---------------+------------------------------------+-----------+
 | Override | suit-directive-override-parameters | Section |
 | Parameters | | 8.4.10.3 |
 +---------------+------------------------------------+-----------+
 | Fetch | suit-directive-fetch | Section |
 | | | 8.4.10.4 |
 +---------------+------------------------------------+-----------+
 | Copy | suit-directive-copy | Section |
 | | | 8.4.10.5 |
 +---------------+------------------------------------+-----------+
 | Write | suit-directive-write | Section |
 | | | 8.4.10.6 |
 +---------------+------------------------------------+-----------+
 | Invoke | suit-directive-invoke | Section |
 | | | 8.4.10.7 |
 +---------------+------------------------------------+-----------+
 | Run Sequence | suit-directive-run-sequence | Section |
 | | | 8.4.10.8 |
 +---------------+------------------------------------+-----------+
 | Swap | suit-directive-swap | Section |
 | | | 8.4.10.9 |
 +---------------+------------------------------------+-----------+
 | Custom | suit-command-custom | Section |
 | Directive | | 8.4.11 |
 +---------------+------------------------------------+-----------+

 Table 8

 The abstract description of these commands is defined in Section 6.4.

 When a Recipient executes a Directive, it MUST report a result code.
 If the Directive reports failure, then the current Command Sequence
 MUST be terminated.

8.4.10.1. suit-directive-set-component-index

 Set Component Index defines the component to which successive
 directives and conditions will apply. The Set Component Index
 arguments are described in Section 6.5.

Moran, et al. Expires 8 August 2024 [Page 50]

Internet-Draft CBOR-based SUIT Manifest February 2024

 If the following commands apply to ONE component, an unsigned integer
 index into the component list is used. If the following commands
 apply to ALL components, then the boolean value "True" is used
 instead of an index. If the following commands apply to more than
 one, but not all components, then an array of unsigned integer
 indices into the component list is used.

 If component index is set to True when a command is invoked, then the
 command applies to all components, in the order they appear in suit-
 common-components. When the Manifest Processor invokes a command
 while the component index is set to True, it must execute the command
 once for each possible component index, ensuring that the command
 receives the parameters corresponding to that component index.

8.4.10.2. suit-directive-try-each

 This command runs several SUIT_Command_Sequence instances, one after
 another, in a strict order, until one succeeds or the list is
 exhausted. Use this command to implement a "try/catch-try/catch"
 sequence. Manifest processors MAY implement this command.

 suit-parameter-soft-failure (Section 8.4.8.15) is initialized to True
 at the beginning of each sequence. If one sequence aborts due to a
 condition failure, the next is started. If no sequence completes
 without condition failure, then suit-directive-try-each returns an
 error. If a particular application calls for all sequences to fail
 and still continue, then an empty sequence (nil) can be added to the
 Try Each Argument.

 The argument to suit-directive-try-each is a list of
 SUIT_Command_Sequence. suit-directive-try-each does not specify a
 reporting policy.

8.4.10.3. suit-directive-override-parameters

 suit-directive-override-parameters replaces any listed parameters
 that are already set with the values that are provided in its
 argument. This allows a manifest to prevent replacement of critical
 parameters.

 Available parameters are defined in Section 8.4.8.

 suit-directive-override-parameters does not specify a reporting
 policy.

Moran, et al. Expires 8 August 2024 [Page 51]

Internet-Draft CBOR-based SUIT Manifest February 2024

8.4.10.4. suit-directive-fetch

 suit-directive-fetch instructs the manifest processor to obtain one
 or more manifests or payloads, as specified by the manifest index and
 component index, respectively.

 suit-directive-fetch can target one or more payloads. suit-directive-
 fetch retrieves each component listed in component-index. If
 component-index is True, instead of an integer, then all current
 manifest components are fetched. If component-index is an array,
 then all listed components are fetched.

 suit-directive-fetch typically takes no arguments unless one is
 needed to modify fetch behavior. If an argument is needed, it must
 be wrapped in a bstr and set in suit-parameter-fetch-arguments.

 suit-directive-fetch reads the URI parameter to find the source of
 the fetch it performs.

8.4.10.5. suit-directive-copy

 suit-directive-copy instructs the manifest processor to obtain one or
 more payloads, as specified by the component index. As described in
 Section 6.5 component index may be a single integer, a list of
 integers, or True. suit-directive-copy retrieves each component
 specified by the current component-index, respectively.

 suit-directive-copy reads its source from suit-parameter-source-
 component (Section 8.4.8.11).

 If either the source component parameter or the source component
 itself is absent, this command fails.

8.4.10.6. suit-directive-write

 This directive writes a small block of data, specified in
 Section 8.4.8.9, to a component.

 Encoding Considerations: Careful consideration must be taken to
 determine whether it is more appropriate to use an integrated payload
 or to use Section 8.4.8.9 for a particular application. While the
 encoding of suit-directive-write is smaller than an integrated
 payload, a large suit-parameter-content payload may prevent the
 manifest processor from holding the command sequence in memory while
 executing it.

Moran, et al. Expires 8 August 2024 [Page 52]

Internet-Draft CBOR-based SUIT Manifest February 2024

8.4.10.7. suit-directive-invoke

 suit-directive-invoke directs the manifest processor to transfer
 execution to the current Component Index. When this is invoked, the
 manifest processor MAY be unloaded and execution continues in the
 Component Index. Arguments are provided to suit-directive-invoke
 through suit-parameter-invoke-arguments (Section 8.4.8.12) and are
 forwarded to the executable code located in Component Index in an
 application-specific way. For example, this could form the Linux
 Kernel Command Line if booting a Linux device.

 If the executable code at Component Index is constructed in such a
 way that it does not unload the manifest processor, then the manifest
 processor MAY resume execution after the executable completes. This
 allows the manifest processor to invoke suitable helpers and to
 verify them with image conditions.

8.4.10.8. suit-directive-run-sequence

 To enable conditional commands, and to allow several strictly ordered
 sequences to be executed out-of-order, suit-directive-run-sequence
 allows the manifest processor to execute its argument as a
 SUIT_Command_Sequence. The argument must be wrapped in a bstr. This
 also allows a sequence of instructions to be iterated over, once for
 each current component index, when component-index = true or
 component-index = list. See Section 6.5.

 When a sequence is executed, any failure of a condition causes
 immediate termination of the sequence.

 When suit-directive-run-sequence completes, it forwards the last
 status code that occurred in the sequence. If the Soft Failure
 parameter is true, then suit-directive-run-sequence only fails when a
 directive in the argument sequence fails.

 suit-parameter-soft-failure (Section 8.4.8.15) defaults to False when
 suit-directive-run-sequence begins. Its value is discarded when
 suit-directive-run-sequence terminates.

8.4.10.9. suit-directive-swap

 suit-directive-swap instructs the manifest processor to move the
 source to the destination and the destination to the source
 simultaneously. Swap has nearly identical semantics to suit-
 directive-copy except that suit-directive-swap replaces the source
 with the current contents of the destination in an application-
 defined way. As with suit-directive-copy, if the source component is
 missing, this command fails.

Moran, et al. Expires 8 August 2024 [Page 53]

Internet-Draft CBOR-based SUIT Manifest February 2024

8.4.11. suit-command-custom

 suit-command-custom describes any proprietary, application specific
 condition or directive. This is encoded as a negative integer,
 chosen by the firmware developer. If additional information must be
 provided, it should be encoded in a custom parameter (a nint) (as
 described in Section 8.4.8). SUIT_Command_Custom is OPTIONAL to
 implement.

8.4.12. Integrity Check Values

 When the Text section or any Command Sequence of the Update Procedure
 is made severable, it is moved to the Envelope and replaced with a
 SUIT_Digest. The SUIT_Digest is computed over the entire bstr
 enclosing the Manifest element that has been moved to the Envelope.
 Each element that is made severable from the Manifest is placed in
 the Envelope. The keys for the envelope elements have the same
 values as the keys for the manifest elements.

 Each Integrity Check Value covers the corresponding Envelope Element
 as described in Section 8.5.

8.5. Severable Elements

 Because the manifest can be used by different actors at different
 times, some parts of the manifest can be removed or "Severed" without
 affecting later stages of the lifecycle. Severing of information is
 achieved by separating that information from the signed container so
 that removing it does not affect the signature. This means that
 ensuring integrity of severable parts of the manifest is a
 requirement for the signed portion of the manifest. Severing some
 parts makes it possible to discard parts of the manifest that are no
 longer necessary. This is important because it allows the storage
 used by the manifest to be greatly reduced. For example, no text
 size limits are needed if text is removed from the manifest prior to
 delivery to a constrained device.

Moran, et al. Expires 8 August 2024 [Page 54]

Internet-Draft CBOR-based SUIT Manifest February 2024

 At time of manifest creation, the Author MAY chose to make a manifest
 element severable by removing it from the manifest, encoding it in a
 bstr, and placing a SUIT_Digest of the bstr in the manifest so that
 it can still be authenticated. Making an element severable changes
 the digest of the manifest, so the signature MUST be computed after
 manifest elements are made severable. Only Manifest Elements with
 corresponding elements in the SUIT_Envelope can be made severable
 (see Section 11.1 for SUIT_Envelope elements). The SUIT_Digest
 typically consumes 4 bytes more than the size of the raw digest,
 therefore elements smaller than (Digest Bits)/8 + 4 SHOULD NOT be
 severable. Elements larger than (Digest Bits)/8 + 4 MAY be
 severable, while elements that are much larger than (Digest Bits)/8 +
 4 SHOULD be severable.

 Because of this, all command sequences in the manifest are encoded in
 a bstr so that there is a single code path needed for all command
 sequences.

9. Access Control Lists

 SUIT Manifest Processors are RECOMMENDED to use one of the following
 models for managing permissions in the manifest.

 First, the simplest model requires that all manifests are
 authenticated by a single trusted key. This mode has the advantage
 that only a root manifest needs to be authenticated, since all of its
 dependencies have digests included in the root manifest.

 This simplest model can be extended by adding key delegation without
 much increase in complexity.

 A second model requires an ACL to be presented to the Recipient,
 authenticated by a trusted party or stored on the Recipient. This
 ACL grants access rights for specific component IDs or Component
 Identifier prefixes to the listed identities or identity groups. Any
 identity can verify an image digest, but fetching into or fetching
 from a Component Identifier requires approval from the ACL.

 A third model allows a Recipient to provide even more fine-grained
 controls: The ACL lists the Component Identifier or Component
 Identifier prefix that an identity can use, and also lists the
 commands and parameters that the identity can use in combination with
 that Component Identifier.

