Agenda

• Recap BGP CT; problem, solution, advantages, presented at IETF-108.

• Share changes to the draft – since last presentation.

• Share learnings from implementation, qualification.

• Introduce related drafts.

• Next steps.
BGP-CT: Problem

• A domain has intra-AS tunnels with varying TE characteristics (gold, silver, bronze).

• There could be multiple tunnels to the same destination. And different tunneling protocols creating those tunnels.

• These tunnels may need to be extended inter-domain, while preserving their TE characteristics end-to-end.

• Different Service routes want to resolve (put traffic) over intra/inter-domain tunnels of a certain TE characteristic, with an option to fallback on tunnels belonging to a different TE characteristic, including best-effort tunnels.

• How to extend BGP to signal these pieces of information, and get the job done.

• Solution agnostic of transport (RSVP, SRTE, Flex, IP-tunnels, etc..) and service layer (L3VPN, IPv6, Flowspec, Static, L2VPN, EVPN, etc..). i.e. works with any of these protocols in service and transport-layer.
BGP-CT: Solution constructs.

- **Transport Class**: collects tunnels with same TE characteristics (gold, silver, etc). Identifier: 32-bit Color.

- BGP-CT is a new BGP transport layer address-family (SAFI: 76, “Classful Transport”) that follows RFC-4364 procedures.

- Ingress routes collected in a TC are advertised in BGP-CT family, to other BGP speakers.
 - With “Route Distinguisher:TunnelEndpoint” as the NLRI.
 - And “Transport Class Route Target” that identifies the TC it belongs to.

- BGP-CT extends the tunnel across inter-domain boundaries, while preserving the same Transport class end-to-end.
 - Resolve BGP NH using tunnels belonging to the same Transport class.
 - Follow RFC-4364 option-C style procedures, to create swap-routes on domain boundaries.
 - Works in conjunction with option-A, option-B scenarios as-well.

- Service routes want to resolve using a Resolution scheme asper user intent (e.g., use tunnels of a certain Transport class, with an option to fallback on Best-effort or another Transport class).

- Desired Resolution scheme is signaled via “Mapping community” on BGP route. E.g:
 - Color:0:<n> on the service-route. Resolves over Color “n” tunnels, with fallback on ‘best-effort’ tunnels.
 - Transport-Target on BGP-CT route. Resolves strictly over Color “n” tunnels.
BGP CT: pcap sneak peak

Nov 10 22:00:51.708561 BGP SEND 13.21.0.13+65494 -> 13.21.0.21+179
Nov 10 22:00:51.708563 BGP SEND message type 2 (Update) length 98
Nov 10 22:00:51.708572 BGP SEND Update PDU length 98
Nov 10 22:00:51.708574 BGP SEND flags 0x40 code Origin(1): IGP
Nov 10 22:00:51.708580 BGP SEND flags 0x40 code ASPath(2) length 6: 1
Nov 10 22:00:51.708581 BGP SEND flags 0x80 code MultiExitDisc(4): 30
Nov 10 22:00:51.708596 BGP SEND flags 0xC0 code Extended Communities(16): transport-target:0:100
Nov 10 22:00:51.708605 BGP SEND flags 0x90 code MP_reach(14): AFI/SAFI 1/76
Nov 10 22:00:51.708611 BGP SEND nhop 13.21.0.13 len 12
Nov 10 22:00:51.708631 BGP SEND 1.1.1.3:9:1.1.1.1/32 (label 299952)
BGP-CT: advantages of reusing 4364 encoding

• Using RFC-4364 style “Route Distinguisher” allows advertising multiple tunnels to the same destination
 • Avoids using multiple loopbacks on Egress-PE,
 • Avoids path-hiding when transiting RR/ASBRs,
 • Allows unambiguously identifying the originating PE, for debugging.
 • Supports TunnelEndpoint being an Anycast-address participating in multiple domains.
 • Allows path-selection after stripping RD, when necessary. Helpful for faster convergence.

Basically, RD is an identifier of convenience. Use it when needed, Strip it when not needed. Preserved end-to-end.

• Using RFC-4364 style “Route Target” to propagate Transport-Class allows:
 • Forming Venn diagrams of color domains as desired.
 • Core network having more fine-grained colors than Access networks.
 • Other creative use-cases possible in future, e.g. Hub and Spoke Color domains..?

• Treating “Color” as an attribute (adjective), rather than part of NLRI (noun)
 • Helps in cases where domains have different numbering of color values. Attribute rewrites is easier than rewriting NLRI.

• ODN using Route Target Constrain procedures.
 • Service-routes can have a clean API with Transport-layer, to request for only the BGP-CT routes required by service-routes.

• Re-uses the time tested, well deployed, RFC-4364 machinery. That cuts down implementation, testing time. Improves reliability of the solution, and time to deploy. Preserves ROI.

• Mantra of 21st century technologies is “reduce, re-use, recycle”. From Software perspective: “re-use, reduce, extend”.

Juniper Networks
Updates since IETF-108

• Added illustration with example topology, MPLS OAM section.

• Documented how CT helps with Redundant ABRs scenario. Where RR is configured with nexthop-self. We will discuss this one in next two slide.

• Added Scaling considerations section.
 • Recommend RFC-8212 as default behavior for BGP-CT family.
 • Route-Target Filter usage for BGP-CT to provide ODN.
 • MPLS namespaces. A new concept can be applied to both LU or CT networks to deal with scaling.

• Added ‘Applicability to Network-Slicing’ section: Transport Class is the “Topology Slice” part of Transport slice (Transport slice = Topology slice + Resources)

• Welcome co-authors: VZ, Cox, Alibaba, Google.

• Status of Implementation: Code shipping on Junos 21.1R1
Redundant ABRs (RRs with NHS) in a BGP network

• Such topologies have possibility of forwarding loop forming between BGP-LU ABRs, because of RFC-4456 (it’s focus is pure-RR functionality), which don’t tie-break on Cluster-List before Router-ID.

• IGP-metrics need to be carefully chosen to avoid ABR choosing each other as best-path instead of ASBR.

• In some implementations LDP sets flat IGP-metric of 1 (perhaps for this reason). But when using L-ISIS or ISIS-Flex, IGP-metric makes a difference.

• Implementations may provide a way to put Cluster-List step before Router-ID step in path-selection, at “Forwarding RR-nodes doing nexthop-self”.

• BGP-CT provides an easier deployment alternative: don’t provision ABR to ABR colored-tunnels. This avoids possibility of any loops, without having to playing with IGP-metric or BGP path-selection.
Avoiding possible forwarding loop between redundant ABRs

Service Routes

Transport Routes

PE11: PNH=ABR22
PE11: PNH=ASBR21
PE11: PNH=ASBR22

PE11: PNH=ABR22 (Hidden)

PE11: PNH=ABR22
PE11: PNH=ASBR21
PE11: PNH=ASBR22

PE11: PNH=ABR23 (Hidden)

Juniper Networks
Related drafts

• PCEP RSVP Color
draft-rajagopalan-pcep-rsvp-color-00

• Seamless SR – use cases.

• SRv6 and MPLS interop.
https://datatracker.ietf.org/doc/draft-bonica-spring-srv6-end-dtm/

• MPLS namespaces: signaled via BGP

• Generic RTC
Thank you.