SRH Extension for Redundancy Protection

draft-geng-spring-sr-redundancy-protection-02
draft-geng-6man-redundancy-protection-srh-00

Presenter: Fan Yang

Xuesong Geng (gengxuesong@huawei.com)
Mach Chen (mach.chen@huawei.com)
Fan Yang (shirley.yangfan@huawei.com)
What is Redundancy Protection?

• Service Protection comes from Deterministic Networking (DetNet)
• New requirement for providing strict E2E reliability SLA guarantee to services, e.g. cloud VR, cloud game, HDV applications
• Definition
 • is one of the mechanisms to achieve service protection
 • follows the principle of PREOF (Packet Replication/ Elimination/Ordering Function)
• Example scenario:

```
+-----+R3+-----+
+----+    +----+  +----+
--------|R1|--------|Red|--------|Mer|--------|R2|--------
+----+    +----+  +----+
+-----+R4+-----+
```
To support Redundancy Protection

• **Redundancy Segment:**
 - to perform the packet replication function on Redundancy Node
 - associated with a Redundancy policy (a variant of SR Policy) to steer the flow
 - in case of SRv6, new behavior End.R is defined

• **Merging Segment:**
 - to perform the packet elimination and ordering (optional) function on Merging Node
 - in case of SRv6, new behavior End.M is defined

• **Flow ID and sequence number:**
 - Flow Identification: to identify a unique flow
 - Sequence Number: to identify the packet sequence within one flow
 - Extend SRH optional TLV to encapsulate them

• **Redundancy Policy:**
 - Redundancy Policy is a variant of SR policy
 - includes more than one ordered lists of segments between Redundancy Node and Merging Node
 - all the ordered lists of segments are used at the same time
Redundancy Protection Process

Take SRv6 as an example:

- **SDN Controller**
 - SR-Policy
 - SL[R2,M,R,R1] assigns Flow ID
 - Service data
 - IPv6Hdr 1<R1,M,R,R1>
 - SRH[R2,M,R,R1]
 - TLV(FI,SN)
 - Service data

- **Redundancy Node**
 - IPv6Hdr 1<R,R,R3>
 - SRH[R3]
 - IPv6Hdr 1<R,M>
 - SRH[R2,M,R,R1]
 - TLV(FI,SN)
 - Service data

- **Merging Node**
 - IPv6Hdr 1<R3,M>
 - SRH[R2,M,R,R1]
 - TLV(FI,SN)
 - Service data
 - IPv6Hdr 1<R4,M>
 - SRH[R2,M,R,R1]
 - TLV(FI,SN)
 - Service data

- **R1**
 - Service data
 - IPv6Hdr 1<R1,R,M,R,R1>
 - SRH[R2,M,R,R1]
 - TLV(FI,SN)
 - Service data

- **R2**
 - Service data
 - IPv6Hdr 1<R2,R,M,R,R1>
 - SRH[R2,M,R,R1]
 - TLV(FI,SN)
 - Service data

- **R3**
 - Service data
 - IPv6Hdr 1<R3,M>
 - SRH[R2,M,R,R1]
 - TLV(FI,SN)
 - Service data

- **R4**
 - Service data
 - IPv6Hdr 1<R4,M>
 - SRH[R2,M,R,R1]
 - TLV(FI,SN)
 - Service data

- **R**
 - Service data
 - IPv6Hdr 1<R,M>
 - SRH[R2,M,R,R1]
 - TLV(FI,SN)
 - Service data

- **M**
 - Service data
 - IPv6Hdr 1<M,R2>
 - SRH[R2,M,R,R1]
 - TLV(FI,SN)
 - Service data

- **SRv6**
 - Service data
 - IPv6Hdr 1<M,R2>
 - Service data

- **Redundancy Policy**
 - SL[R2,M,R,R1]
 - Flow ID
 - drop the redundancy packet
 - generates seq num
 - assigns Flow ID

IETF 110 - March 2021 - Online- 6MAN WG
Flow ID and Sequence Number Encapsulation

SRH Encapsulation in draft-geng-6man-redundancy-protection-srh-00

A TLV is defined to carry flow ID and sequence number

- Flow Identification: 32 bits, to identify a unique flow
- Sequence Number: 32 bits, to identify the packet sequence within one flow
Next Step

• Refine the overall solution and SRH encapsulation
• Comments and discussions in mailing list
• Seek for collaborations
 • Scalability discussion of flow ID and sequence number
 • Segment specification in SR-MPLS data plane