Moran, et al. Expires 8 August 2024 [Page 55]

Internet-Draft CBOR-based SUIT Manifest February 2024

10. SUIT Digest Container

 The SUIT digest is a CBOR array containing two elements: an algorithm
 identifier and a bstr containing the bytes of the digest. Some forms
 of digest may require additional parameters. These can be added
 following the digest.

 The values of the algorithm identifier are found in the IANA "COSE
 Algorithms" registry [COSE_Alg], which was created by [RFC9054].
 SHA-256 (-16) MUST be implemented by all Manifest Processors.

 Any other algorithm defined in the IANA "COSE Algorithms" registry,
 such as SHA-512 (-44), MAY be implemented in a Manifest Processor.

11. IANA Considerations

 IANA is requested to:

 * allocate CBOR tag 107 (suggested) in the "CBOR Tags" registry for
 the SUIT Envelope.

 * allocate CBOR tag 1070 (suggested) in the "CBOR Tags" registry for
 the SUIT Manifest.

 * allocate media type application/suit-envelope in the "Media Types"
 registry, see below.

 * setup several registries as described below.

 IANA is requested to create a new category for Software Update for
 the Internet of Things (SUIT) and a page within this category for
 SUIT manifests.

 IANA is also requested to create several registries defined in the
 subsections below.

 For each registry, values 0-255 are Standards Action and 256 or
 greater are Expert Review. Negative values -255 to 0 are Standards
 Action, and -256 and lower are Private Use.

 New entries to those registries need to provide a label, a name and a
 reference to a specification that describes the functionality. More
 guidance on the expert review can be found below.

11.1. SUIT Envelope Elements

 IANA is requested to create a new registry for SUIT envelope
 elements.

Moran, et al. Expires 8 August 2024 [Page 56]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +=======+========================+======================+
 | Label | Name | Reference |
 +=======+========================+======================+
 | 2 | Authentication Wrapper | Section 8.3 of [TBD: |
 | | | this document] |
 +-------+------------------------+----------------------+
 | 3 | Manifest | Section 8.4 of [TBD: |
 | | | this document] |
 +-------+------------------------+----------------------+
 | 16 | Payload Fetch | Section 8.4.6 of |
 | | | [TBD: this document] |
 +-------+------------------------+----------------------+
 | 17 | Payload Installation | Section 8.4.6 of |
 | | | [TBD: this document] |
 +-------+------------------------+----------------------+
 | 23 | Text Description | Section 8.4.4 of |
 | | | [TBD: this document] |
 +-------+------------------------+----------------------+

 Table 9

11.2. SUIT Manifest Elements

 IANA is requested to create a new registry for SUIT manifest
 elements.

Moran, et al. Expires 8 August 2024 [Page 57]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +=======+==================+=======================================+
 | Label | Name | Reference |
 +=======+==================+=======================================+
 | 1 | Encoding Version | Section 8.4.1 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 2 | Sequence Number | Section 8.4.2 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 3 | Common Data | Section 8.4.5 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 4 | Reference URI | Section 8.4.3 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 7 | Image Validation | Section 8.4.6 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 8 | Image Loading | Section 8.4.6 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 9 | Image Invocation | Section 8.4.6 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 16 | Payload Fetch | Section 8.4.6 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 17 | Payload | Section 8.4.6 of [TBD: this document] |
 | | Installation | |
 +-------+------------------+---------------------------------------+
 | 23 | Text Description | Section 8.4.4 of [TBD: this document] |
 +-------+------------------+---------------------------------------+

 Table 10

11.3. SUIT Common Elements

 IANA is requested to create a new registry for SUIT common elements.

 +=======+=======================+======================+
 | Label | Name | Reference |
 +=======+=======================+======================+
 | 2 | Component Identifiers | Section 8.4.5 of |
 | | | [TBD: this document] |
 +-------+-----------------------+----------------------+
 | 4 | Common Command | Section 8.4.5 of |
 | | Sequence | [TBD: this document] |
 +-------+-----------------------+----------------------+

 Table 11

11.4. SUIT Commands

 IANA is requested to create a new registry for SUIT commands.

Moran, et al. Expires 8 August 2024 [Page 58]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +=======+===================+======================+
 | Label | Name | Reference |
 +=======+===================+======================+
 | 1 | Vendor Identifier | Section 8.4.9.1 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 2 | Class Identifier | Section 8.4.9.1 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 3 | Image Match | Section 8.4.9.2 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 4 | Reserved | |
 +-------+-------------------+----------------------+
 | 5 | Component Slot | Section 8.4.9.4 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 6 | Check Content | Section 8.4.9.3 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 12 | Set Component | Section 8.4.10.1 of |
 | | Index | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 13 | Reserved | |
 +-------+-------------------+----------------------+
 | 14 | Abort | |
 +-------+-------------------+----------------------+
 | 15 | Try Each | Section 8.4.10.2 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 16 | Reserved | |
 +-------+-------------------+----------------------+
 | 17 | Reserved | |
 +-------+-------------------+----------------------+
 | 18 | Write Content | Section 8.4.10.6 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 19 | Reserved | |
 +-------+-------------------+----------------------+
 | 20 | Override | Section 8.4.10.3 of |
 | | Parameters | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 21 | Fetch | Section 8.4.10.4 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 22 | Copy | Section 8.4.10.5 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+

Moran, et al. Expires 8 August 2024 [Page 59]

Internet-Draft CBOR-based SUIT Manifest February 2024

 | 23 | Invoke | Section 8.4.10.7 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 24 | Device Identifier | Section 8.4.9.1 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 25 | Reserved | |
 +-------+-------------------+----------------------+
 | 26 | Reserved | |
 +-------+-------------------+----------------------+
 | 27 | Reserved | |
 +-------+-------------------+----------------------+
 | 28 | Reserved | |
 +-------+-------------------+----------------------+
 | 29 | Reserved | |
 +-------+-------------------+----------------------+
 | 30 | Reserved | |
 +-------+-------------------+----------------------+
 | 31 | Swap | Section 8.4.10.9 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 32 | Run Sequence | Section 8.4.10.8 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+
 | 33 | Reserved | |
 +-------+-------------------+----------------------+
 | nint | Custom Command | Section 8.4.11 of |
 | | | [TBD: this document] |
 +-------+-------------------+----------------------+

 Table 12

11.5. SUIT Parameters

 IANA is requested to create a new registry for SUIT parameters.

 +=======+================+==+
 | Label | Name | Reference |
 +=======+================+==+
 | 1 | Vendor ID | Section 8.4.8.3 of [TBD: this document] |
 +-------+----------------+--+
 | 2 | Class ID | Section 8.4.8.4 of [TBD: this document] |
 +-------+----------------+--+
 | 3 | Image Digest | Section 8.4.8.6 of [TBD: this document] |
 +-------+----------------+--+
 | 4 | Reserved | |
 +-------+----------------+--+
 | 5 | Component Slot | Section 8.4.8.8 of [TBD: this document] |

Moran, et al. Expires 8 August 2024 [Page 60]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +-------+----------------+--+
 | 12 | Strict Order | Section 8.4.8.14 of [TBD: this |
 | | | document] |
 +-------+----------------+--+
 | 13 | Soft Failure | Section 8.4.8.15 of [TBD: this |
 | | | document] |
 +-------+----------------+--+
 | 14 | Image Size | Section 8.4.8.7 of [TBD: this document] |
 +-------+----------------+--+
 | 18 | Content | Section 8.4.8.9 of [TBD: this document] |
 +-------+----------------+--+
 | 19 | Reserved | |
 +-------+----------------+--+
 | 20 | Reserved | |
 +-------+----------------+--+
 | 21 | URI | Section 8.4.8.10 of [TBD: this |
 | | | document] |
 +-------+----------------+--+
 | 22 | Source | Section 8.4.8.11 of [TBD: this |
 | | Component | document] |
 +-------+----------------+--+
 | 23 | Invoke Args | Section 8.4.8.12 of [TBD: this |
 | | | document] |
 +-------+----------------+--+
 | 24 | Device ID | Section 8.4.8.5 of [TBD: this document] |
 +-------+----------------+--+
 | 26 | Reserved | |
 +-------+----------------+--+
 | 27 | Reserved | |
 +-------+----------------+--+
 | 28 | Reserved | |
 +-------+----------------+--+
 | 29 | Reserved | |
 +-------+----------------+--+
 | 30 | Reserved | |
 +-------+----------------+--+
 | nint | Custom | Section 8.4.8.16 of [TBD: this |
 | | | document] |
 +-------+----------------+--+

 Table 13

11.6. SUIT Text Values

 IANA is requested to create a new registry for SUIT text values.

Moran, et al. Expires 8 August 2024 [Page 61]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +=======+======================+======================+
 | Label | Name | Reference |
 +=======+======================+======================+
 | 1 | Manifest Description | Section 8.4.4 of |
 | | | [TBD: this document] |
 +-------+----------------------+----------------------+
 | 2 | Update Description | Section 8.4.4 of |
 | | | [TBD: this document] |
 +-------+----------------------+----------------------+
 | 3 | Manifest JSON Source | Section 8.4.4 of |
 | | | [TBD: this document] |
 +-------+----------------------+----------------------+
 | 4 | Manifest YAML Source | Section 8.4.4 of |
 | | | [TBD: this document] |
 +-------+----------------------+----------------------+
 | nint | Custom | Section 8.4.4 of |
 | | | [TBD: this document] |
 +-------+----------------------+----------------------+

 Table 14

11.7. SUIT Component Text Values

 IANA is requested to create a new registry for SUIT component text
 values.

Moran, et al. Expires 8 August 2024 [Page 62]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +=======+==================+=======================================+
 | Label | Name | Reference |
 +=======+==================+=======================================+
 | 1 | Vendor Name | Section 8.4.4 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 2 | Model Name | Section 8.4.4 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 3 | Vendor Domain | Section 8.4.4 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 4 | Model Info | Section 8.4.4 of [TBD: this document] |
 +-------+------------------+---------------------------------------+
 | 5 | Component | Section 8.4.4 of [TBD: this document] |
 | | Description | |
 +-------+------------------+---------------------------------------+
 | 6 | Component | Section 8.4.4 of [TBD: this document] |
 | | Version | |
 +-------+------------------+---------------------------------------+
 | 7 | Component | Section 8.4.4 of [TBD: this document] |
 | | Version Required | |
 +-------+------------------+---------------------------------------+
 | nint | Custom | Section 8.4.4 of [TBD: this document] |
 +-------+------------------+---------------------------------------+

 Table 15

11.8. Expert Review Instructions

 The IANA registries established in this document allow values to be
 added based on expert review. This section gives some general
 guidelines for what the experts should be looking for, but they are
 being designated as experts for a reason, so they should be given
 substantial latitude.

 Expert reviewers should take into consideration the following points:

 * Point squatting should be discouraged. Reviewers are encouraged
 to get sufficient information for registration requests to ensure
 that the usage is not going to duplicate one that is already
 registered, and that the point is likely to be used in
 deployments. The zones tagged as private use are intended for
 testing purposes and closed environments; code points in other
 ranges should not be assigned for testing.

Moran, et al. Expires 8 August 2024 [Page 63]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * Specifications are required for the standards track range of point
 assignment. Specifications should exist for all other ranges, but
 early assignment before a specification is available is considered
 to be permissible. When specifications are not provided, the
 description provided needs to have sufficient information to
 identify what the point is being used for.

 * Experts should take into account the expected usage of fields when
 approving point assignment. The fact that there is a range for
 standards track documents does not mean that a standards track
 document cannot have points assigned outside of that range. The
 length of the encoded value should be weighed against how many
 code points of that length are left, the size of device it will be
 used on, and the number of code points left that encode to that
 size.

11.9. Media Type Registration

 This section registers the ’application/suit-envelope’ media type in
 the "Media Types" registry. This media type are used to indicate
 that the content is a SUIT envelope.

Moran, et al. Expires 8 August 2024 [Page 64]

Internet-Draft CBOR-based SUIT Manifest February 2024

 Type name: application

 Subtype name: suit-envelope

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of [[This RFC]].

 Interoperability considerations: N/A

 Published specification: [[This RFC]]

 Applications that use this media type: Primarily used for
 Firmware and software updates although the content may
 also contain configuration data and other information
 related to software and firmware.

 Fragment identifier considerations: N/A

 Additional information:

 * Deprecated alias names for this type: N/A

 * Magic number(s): N/A

 * File extension(s): cbor

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Brendan Moran, <brendan.moran.ietf@gmail.com>

 Change Controller: IESG

 Provisional registration? No

Moran, et al. Expires 8 August 2024 [Page 65]

Internet-Draft CBOR-based SUIT Manifest February 2024

12. Security Considerations

 This document is about a manifest format protecting and describing
 how to retrieve, install, and invoke firmware images and as such it
 is part of a larger solution for delivering firmware updates to IoT
 devices. A detailed security treatment can be found in the
 architecture [RFC9019] and in the information model [RFC9124]
 documents.

 The security requirements outlined in [RFC9124] are addressed by this
 draft and its extensions. The specific mapping of requirements and
 information elements in [RFC9124] to manifest data structures is
 outlined in the table below:

 +============================+===================+============================
=======+
 |Security Requirement |Information Element|Implementation
 |
 +============================+===================+============================
=======+
 |REQ.SEC.SEQUENCE |Monotonic Sequence |Section 8.4.2
 |
 | |Number |
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.COMPATIBLE |Vendor ID |Section 8.4.9.1
 |
 | |Condition, Class ID|
 |
 | |Condition |
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.EXP |Expiration Time |[I-D.ietf-suit-update-manage
ment] |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.AUTHENTIC |Signature, Payload |Section 8.3, Section 8.4.9.2
 |
 | |Digests |
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.AUTH.IMG_TYPE |Payload Format |[I-D.ietf-suit-update-manage
ment] |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.AUTH.IMG_LOC |Storage Location |Section 8.4.5.1
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.AUTH.REMOTE_LOC |Payload Indicator |Section 8.4.8.10
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.AUTH.EXEC |Payload Digests, |Section 8.4.8.6, Section 8.4
.8.7 |

 | |Size |
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.AUTH.PRECURSOR |Precursor Image |Section 8.4.8.6
 |
 | |Digest |
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.AUTH.COMPATIBILITY |Authenticated |Section 8.4.8.3, Section 8.4
.8.4 |
 | |Vendor and Class |
 |
 | |IDs |
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.RIGHTS |Signature |Section 8.3, Section 9
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.IMG.CONFIDENTIALITY |Encryption Wrapper |[I-D.ietf-suit-firmware-encr
yption]|

Moran, et al. Expires 8 August 2024 [Page 66]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.ACCESS_CONTROL: |None |Section 9
 |
 |Access Control | |
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.MFST.CONFIDENTIALITY|Manifest Encryption|[I-D.ietf-suit-firmware-encr
yption]|
 | |Wrapper / Transport|
 |
 | |Security |
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.IMG.COMPLETE_DIGEST |Payload Digests |Implementation Consideration
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.REPORTING |None |[I-D.ietf-suit-report], [RFC
9334] |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.KEY.PROTECTION |None |Implementation Consideration
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.KEY.ROTATION |None |[I-D.tschofenig-cose-cwt-cha
in], |
 | | |Implementation Consideration
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.MFST.CHECK |None |Deployment Consideration
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.MFST.TRUSTED |None |Deployment Consideration
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.SEC.MFST.CONST |None |Implementation Consideration
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.MFST.PRE_CHECK |Additional |[I-D.ietf-suit-update-manage
ment] |
 | |Installation |
 |
 | |Instructions |
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.MFST.TEXT |Manifest Text |Section 8.4.4
 |
 | |Information |
 |

 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.MFST.OVERRIDE_REMOTE|Aliases |[RFC3986] Relative URIs,
 |
 | | |[I-D.ietf-suit-trust-domains
] |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.MFST.COMPONENT |Dependencies, |SUIT_Component_Identifier
 |
 | |StorageIdentifier, |(Section 8.4.5.1),
 |
 | |ComponentIdentifier|[I-D.ietf-suit-trust-domains
] |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.MFST.MULTI_AUTH |Signature |Section 8.3
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.IMG.FORMAT |Payload Format |[I-D.ietf-suit-update-manage
ment] |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.IMG.NESTED |Processing Steps |[I-D.ietf-suit-firmware-encr
yption]|
 | | |(Encryption Wrapper),
 |
 | | |[I-D.ietf-suit-update-manage
ment] |
 | | |(Payload Format)
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.IMG.VERSIONS |Required Image |[I-D.ietf-suit-update-manage
ment] |
 | |Version List |
 |

Moran, et al. Expires 8 August 2024 [Page 67]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.IMG.SELECT |XIP Address |Section 8.4.9.4
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.EXEC |Runtime Metadata |Section 8.4.6 (suit-invoke)
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.LOAD |Load-Time Metadata |Section 8.4.6 (suit-load)
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.PAYLOAD |Payload |Section 7.5
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.PARSE |Simple Parsing |Section 6.4
 |
 +----------------------------+-------------------+----------------------------
-------+
 |REQ.USE.DELEGATION |Delegation Chain |[I-D.tschofenig-cose-cwt-cha
in] |
 +----------------------------+-------------------+----------------------------
-------+

 Table 16

13. Acknowledgements

 We would like to thank the following persons for their support in
 designing this mechanism:

 * Milosch Meriac

 * Geraint Luff

 * Dan Ros

 * John-Paul Stanford

 * Hugo Vincent

 * Carsten Bormann

 * Frank Audun Kvamtrø

 * Krzysztof Chruciski

 * Andrzej Puzdrowski

 * Michael Richardson

 * David Brown

 * Emmanuel Baccelli

Moran, et al. Expires 8 August 2024 [Page 68]

Internet-Draft CBOR-based SUIT Manifest February 2024

 We would like to thank our responsible area director, Roman Danyliw,
 for his detailed review. Finally, we would like to thank our SUIT
 working group chairs (Dave Thaler, David Waltermire, Russ Housley)
 for their feedback and support.

14. References

14.1. Normative References

 [I-D.ietf-suit-mti]
 Moran, B., Rønningstad, O., and A. Tsukamoto, "Mandatory-
 to-Implement Algorithms for Authors and Recipients of
 Software Update for the Internet of Things manifests",
 Work in Progress, Internet-Draft, draft-ietf-suit-mti-04,
 23 January 2024, <https://datatracker.ietf.org/doc/html/
 draft-ietf-suit-mti-04>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/rfc/rfc4122>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8949>.

 [RFC9019] Moran, B., Tschofenig, H., Brown, D., and M. Meriac, "A
 Firmware Update Architecture for Internet of Things",
 RFC 9019, DOI 10.17487/RFC9019, April 2021,
 <https://www.rfc-editor.org/rfc/rfc9019>.

Moran, et al. Expires 8 August 2024 [Page 69]

Internet-Draft CBOR-based SUIT Manifest February 2024

 [RFC9052] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Structures and Process", STD 96, RFC 9052,
 DOI 10.17487/RFC9052, August 2022,
 <https://www.rfc-editor.org/rfc/rfc9052>.

 [RFC9054] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Hash Algorithms", RFC 9054, DOI 10.17487/RFC9054, August
 2022, <https://www.rfc-editor.org/rfc/rfc9054>.

 [RFC9090] Bormann, C., "Concise Binary Object Representation (CBOR)
 Tags for Object Identifiers", RFC 9090,
 DOI 10.17487/RFC9090, July 2021,
 <https://www.rfc-editor.org/rfc/rfc9090>.

 [RFC9124] Moran, B., Tschofenig, H., and H. Birkholz, "A Manifest
 Information Model for Firmware Updates in Internet of
 Things (IoT) Devices", RFC 9124, DOI 10.17487/RFC9124,
 January 2022, <https://www.rfc-editor.org/rfc/rfc9124>.

14.2. Informative References

 [COSE_Alg] "COSE Algorithms", 2023,
 <https://www.iana.org/assignments/cose/
 cose.xhtml#algorithms>.

 [I-D.ietf-suit-firmware-encryption]
 Tschofenig, H., Housley, R., Moran, B., Brown, D., and K.
 Takayama, "Encrypted Payloads in SUIT Manifests", Work in
 Progress, Internet-Draft, draft-ietf-suit-firmware-
 encryption-18, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-suit-
 firmware-encryption-18>.

 [I-D.ietf-suit-report]
 Moran, B. and H. Birkholz, "Secure Reporting of Update
 Status", Work in Progress, Internet-Draft, draft-ietf-
 suit-report-07, 11 September 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-suit-
 report-07>.

 [I-D.ietf-suit-trust-domains]
 Moran, B. and K. Takayama, "SUIT Manifest Extensions for
 Multiple Trust Domains", Work in Progress, Internet-Draft,
 draft-ietf-suit-trust-domains-05, 11 September 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-suit-
 trust-domains-05>.

Moran, et al. Expires 8 August 2024 [Page 70]

Internet-Draft CBOR-based SUIT Manifest February 2024

 [I-D.ietf-suit-update-management]
 Moran, B. and K. Takayama, "Update Management Extensions
 for Software Updates for Internet of Things (SUIT)
 Manifests", Work in Progress, Internet-Draft, draft-ietf-
 suit-update-management-05, 8 November 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-suit-
 update-management-05>.

 [I-D.tschofenig-cose-cwt-chain]
 Tschofenig, H. and B. Moran, "CBOR Object Signing and
 Encryption (COSE): Header Parameters for Carrying and
 Referencing Chains of CBOR Web Tokens (CWTs)", Work in
 Progress, Internet-Draft, draft-tschofenig-cose-cwt-chain-
 00, 4 January 2024,
 <https://datatracker.ietf.org/doc/html/draft-tschofenig-
 cose-cwt-chain-00>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/rfc/rfc7228>.

 [RFC9334] Birkholz, H., Thaler, D., Richardson, M., Smith, N., and
 W. Pan, "Remote ATtestation procedureS (RATS)
 Architecture", RFC 9334, DOI 10.17487/RFC9334, January
 2023, <https://www.rfc-editor.org/rfc/rfc9334>.

 [RFC9397] Pei, M., Tschofenig, H., Thaler, D., and D. Wheeler,
 "Trusted Execution Environment Provisioning (TEEP)
 Architecture", RFC 9397, DOI 10.17487/RFC9397, July 2023,
 <https://www.rfc-editor.org/rfc/rfc9397>.

 [YAML] "YAML Ain’t Markup Language", 2020, <https://yaml.org/>.

Appendix A. A. Full CDDL

 In order to create a valid SUIT Manifest document the structure of
 the corresponding CBOR message MUST adhere to the following CDDL data
 definition.

 To be valid, the following CDDL MUST have the COSE CDDL appended to
 it. The COSE CDDL can be obtained by following the directions in
 [RFC9052], Section 1.4.

Moran, et al. Expires 8 August 2024 [Page 71]

Internet-Draft CBOR-based SUIT Manifest February 2024

 SUIT_Envelope_Tagged = #6.107(SUIT_Envelope)
 SUIT_Envelope = {
 suit-authentication-wrapper => bstr .cbor SUIT_Authentication,
 suit-manifest => bstr .cbor SUIT_Manifest,
 SUIT_Severable_Manifest_Members,
 * SUIT_Integrated_Payload,
 * $$SUIT_Envelope_Extensions,
 }

 SUIT_Authentication = [
 bstr .cbor SUIT_Digest,
 * bstr .cbor SUIT_Authentication_Block
]

 SUIT_Digest = [
 suit-digest-algorithm-id : suit-cose-hash-algs,
 suit-digest-bytes : bstr,
 * $$SUIT_Digest-extensions
]

 SUIT_Authentication_Block /= COSE_Mac_Tagged
 SUIT_Authentication_Block /= COSE_Sign_Tagged
 SUIT_Authentication_Block /= COSE_Mac0_Tagged
 SUIT_Authentication_Block /= COSE_Sign1_Tagged

 SUIT_Severable_Manifest_Members = (
 ? suit-payload-fetch => bstr .cbor SUIT_Command_Sequence,
 ? suit-install => bstr .cbor SUIT_Command_Sequence,
 ? suit-text => bstr .cbor SUIT_Text_Map,
 * $$SUIT_severable-members-extensions,
)

 SUIT_Integrated_Payload = (suit-integrated-payload-key => bstr)
 suit-integrated-payload-key = tstr

 SUIT_Manifest_Tagged = #6.1070(SUIT_Manifest)

 SUIT_Manifest = {
 suit-manifest-version => 1,
 suit-manifest-sequence-number => uint,
 suit-common => bstr .cbor SUIT_Common,
 ? suit-reference-uri => tstr,
 SUIT_Unseverable_Members,
 SUIT_Severable_Members_Choice,
 * $$SUIT_Manifest_Extensions,
 }

 SUIT_Unseverable_Members = (

Moran, et al. Expires 8 August 2024 [Page 72]

Internet-Draft CBOR-based SUIT Manifest February 2024

 ? suit-validate => bstr .cbor SUIT_Command_Sequence,
 ? suit-load => bstr .cbor SUIT_Command_Sequence,
 ? suit-invoke => bstr .cbor SUIT_Command_Sequence,
 * $$unseverable-manifest-member-extensions,
)

 SUIT_Severable_Members_Choice = (
 ? suit-payload-fetch => SUIT_Digest /
 bstr .cbor SUIT_Command_Sequence,
 ? suit-install => SUIT_Digest / bstr .cbor SUIT_Command_Sequence,
 ? suit-text => SUIT_Digest / bstr .cbor SUIT_Text_Map,
 * $$severable-manifest-members-choice-extensions
)

 SUIT_Common = {
 ? suit-components => SUIT_Components,
 ? suit-shared-sequence => bstr .cbor SUIT_Shared_Sequence,
 * $$SUIT_Common-extensions,
 }

 SUIT_Components = [+ SUIT_Component_Identifier]

 ;REQUIRED to implement:
 suit-cose-hash-algs /= cose-alg-sha-256

 ;OPTIONAL to implement:
 suit-cose-hash-algs /= cose-alg-shake128
 suit-cose-hash-algs /= cose-alg-sha-384
 suit-cose-hash-algs /= cose-alg-sha-512
 suit-cose-hash-algs /= cose-alg-shake256

 SUIT_Component_Identifier = [* bstr]

 SUIT_Shared_Sequence = [
 + (SUIT_Condition // SUIT_Shared_Commands)
]

 SUIT_Shared_Commands //= (suit-directive-set-component-index, IndexArg)
 SUIT_Shared_Commands //= (suit-directive-run-sequence,
 bstr .cbor SUIT_Shared_Sequence)
 SUIT_Shared_Commands //= (suit-directive-try-each,
 SUIT_Directive_Try_Each_Argument_Shared)
 SUIT_Shared_Commands //= (suit-directive-override-parameters,
 {+ $$SUIT_Parameters})

 IndexArg /= uint
 IndexArg /= true
 IndexArg /= [+uint]

Moran, et al. Expires 8 August 2024 [Page 73]

Internet-Draft CBOR-based SUIT Manifest February 2024

 SUIT_Directive_Try_Each_Argument_Shared = [
 2* bstr .cbor SUIT_Shared_Sequence,
 ?nil
]

 SUIT_Command_Sequence = [+ (
 SUIT_Condition // SUIT_Directive // SUIT_Command_Custom
)]

 SUIT_Command_Custom = (suit-command-custom, bstr/tstr/int/nil)
 SUIT_Condition //= (suit-condition-vendor-identifier, SUIT_Rep_Policy)
 SUIT_Condition //= (suit-condition-class-identifier, SUIT_Rep_Policy)
 SUIT_Condition //= (suit-condition-device-identifier, SUIT_Rep_Policy)
 SUIT_Condition //= (suit-condition-image-match, SUIT_Rep_Policy)
 SUIT_Condition //= (suit-condition-component-slot, SUIT_Rep_Policy)
 SUIT_Condition //= (suit-condition-check-content, SUIT_Rep_Policy)
 SUIT_Condition //= (suit-condition-abort, SUIT_Rep_Policy)

 SUIT_Directive //= (suit-directive-write, SUIT_Rep_Policy)
 SUIT_Directive //= (suit-directive-set-component-index, IndexArg)
 SUIT_Directive //= (suit-directive-run-sequence,
 bstr .cbor SUIT_Command_Sequence)
 SUIT_Directive //= (suit-directive-try-each,
 SUIT_Directive_Try_Each_Argument)
 SUIT_Directive //= (suit-directive-override-parameters,
 {+ $$SUIT_Parameters})
 SUIT_Directive //= (suit-directive-fetch, SUIT_Rep_Policy)
 SUIT_Directive //= (suit-directive-copy, SUIT_Rep_Policy)
 SUIT_Directive //= (suit-directive-swap, SUIT_Rep_Policy)
 SUIT_Directive //= (suit-directive-invoke, SUIT_Rep_Policy)

 SUIT_Directive_Try_Each_Argument = [
 2* bstr .cbor SUIT_Command_Sequence,
 ?nil
]

 SUIT_Rep_Policy = uint .bits suit-reporting-bits

 suit-reporting-bits = &(
 suit-send-record-success : 0,
 suit-send-record-failure : 1,
 suit-send-sysinfo-success : 2,
 suit-send-sysinfo-failure : 3
)

 $$SUIT_Parameters //= (suit-parameter-vendor-identifier =>
 (RFC4122_UUID / cbor-pen))

Moran, et al. Expires 8 August 2024 [Page 74]

Internet-Draft CBOR-based SUIT Manifest February 2024

 cbor-pen = #6.112(bstr)

 $$SUIT_Parameters //= (suit-parameter-class-identifier => RFC4122_UUID)
 $$SUIT_Parameters //= (suit-parameter-image-digest
 => bstr .cbor SUIT_Digest)
 $$SUIT_Parameters //= (suit-parameter-image-size => uint)
 $$SUIT_Parameters //= (suit-parameter-component-slot => uint)

 $$SUIT_Parameters //= (suit-parameter-uri => tstr)
 $$SUIT_Parameters //= (suit-parameter-source-component => uint)
 $$SUIT_Parameters //= (suit-parameter-invoke-args => bstr)

 $$SUIT_Parameters //= (suit-parameter-device-identifier => RFC4122_UUID)

 $$SUIT_Parameters //= (suit-parameter-custom => int/bool/tstr/bstr)

 $$SUIT_Parameters //= (suit-parameter-content => bstr)
 $$SUIT_Parameters //= (suit-parameter-strict-order => bool)
 $$SUIT_Parameters //= (suit-parameter-soft-failure => bool)

 RFC4122_UUID = bstr .size 16

 tag38-ltag = text .regexp "[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*"
 SUIT_Text_Map = {
 + tag38-ltag => SUIT_Text_LMap
 }
 SUIT_Text_LMap = {
 SUIT_Text_Keys,
 * SUIT_Component_Identifier => {
 SUIT_Text_Component_Keys
 }
 }

 SUIT_Text_Component_Keys = (
 ? suit-text-vendor-name => tstr,
 ? suit-text-model-name => tstr,
 ? suit-text-vendor-domain => tstr,
 ? suit-text-model-info => tstr,
 ? suit-text-component-description => tstr,
 ? suit-text-component-version => tstr,
 * $$suit-text-component-key-extensions
)

 SUIT_Text_Keys = (
 ? suit-text-manifest-description => tstr,
 ? suit-text-update-description => tstr,
 ? suit-text-manifest-json-source => tstr,
 ? suit-text-manifest-yaml-source => tstr,

Moran, et al. Expires 8 August 2024 [Page 75]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * $$suit-text-key-extensions
)

 suit-authentication-wrapper = 2
 suit-manifest = 3

 ;REQUIRED to implement:
 cose-alg-sha-256 = -16

 ;OPTIONAL to implement:
 cose-alg-shake128 = -18
 cose-alg-sha-384 = -43
 cose-alg-sha-512 = -44
 cose-alg-shake256 = -45

 ;Unseverable, recipient-necessary
 suit-manifest-version = 1
 suit-manifest-sequence-number = 2
 suit-common = 3
 suit-reference-uri = 4
 suit-validate = 7
 suit-load = 8
 suit-invoke = 9
 ;Severable, recipient-necessary
 suit-payload-fetch = 16
 suit-install = 17
 ;Severable, recipient-unnecessary
 suit-text = 23

 suit-components = 2
 suit-shared-sequence = 4

 suit-command-custom = nint

 suit-condition-vendor-identifier = 1
 suit-condition-class-identifier = 2
 suit-condition-image-match = 3
 suit-condition-component-slot = 5
 suit-condition-check-content = 6

 suit-condition-abort = 14
 suit-condition-device-identifier = 24

 suit-directive-set-component-index = 12
 suit-directive-try-each = 15
 suit-directive-write = 18
 suit-directive-override-parameters = 20
 suit-directive-fetch = 21

Moran, et al. Expires 8 August 2024 [Page 76]

Internet-Draft CBOR-based SUIT Manifest February 2024

 suit-directive-copy = 22
 suit-directive-invoke = 23

 suit-directive-swap = 31
 suit-directive-run-sequence = 32

 suit-parameter-vendor-identifier = 1
 suit-parameter-class-identifier = 2
 suit-parameter-image-digest = 3
 suit-parameter-component-slot = 5

 suit-parameter-strict-order = 12
 suit-parameter-soft-failure = 13
 suit-parameter-image-size = 14
 suit-parameter-content = 18

 suit-parameter-uri = 21
 suit-parameter-source-component = 22
 suit-parameter-invoke-args = 23

 suit-parameter-device-identifier = 24

 suit-parameter-custom = nint

 suit-text-manifest-description = 1
 suit-text-update-description = 2
 suit-text-manifest-json-source = 3
 suit-text-manifest-yaml-source = 4

 suit-text-vendor-name = 1
 suit-text-model-name = 2
 suit-text-vendor-domain = 3
 suit-text-model-info = 4
 suit-text-component-description = 5
 suit-text-component-version = 6

Appendix B. B. Examples

 The following examples demonstrate a small subset of the
 functionality of the manifest. Even a simple manifest processor can
 execute most of these manifests.

 The examples are signed using the following ECDSA secp256r1 key:

Moran, et al. Expires 8 August 2024 [Page 77]

Internet-Draft CBOR-based SUIT Manifest February 2024

 -----BEGIN PRIVATE KEY-----
 MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgApZYjZCUGLM50VBC
 CjYStX+09jGmnyJPrpDLTz/hiXOhRANCAASEloEarguqq9JhVxie7NomvqqL8Rtv
 P+bitWWchdvArTsfKktsCYExwKNtrNHXi9OB3N+wnAUtszmR23M4tKiW
 -----END PRIVATE KEY-----

 The corresponding public key can be used to verify these examples:

 -----BEGIN PUBLIC KEY-----
 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhJaBGq4LqqvSYVcYnuzaJr6qi/Eb
 bz/m4rVlnIXbwK07HypLbAmBMcCjbazR14vTgdzfsJwFLbM5kdtzOLSolg==
 -----END PUBLIC KEY-----

 Each example uses SHA256 as the digest function.

 Note that reporting policies are declared for each non-flow-control
 command in these examples. The reporting policies used in the
 examples are described in the following tables.

 +=============================+==========+
 | Policy | Label |
 +=============================+==========+
 | suit-send-record-on-success | Rec-Pass |
 +-----------------------------+----------+
 | suit-send-record-on-failure | Rec-Fail |
 +-----------------------------+----------+
 | suit-send-sysinfo-success | Sys-Pass |
 +-----------------------------+----------+
 | suit-send-sysinfo-failure | Sys-Fail |
 +-----------------------------+----------+

 Table 17

Moran, et al. Expires 8 August 2024 [Page 78]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +===================+==========+==========+==========+==========+
 | Command | Sys-Fail | Sys-Pass | Rec-Fail | Rec-Pass |
 +===================+==========+==========+==========+==========+
 | suit-condition- | 1 | 1 | 1 | 1 |
 | vendor-identifier | | | | |
 +-------------------+----------+----------+----------+----------+
 | suit-condition- | 1 | 1 | 1 | 1 |
 | class-identifier | | | | |
 +-------------------+----------+----------+----------+----------+
 | suit-condition- | 1 | 1 | 1 | 1 |
 | image-match | | | | |
 +-------------------+----------+----------+----------+----------+
 | suit-condition- | 0 | 1 | 0 | 1 |
 | component-slot | | | | |
 +-------------------+----------+----------+----------+----------+
 | suit-directive- | 0 | 0 | 1 | 0 |
 | fetch | | | | |
 +-------------------+----------+----------+----------+----------+
 | suit-directive- | 0 | 0 | 1 | 0 |
 | copy | | | | |
 +-------------------+----------+----------+----------+----------+
 | suit-directive- | 0 | 0 | 1 | 0 |
 | invoke | | | | |
 +-------------------+----------+----------+----------+----------+

 Table 18

B.1. Example 0: Secure Boot

 This example covers the following templates:

 * Compatibility Check (Section 7.1)

 * Secure Boot (Section 7.2)

 It also serves as the minimum example.

 107({
 / authentication-wrapper / 2:<< [
 / digest: / << [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’6658ea560262696dd1f13b782239a064da7c6c5cbaf52fded428a6fc83c7e5af’
] >>,
 / signature: / << 18([
 / protected / << {
 / alg / 1:-7 / "ES256" /,
 } >>,

Moran, et al. Expires 8 August 2024 [Page 79]

Internet-Draft CBOR-based SUIT Manifest February 2024

 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h’56acf3c133338f558bbbac1e73a62bffac
 2a0067d0f7a2e860e20b9119a61d964af04fb56c2c7618d3d74558c14f5daf7cafa877
 1b34ec42160f5c94250a57eb’
]) >>
]
] >>,
 / manifest / 3:<< {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:0,
 / common / 3:<< {
 / components / 2:[
 [h’00’]
],
 / shared-sequence / 4:<< [
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h’fa6b4a53d5ad5fdfbe9de663e4d41ffe’ / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h’1492af1425695e48bf429b2d51f2ab45’ /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:<< [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
] >>,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15
] >>,
 } >>,
 / validate / 7:<< [
 / condition-image-match / 3,15
] >>,
 / run / 9:<< [
 / directive-run / 23,2
] >>,
 } >>,
 })

 Total size of Envelope without COSE authentication object: 161

 Envelope:

Moran, et al. Expires 8 August 2024 [Page 80]

Internet-Draft CBOR-based SUIT Manifest February 2024

 d86ba2025827815824822f58206658ea560262696dd1f13b782239a064da
 7c6c5cbaf52fded428a6fc83c7e5af035871a50101020003585fa2028181
 41000458568614a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492
 af1425695e48bf429b2d51f2ab45035824822f5820001122334455667788
 99aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f02
 0f074382030f0943821702

 Total size of Envelope with COSE authentication object: 237

 Envelope with COSE authentication object:

 d86ba2025873825824822f58206658ea560262696dd1f13b782239a064da
 7c6c5cbaf52fded428a6fc83c7e5af584ad28443a10126a0f6584056acf3
 c133338f558bbbac1e73a62bffac2a0067d0f7a2e860e20b9119a61d964a
 f04fb56c2c7618d3d74558c14f5daf7cafa8771b34ec42160f5c94250a57
 eb035871a50101020003585fa202818141000458568614a40150fa6b4a53
 d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
 035824822f582000112233445566778899aabbccddeeff0123456789abcd
 effedcba98765432100e1987d0010f020f074382030f0943821702

B.2. Example 1: Simultaneous Download and Installation of Payload

 This example covers the following templates:

 * Compatibility Check (Section 7.1)

 * Firmware Download (Section 7.3)

 Simultaneous download and installation of payload. No secure boot is
 present in this example to demonstrate a download-only manifest.

 107({
 / authentication-wrapper / 2:<< [
 / digest: / << [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’ef14b7091e8adae8aa3bb6fca1d64fb37e19dcf8b35714cfdddc5968c80ff50e’
] >>,
 / signature: / << 18([
 / protected / << {
 / alg / 1:-7 / "ES256" /,
 } >>,
 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h’9c44e07766a26fd33d41ded913363c0ec7
 465c06c30be70df32a73a4dea1bbb353d880d9d1813f7b6f0c6987dc4b289838468477
 9c17ca9062085487254cf203’

Moran, et al. Expires 8 August 2024 [Page 81]

Internet-Draft CBOR-based SUIT Manifest February 2024

]) >>
]
] >>,
 / manifest / 3:<< {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:1,
 / common / 3:<< {
 / components / 2:[
 [h’00’]
],
 / shared-sequence / 4:<< [
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h’fa6b4a53d5ad5fdfbe9de663e4d41ffe’ / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h’1492af1425695e48bf429b2d51f2ab45’ /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:<< [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
] >>,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15
] >>,
 } >>,
 / validate / 7:<< [
 / condition-image-match / 3,15
] >>,
 / install / 17:<< [
 / directive-override-parameters / 20,{
 / uri / 21:’http://example.com/file.bin’,
 } ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15
] >>,
 } >>,
 })

 Total size of Envelope without COSE authentication object: 196

 Envelope:

Moran, et al. Expires 8 August 2024 [Page 82]

Internet-Draft CBOR-based SUIT Manifest February 2024

 d86ba2025827815824822f5820ef14b7091e8adae8aa3bb6fca1d64fb37e
 19dcf8b35714cfdddc5968c80ff50e035894a50101020103585fa2028181
 41000458568614a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492
 af1425695e48bf429b2d51f2ab45035824822f5820001122334455667788
 99aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f02
 0f074382030f1158258614a115781b687474703a2f2f6578616d706c652e
 636f6d2f66696c652e62696e1502030f

 Total size of Envelope with COSE authentication object: 272

 Envelope with COSE authentication object:

 d86ba2025873825824822f5820ef14b7091e8adae8aa3bb6fca1d64fb37e
 19dcf8b35714cfdddc5968c80ff50e584ad28443a10126a0f658409c44e0
 7766a26fd33d41ded913363c0ec7465c06c30be70df32a73a4dea1bbb353
 d880d9d1813f7b6f0c6987dc4b2898384684779c17ca9062085487254cf2
 03035894a50101020103585fa202818141000458568614a40150fa6b4a53
 d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
 035824822f582000112233445566778899aabbccddeeff0123456789abcd
 effedcba98765432100e1987d0010f020f074382030f1158258614a11578
 1b687474703a2f2f6578616d706c652e636f6d2f66696c652e62696e1502
 030f

B.3. Example 2: Simultaneous Download, Installation, Secure Boot,
 Severed Fields

 This example covers the following templates:

 * Compatibility Check (Section 7.1)

 * Secure Boot (Section 7.2)

 * Firmware Download (Section 7.3)

 This example also demonstrates severable elements (Section 5.4), and
 text (Section 8.4.4).

 107({
 / authentication-wrapper / 2:<< [
 / digest: / << [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’56c894f743ca34ff0ae76271f964dcb8c139edb4a8dc64b01444504620be28a8’
] >>,
 / signature: / << 18([
 / protected / << {
 / alg / 1:-7 / "ES256" /,
 } >>,

Moran, et al. Expires 8 August 2024 [Page 83]

Internet-Draft CBOR-based SUIT Manifest February 2024

 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h’d6fc4cd4119a261c9e7f782226a235aa06
 960781a537064131238203e9fcde17f9a04e09f6ace03ef861971ef3d4b519558cdd96
 6a6303e7e82783d6b2a99cf2’
]) >>
]
] >>,
 / manifest / 3:<< {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:2,
 / common / 3:<< {
 / components / 2:[
 [h’00’]
],
 / shared-sequence / 4:<< [
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h’fa6b4a53d5ad5fdfbe9de663e4d41ffe’ / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h’1492af1425695e48bf429b2d51f2ab45’ /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:<< [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
] >>,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15
] >>,
 } >>,
 / reference-uri / 4:’https://git.io/JJYoj’,
 / validate / 7:<< [
 / condition-image-match / 3,15
] >>,
 / run / 9:<< [
 / directive-run / 23,2
] >>,
 / install / 17:[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’cfa90c5c58595e7f5119a72f803fd0370b3e6abbec6315cd38f63135281bc498’
],
 / text / 23:[

Moran, et al. Expires 8 August 2024 [Page 84]

Internet-Draft CBOR-based SUIT Manifest February 2024

 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’302196d452bce5e8bfeaf71e395645ede6d365e63507a081379721eeecf00007’
],
 } >>,
 })

 Total size of the Envelope without COSE authentication object or
 Severable Elements: 257

 Envelope:

 d86ba2025827815824822f582056c894f743ca34ff0ae76271f964dcb8c1
 39edb4a8dc64b01444504620be28a80358d1a80101020203585fa2028181
 41000458568614a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492
 af1425695e48bf429b2d51f2ab45035824822f5820001122334455667788
 99aabbccddeeff0123456789abcdeffedcba98765432100e1987d0010f02
 0f047468747470733a2f2f6769742e696f2f4a4a596f6a074382030f0943
 82170211822f5820cfa90c5c58595e7f5119a72f803fd0370b3e6abbec63
 15cd38f63135281bc49817822f5820302196d452bce5e8bfeaf71e395645
 ede6d365e63507a081379721eeecf00007

 Total size of the Envelope with COSE authentication object but
 without Severable Elements: 333

 Envelope:

 d86ba2025873825824822f582056c894f743ca34ff0ae76271f964dcb8c1
 39edb4a8dc64b01444504620be28a8584ad28443a10126a0f65840d6fc4c
 d4119a261c9e7f782226a235aa06960781a537064131238203e9fcde17f9
 a04e09f6ace03ef861971ef3d4b519558cdd966a6303e7e82783d6b2a99c
 f20358d1a80101020203585fa202818141000458568614a40150fa6b4a53
 d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
 035824822f582000112233445566778899aabbccddeeff0123456789abcd
 effedcba98765432100e1987d0010f020f047468747470733a2f2f676974
 2e696f2f4a4a596f6a074382030f094382170211822f5820cfa90c5c5859
 5e7f5119a72f803fd0370b3e6abbec6315cd38f63135281bc49817822f58
 20302196d452bce5e8bfeaf71e395645ede6d365e63507a081379721eeec
 f00007

 Total size of Envelope with COSE authentication object and Severable
 Elements: 923

 Envelope with COSE authentication object:

Moran, et al. Expires 8 August 2024 [Page 85]

Internet-Draft CBOR-based SUIT Manifest February 2024

 d86ba4025873825824822f582056c894f743ca34ff0ae76271f964dcb8c1
 39edb4a8dc64b01444504620be28a8584ad28443a10126a0f65840d6fc4c
 d4119a261c9e7f782226a235aa06960781a537064131238203e9fcde17f9
 a04e09f6ace03ef861971ef3d4b519558cdd966a6303e7e82783d6b2a99c
 f20358d1a80101020203585fa202818141000458568614a40150fa6b4a53
 d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab45
 035824822f582000112233445566778899aabbccddeeff0123456789abcd
 effedcba98765432100e1987d0010f020f047468747470733a2f2f676974
 2e696f2f4a4a596f6a074382030f094382170211822f5820cfa90c5c5859
 5e7f5119a72f803fd0370b3e6abbec6315cd38f63135281bc49817822f58
 20302196d452bce5e8bfeaf71e395645ede6d365e63507a081379721eeec
 f0000711583c8614a1157832687474703a2f2f6578616d706c652e636f6d
 2f766572792f6c6f6e672f706174682f746f2f66696c652f66696c652e62
 696e1502030f1759020ba165656e2d5553a20179019d2323204578616d70
 6c6520323a2053696d756c74616e656f757320446f776e6c6f61642c2049
 6e7374616c6c6174696f6e2c2053656375726520426f6f742c2053657665
 726564204669656c64730a0a2020202054686973206578616d706c652063
 6f766572732074686520666f6c6c6f77696e672074656d706c617465733a
 0a202020200a202020202a20436f6d7061746962696c6974792043686563
 6b20287b7b74656d706c6174652d636f6d7061746962696c6974792d6368
 65636b7d7d290a202020202a2053656375726520426f6f7420287b7b7465
 6d706c6174652d7365637572652d626f6f747d7d290a202020202a204669
 726d7761726520446f776e6c6f616420287b7b6669726d776172652d646f
 776e6c6f61642d74656d706c6174657d7d290a202020200a202020205468
 6973206578616d706c6520616c736f2064656d6f6e737472617465732073
 6576657261626c6520656c656d656e747320287b7b6f76722d7365766572
 61626c657d7d292c20616e64207465787420287b7b6d616e69666573742d
 6469676573742d746578747d7d292e814100a2036761726d2e636f6d0578
 525468697320636f6d706f6e656e7420697320612064656d6f6e73747261
 74696f6e2e205468652064696765737420697320612073616d706c652070
 61747465726e2c206e6f742061207265616c206f6e652e

B.4. Example 3: A/B images

 This example covers the following templates:

 * Compatibility Check (Section 7.1)

 * Secure Boot (Section 7.2)

 * Firmware Download (Section 7.3)

 * A/B Image Template (Section 7.7)

Moran, et al. Expires 8 August 2024 [Page 86]

Internet-Draft CBOR-based SUIT Manifest February 2024

 107({
 / authentication-wrapper / 2:<< [
 / digest: / << [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’b3e6a52776bf3ed218feba031c609c98260e1a52fc1f019683edb6d1c5c4a379’
] >>,
 / signature: / << 18([
 / protected / << {
 / alg / 1:-7 / "ES256" /,
 } >>,
 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h’a72d9dabc04af139a0a5b3ef775234b9ed
 1c2390e03ffa1454458b2394cca16aced37039bbf84ea898a54a242d0d04883f22135a
 9b98efe042015041f0142d4e’
]) >>
]
] >>,
 / manifest / 3:<< {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:3,
 / common / 3:<< {
 / components / 2:[
 [h’00’]
],
 / shared-sequence / 4:<< [
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h’fa6b4a53d5ad5fdfbe9de663e4d41ffe’ / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h’1492af1425695e48bf429b2d51f2ab45’ /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 } ,
 / directive-try-each / 15,[
 << [
 / directive-override-parameters / 20,{
 / slot / 5:0,
 } ,
 / condition-component-slot / 5,5 ,
 / directive-override-parameters / 20,{
 / image-digest / 3:<< [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
] >>,

Moran, et al. Expires 8 August 2024 [Page 87]

Internet-Draft CBOR-based SUIT Manifest February 2024

 / image-size / 14:34768,
 }
] >> ,
 << [
 / directive-override-parameters / 20,{
 / slot / 5:1,
 } ,
 / condition-component-slot / 5,5 ,
 / directive-override-parameters / 20,{
 / image-digest / 3:<< [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’0123456789abcdeffedcba987654321000112233445566778899aabbccddeeff’
] >>,
 / image-size / 14:76834,
 }
] >>
] ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15
] >>,
 } >>,
 / validate / 7:<< [
 / condition-image-match / 3,15
] >>,
 / install / 17:<< [
 / directive-try-each / 15,[
 << [
 / directive-override-parameters / 20,{
 / slot / 5:0,
 } ,
 / condition-component-slot / 5,5 ,
 / directive-override-parameters / 20,{
 / uri / 21:’http://example.com/file1.bin’,
 }
] >> ,
 << [
 / directive-override-parameters / 20,{
 / slot / 5:1,
 } ,
 / condition-component-slot / 5,5 ,
 / directive-override-parameters / 20,{
 / uri / 21:’http://example.com/file2.bin’,
 }
] >>
] ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15

Moran, et al. Expires 8 August 2024 [Page 88]

Internet-Draft CBOR-based SUIT Manifest February 2024

] >>,
 } >>,
 })

 Total size of Envelope without COSE authentication object: 320

 Envelope:

 d86ba2025827815824822f5820b3e6a52776bf3ed218feba031c609c9826
 0e1a52fc1f019683edb6d1c5c4a3790359010fa5010102030358a4a20281
 81410004589b8814a20150fa6b4a53d5ad5fdfbe9de663e4d41ffe025014
 92af1425695e48bf429b2d51f2ab450f8258348614a10500050514a20358
 24822f582000112233445566778899aabbccddeeff0123456789abcdeffe
 dcba98765432100e1987d058368614a10501050514a2035824822f582001
 23456789abcdeffedcba987654321000112233445566778899aabbccddee
 ff0e1a00012c22010f020f074382030f11585b860f8258288614a1050005
 0514a115781c687474703a2f2f6578616d706c652e636f6d2f66696c6531
 2e62696e58288614a10501050514a115781c687474703a2f2f6578616d70
 6c652e636f6d2f66696c65322e62696e1502030f

 Total size of Envelope with COSE authentication object: 396

 Envelope with COSE authentication object:

 d86ba2025873825824822f5820b3e6a52776bf3ed218feba031c609c9826
 0e1a52fc1f019683edb6d1c5c4a379584ad28443a10126a0f65840a72d9d
 abc04af139a0a5b3ef775234b9ed1c2390e03ffa1454458b2394cca16ace
 d37039bbf84ea898a54a242d0d04883f22135a9b98efe042015041f0142d
 4e0359010fa5010102030358a4a2028181410004589b8814a20150fa6b4a
 53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab
 450f8258348614a10500050514a2035824822f5820001122334455667788
 99aabbccddeeff0123456789abcdeffedcba98765432100e1987d0583686
 14a10501050514a2035824822f58200123456789abcdeffedcba98765432
 1000112233445566778899aabbccddeeff0e1a00012c22010f020f074382
 030f11585b860f8258288614a10500050514a115781c687474703a2f2f65
 78616d706c652e636f6d2f66696c65312e62696e58288614a10501050514
 a115781c687474703a2f2f6578616d706c652e636f6d2f66696c65322e62
 696e1502030f

B.5. Example 4: Load from External Storage

 This example covers the following templates:

 * Compatibility Check (Section 7.1)

 * Secure Boot (Section 7.2)

 * Firmware Download (Section 7.3)

Moran, et al. Expires 8 August 2024 [Page 89]

Internet-Draft CBOR-based SUIT Manifest February 2024

 * Install (Section 7.4)

 * Load (Section 7.6)

 107({
 / authentication-wrapper / 2:<< [
 / digest: / << [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’838eb848698c9d9dd29b5930102ea1f29743857d975f52ed4d19589b821e82cf’
] >>,
 / signature: / << 18([
 / protected / << {
 / alg / 1:-7 / "ES256" /,
 } >>,
 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h’42e4185517635842a5715c63772436588c
 c366d6a4c2beff3f3e0736806062c4208a756da9cfb0cc1325168eb3c743834b5f5a5d
 c00b33acd2a9073c6eb09e5c’
]) >>
]
] >>,
 / manifest / 3:<< {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:4,
 / common / 3:<< {
 / components / 2:[
 [h’00’] ,
 [h’02’] ,
 [h’01’]
],
 / shared-sequence / 4:<< [
 / directive-set-component-index / 12,0 ,
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h’fa6b4a53d5ad5fdfbe9de663e4d41ffe’ / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h’1492af1425695e48bf429b2d51f2ab45’ /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:<< [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
] >>,
 / image-size / 14:34768,

Moran, et al. Expires 8 August 2024 [Page 90]

Internet-Draft CBOR-based SUIT Manifest February 2024

 } ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15
] >>,
 } >>,
 / validate / 7:<< [
 / directive-set-component-index / 12,0 ,
 / condition-image-match / 3,15
] >>,
 / load / 8:<< [
 / directive-set-component-index / 12,2 ,
 / directive-override-parameters / 20,{
 / image-digest / 3:<< [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’0123456789abcdeffedcba987654321000112233445566778899aabbccddeeff’
] >>,
 / image-size / 14:76834,
 / source-component / 22:0 / [h’00’] /,
 } ,
 / directive-copy / 22,2 ,
 / condition-image-match / 3,15
] >>,
 / run / 9:<< [
 / directive-set-component-index / 12,2 ,
 / directive-run / 23,2
] >>,
 / payload-fetch / 16:<< [
 / directive-set-component-index / 12,1 ,
 / directive-override-parameters / 20,{
 / image-digest / 3:<< [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
] >>,
 / uri / 21:’http://example.com/file.bin’,
 } ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15
] >>,
 / install / 17:<< [
 / directive-set-component-index / 12,0 ,
 / directive-override-parameters / 20,{
 / source-component / 22:1 / [h’02’] /,
 } ,
 / directive-copy / 22,2 ,
 / condition-image-match / 3,15
] >>,

Moran, et al. Expires 8 August 2024 [Page 91]

Internet-Draft CBOR-based SUIT Manifest February 2024

 } >>,
 })

 Total size of Envelope without COSE authentication object: 327

 Envelope:

 d86ba2025827815824822f5820838eb848698c9d9dd29b5930102ea1f297
 43857d975f52ed4d19589b821e82cf03590116a801010204035867a20283
 814100814102814101045858880c0014a40150fa6b4a53d5ad5fdfbe9de6
 63e4d41ffe02501492af1425695e48bf429b2d51f2ab45035824822f5820
 00112233445566778899aabbccddeeff0123456789abcdeffedcba987654
 32100e1987d0010f020f0745840c00030f085838880c0214a3035824822f
 58200123456789abcdeffedcba987654321000112233445566778899aabb
 ccddeeff0e1a00012c2216001602030f0945840c02170210584e880c0114
 a2035824822f582000112233445566778899aabbccddeeff0123456789ab
 cdeffedcba987654321015781b687474703a2f2f6578616d706c652e636f
 6d2f66696c652e62696e1502030f114b880c0014a116011602030f

 Total size of Envelope with COSE authentication object: 403

 Envelope with COSE authentication object:

 d86ba2025873825824822f5820838eb848698c9d9dd29b5930102ea1f297
 43857d975f52ed4d19589b821e82cf584ad28443a10126a0f6584042e418
 5517635842a5715c63772436588cc366d6a4c2beff3f3e0736806062c420
 8a756da9cfb0cc1325168eb3c743834b5f5a5dc00b33acd2a9073c6eb09e
 5c03590116a801010204035867a20283814100814102814101045858880c
 0014a40150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e
 48bf429b2d51f2ab45035824822f582000112233445566778899aabbccdd
 eeff0123456789abcdeffedcba98765432100e1987d0010f020f0745840c
 00030f085838880c0214a3035824822f58200123456789abcdeffedcba98
 7654321000112233445566778899aabbccddeeff0e1a00012c2216001602
 030f0945840c02170210584e880c0114a2035824822f5820001122334455
 66778899aabbccddeeff0123456789abcdeffedcba987654321015781b68
 7474703a2f2f6578616d706c652e636f6d2f66696c652e62696e1502030f
 114b880c0014a116011602030f

B.6. Example 5: Two Images

 This example covers the following templates:

 * Compatibility Check (Section 7.1)

 * Secure Boot (Section 7.2)

 * Firmware Download (Section 7.3)

Moran, et al. Expires 8 August 2024 [Page 92]

Internet-Draft CBOR-based SUIT Manifest February 2024

 Furthermore, it shows using these templates with two images.

 107({
 / authentication-wrapper / 2:<< [
 / digest: / << [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’264dc89eb4a39ae7a8ed05e4d6232153bce4fb9a111a31310b90627d1edfc3bb’
] >>,
 / signature: / << 18([
 / protected / << {
 / alg / 1:-7 / "ES256" /,
 } >>,
 / unprotected / {
 },
 / payload / F6 / nil /,
 / signature / h’9350fcb80d59f9be2a923bc144c5f64022
 b57d18ccddd9c0477a5be608b04200689373d42fc42fc154dce2d54255d64be9f5bd55
 efddb5de22354ec0894e979a’
]) >>
]
] >>,
 / manifest / 3:<< {
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:5,
 / common / 3:<< {
 / components / 2:[
 [h’00’] ,
 [h’01’]
],
 / shared-sequence / 4:<< [
 / directive-set-component-index / 12,0 ,
 / directive-override-parameters / 20,{
 / vendor-id /
 1:h’fa6b4a53d5ad5fdfbe9de663e4d41ffe’ / fa6b4a53-d5ad-5fdf-
 be9d-e663e4d41ffe /,
 / class-id /
 2:h’1492af1425695e48bf429b2d51f2ab45’ /
 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
 / image-digest / 3:<< [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210’
] >>,
 / image-size / 14:34768,
 } ,
 / condition-vendor-identifier / 1,15 ,
 / condition-class-identifier / 2,15 ,

Moran, et al. Expires 8 August 2024 [Page 93]

Internet-Draft CBOR-based SUIT Manifest February 2024

 / directive-set-component-index / 12,1 ,
 / directive-override-parameters / 20,{
 / image-digest / 3:<< [
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes /
 h’0123456789abcdeffedcba987654321000112233445566778899aabbccddeeff’
] >>,
 / image-size / 14:76834,
 }
] >>,
 } >>,
 / validate / 7:<< [
 / directive-set-component-index / 12,0 ,
 / condition-image-match / 3,15 ,
 / directive-set-component-index / 12,1 ,
 / condition-image-match / 3,15
] >>,
 / run / 9:<< [
 / directive-set-component-index / 12,0 ,
 / directive-run / 23,2
] >>,
 / install / 17:<< [
 / directive-set-component-index / 12,0 ,
 / directive-override-parameters / 20,{
 / uri / 21:’http://example.com/file1.bin’,
 } ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15 ,
 / directive-set-component-index / 12,1 ,
 / directive-override-parameters / 20,{
 / uri / 21:’http://example.com/file2.bin’,
 } ,
 / directive-fetch / 21,2 ,
 / condition-image-match / 3,15
] >>,
 } >>,
 })

 Total size of Envelope without COSE authentication object: 306

 Envelope:

Moran, et al. Expires 8 August 2024 [Page 94]

Internet-Draft CBOR-based SUIT Manifest February 2024

 d86ba2025827815824822f5820264dc89eb4a39ae7a8ed05e4d6232153bc
 e4fb9a111a31310b90627d1edfc3bb03590101a601010205035895a20282
 8141008141010458898c0c0014a40150fa6b4a53d5ad5fdfbe9de663e4d4
 1ffe02501492af1425695e48bf429b2d51f2ab45035824822f5820001122
 33445566778899aabbccddeeff0123456789abcdeffedcba98765432100e
 1987d0010f020f0c0114a2035824822f58200123456789abcdeffedcba98
 7654321000112233445566778899aabbccddeeff0e1a00012c220749880c
 00030f0c01030f0945840c00170211584f900c0014a115781c687474703a
 2f2f6578616d706c652e636f6d2f66696c65312e62696e1502030f0c0114
 a115781c687474703a2f2f6578616d706c652e636f6d2f66696c65322e62
 696e1502030f

 Total size of Envelope with COSE authentication object: 382

 Envelope with COSE authentication object:

 d86ba2025873825824822f5820264dc89eb4a39ae7a8ed05e4d6232153bc
 e4fb9a111a31310b90627d1edfc3bb584ad28443a10126a0f658409350fc
 b80d59f9be2a923bc144c5f64022b57d18ccddd9c0477a5be608b0420068
 9373d42fc42fc154dce2d54255d64be9f5bd55efddb5de22354ec0894e97
 9a03590101a601010205035895a202828141008141010458898c0c0014a4
 0150fa6b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf42
 9b2d51f2ab45035824822f582000112233445566778899aabbccddeeff01
 23456789abcdeffedcba98765432100e1987d0010f020f0c0114a2035824
 822f58200123456789abcdeffedcba987654321000112233445566778899
 aabbccddeeff0e1a00012c220749880c00030f0c01030f0945840c001702
 11584f900c0014a115781c687474703a2f2f6578616d706c652e636f6d2f
 66696c65312e62696e1502030f0c0114a115781c687474703a2f2f657861
 6d706c652e636f6d2f66696c65322e62696e1502030f

Appendix C. C. Design Rational

 In order to provide flexible behavior to constrained devices, while
 still allowing more powerful devices to use their full capabilities,
 the SUIT manifest encodes the required behavior of a Recipient
 device. Behavior is encoded as a specialized byte code, contained in
 a CBOR list. This promotes a flat encoding, which simplifies the
 parser. The information encoded by this byte code closely matches
 the operations that a device will perform, which promotes ease of
 processing. The core operations used by most update and trusted
 invocation operations are represented in the byte code. The byte
 code can be extended by registering new operations.

 The specialized byte code approach gives benefits equivalent to those
 provided by a scripting language or conventional byte code, with two
 substantial differences. First, the language is extremely high
 level, consisting of only the operations that a device may perform
 during update and trusted invocation of a firmware image. Second,

Moran, et al. Expires 8 August 2024 [Page 95]

Internet-Draft CBOR-based SUIT Manifest February 2024

 the language specifies linear behavior, without reverse branches.
 Conditional processing is supported, and parallel and out-of-order
 processing may be performed by sufficiently capable devices.

 By structuring the data in this way, the manifest processor becomes a
 very simple engine that uses a pull parser to interpret the manifest.
 This pull parser invokes a series of command handlers that evaluate a
 Condition or execute a Directive. Most data is structured in a
 highly regular pattern, which simplifies the parser.

 The results of this allow a Recipient to implement a very small
 parser for constrained applications. If needed, such a parser also
 allows the Recipient to perform complex updates with reduced
 overhead. Conditional execution of commands allows a simple device
 to perform important decisions at validation-time.

 Dependency handling is vastly simplified as well. Dependencies
 function like subroutines of the language. When a manifest has a
 dependency, it can invoke that dependency’s commands and modify their
 behavior by setting parameters. Because some parameters come with
 security implications, the dependencies also have a mechanism to
 reject modifications to parameters on a fine-grained level.
 Dependency handling is covered in [I-D.ietf-suit-trust-domains].

 Developing a robust permissions system works in this model too. The
 Recipient can use a simple ACL that is a table of Identities and
 Component Identifier permissions to ensure that operations on
 components fail unless they are permitted by the ACL. This table can
 be further refined with individual parameters and commands.

 Capability reporting is similarly simplified. A Recipient can report
 the Commands, Parameters, Algorithms, and Component Identifiers that
 it supports. This is sufficiently precise for a manifest author to
 create a manifest that the Recipient can accept.

 The simplicity of design in the Recipient due to all of these
 benefits allows even a highly constrained platform to use advanced
 update capabilities.

C.1. C.1 Design Rationale: Envelope

 The Envelope is used instead of a COSE structure for several reasons:

 1. This enables the use of Severable Elements (Section 8.5)

 2. This enables modular processing of manifests, particularly with
 large signatures.

Moran, et al. Expires 8 August 2024 [Page 96]

Internet-Draft CBOR-based SUIT Manifest February 2024

 3. This enables multiple authentication schemes.

 4. This allows integrity verification by a dependent to be
 unaffected by adding or removing authentication structures.

 Modular processing is important because it allows a Manifest
 Processor to iterate forward over an Envelope, processing Delegation
 Chains and Authentication Blocks, retaining only intermediate values,
 without any need to seek forward and backwards in a stream until it
 gets to the Manifest itself. This allows the use of large, Post-
 Quantum signatures without requiring retention of the signature
 itself, or seeking forward and back.

 Four authentication objects are supported by the Envelope:

 * COSE_Sign_Tagged

 * COSE_Sign1_Tagged

 * COSE_Mac_Tagged

 * COSE_Mac0_Tagged

 The SUIT Envelope allows an Update Authority or intermediary to mix
 and match any number of different authentication blocks it wants
 without any concern for modifying the integrity of another
 authentication block. This also allows the addition or removal of an
 authentication blocks without changing the integrity check of the
 Manifest, which is important for dependency handling. See
 Section 6.2

C.2. C.2 Byte String Wrappers

 Byte string wrappers are used in several places in the suit manifest.
 The primary reason for wrappers it to limit the parser extent when
 invoked at different times, with a possible loss of context.

 The elements of the suit envelope are wrapped both to set the extents
 used by the parser and to simplify integrity checks by clearly
 defining the length of each element.

 The common block is re-parsed in order to find components identifiers
 from their indices, to find dependency prefixes and digests from
 their identifiers, and to find the shared sequence. The shared
 sequence is wrapped so that it matches other sequences, simplifying
 the code path.

Moran, et al. Expires 8 August 2024 [Page 97]

Internet-Draft CBOR-based SUIT Manifest February 2024

 A severed SUIT command sequence will appear in the envelope, so it
 must be wrapped as with all envelope elements. For consistency,
 command sequences are also wrapped in the manifest. This also allows
 the parser to discern the difference between a command sequence and a
 SUIT_Digest.

 Parameters that are structured types (arrays and maps) are also
 wrapped in a bstr. This is so that parser extents can be set
 correctly using only a reference to the beginning of the parameter.
 This enables a parser to store a simple list of references to
 parameters that can be retrieved when needed.

Appendix D. D. Implementation Conformance Matrix

 This section summarizes the functionality a minimal manifest
 processor implementation needs to offer to claim conformance to this
 specification, in the absence of an application profile standard
 specifying otherwise.

 The subsequent table shows the conditions.

 +===================+=================+================+
 | Name | Reference | Implementation |
 +===================+=================+================+
 | Vendor Identifier | Section 8.4.8.2 | REQUIRED |
 +-------------------+-----------------+----------------+
 | Class Identifier | Section 8.4.8.2 | REQUIRED |
 +-------------------+-----------------+----------------+
 | Device Identifier | Section 8.4.8.2 | OPTIONAL |
 +-------------------+-----------------+----------------+
 | Image Match | Section 8.4.9.2 | REQUIRED |
 +-------------------+-----------------+----------------+
 | Check Content | Section 8.4.9.3 | OPTIONAL |
 +-------------------+-----------------+----------------+
 | Component Slot | Section 8.4.9.4 | OPTIONAL |
 +-------------------+-----------------+----------------+
 | Abort | Section 8.4.9.5 | OPTIONAL |
 +-------------------+-----------------+----------------+
 | Custom Condition | Section 8.4.11 | OPTIONAL |
 +-------------------+-----------------+----------------+

 Table 19

 The subsequent table shows the directives.

Moran, et al. Expires 8 August 2024 [Page 98]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +=====================+==================+====================+
 | Name | Reference | Implementation |
 +=====================+==================+====================+
 | Set Component Index | Section 8.4.10.1 | REQUIRED if more |
 | | | than one component |
 +---------------------+------------------+--------------------+
 | Write Content | Section 8.4.10.6 | OPTIONAL |
 +---------------------+------------------+--------------------+
 | Try Each | Section 8.4.10.2 | OPTIONAL |
 +---------------------+------------------+--------------------+
 | Override Parameters | Section 8.4.10.3 | REQUIRED |
 +---------------------+------------------+--------------------+
 | Fetch | Section 8.4.10.4 | REQUIRED for |
 | | | Updater |
 +---------------------+------------------+--------------------+
 | Copy | Section 8.4.10.5 | OPTIONAL |
 +---------------------+------------------+--------------------+
 | Invoke | Section 8.4.10.7 | REQUIRED for |
 | | | Bootloader |
 +---------------------+------------------+--------------------+
 | Run Sequence | Section 8.4.10.8 | OPTIONAL |
 +---------------------+------------------+--------------------+
 | Swap | Section 8.4.10.9 | OPTIONAL |
 +---------------------+------------------+--------------------+

 Table 20

 The subsequent table shows the parameters.

Moran, et al. Expires 8 August 2024 [Page 99]

Internet-Draft CBOR-based SUIT Manifest February 2024

 +==================+==================+======================+
 | Name | Reference | Implementation |
 +==================+==================+======================+
 | Vendor ID | Section 8.4.8.3 | REQUIRED |
 +------------------+------------------+----------------------+
 | Class ID | Section 8.4.8.4 | REQUIRED |
 +------------------+------------------+----------------------+
 | Image Digest | Section 8.4.8.6 | REQUIRED |
 +------------------+------------------+----------------------+
 | Image Size | Section 8.4.8.7 | REQUIRED |
 +------------------+------------------+----------------------+
 | Component Slot | Section 8.4.8.8 | OPTIONAL |
 +------------------+------------------+----------------------+
 | Content | Section 8.4.8.9 | OPTIONAL |
 +------------------+------------------+----------------------+
 | URI | Section 8.4.8.10 | REQUIRED for Updater |
 +------------------+------------------+----------------------+
 | Source Component | Section 8.4.8.11 | OPTIONAL |
 +------------------+------------------+----------------------+
 | Invoke Args | Section 8.4.8.12 | OPTIONAL |
 +------------------+------------------+----------------------+
 | Device ID | Section 8.4.8.5 | OPTIONAL |
 +------------------+------------------+----------------------+
 | Strict Order | Section 8.4.8.14 | OPTIONAL |
 +------------------+------------------+----------------------+
 | Soft Failure | Section 8.4.8.15 | OPTIONAL |
 +------------------+------------------+----------------------+
 | Custom | Section 8.4.8.16 | OPTIONAL |
 +------------------+------------------+----------------------+

 Table 21

Authors’ Addresses

 Brendan Moran
 Arm Limited
 Email: brendan.moran.ietf@gmail.com

 Hannes Tschofenig
 Email: hannes.tschofenig@gmx.net

 Henk Birkholz
 Fraunhofer SIT
 Email: henk.birkholz@sit.fraunhofer.de

Moran, et al. Expires 8 August 2024 [Page 100]

Internet-Draft CBOR-based SUIT Manifest February 2024

 Koen Zandberg
 Inria
 Email: koen.zandberg@inria.fr

 Øyvind Rønningstad
 Nordic Semiconductor
 Email: oyvind.ronningstad@gmail.com

Moran, et al. Expires 8 August 2024 [Page 101]

